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A. Surface Band Structure for the Triple Degeneracy 

To illustrate the topology of triple degenerate point in Y3XC (X=Ga, Tl), we plot the 

surface spectrum on (001) surface. Obviously, there exists surfaces states starting 

from the triple degenerate point (see in Fig. S1). 

 

 

Fig.S1 Surface spectrum for the triple degenerate in Y3GaC on (001) surface. The 

white arrow points to the surface states, cyan dot marks the triple degenerate point. 

 

B. Topological Phase Transition Induced by a Zeeman Field 

 

In this SM, we use the model to study topological phase transition under a Zeenman 

field. We have mentioned that the effective model we have derived Eq. (2) is based on 

states of j = 3/2, then the Zeeman field can be written in the form of  
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ℋZ = −𝑩 ⋅ 𝑱, 

with 𝐉 as the vector of the J = 3/2 spin matrices.  

 

Under a Zeeman field, the time reversal symmetry is broken, the quadratic Dirac point 

is expected to be transformed into pairs of Weyl points. To demonstrate it, we apply a 

Zeeman field along high symmetric path, namely, [100] direction.  

In this case, ℋZ = −𝑀𝐽𝑥, the total Hamiltonian takes the form of ℋ = ℋsoc + ℋ𝑍. 

We first search band crossings along 𝑘𝑥 axis, then two pairs (W1, W2) of Weyl 

points are expected to appear. For concreteness, the eigenenergies for ℋ along kx 

are given by 

𝐸1,2 = −𝛼𝑘𝑥
2 ±

𝐵

2
,   𝐸3,4 = 𝛼𝑘𝑥

2 ±
3𝐵

2
. 

Accordingly, if α > 0, 𝐸1,2 will cross with 𝐸4 at 𝐾1 = (±√
B

α
, 0,0) , 𝐾2 =

(±√
B

2α
, 0,0), respectively. Taking suitable parameters, we present the energy 

spectrum under a Zeeman field around the quadratic Dirac point in Fig.S1. 

 

Fig.S2 Band structure under a Zeeman field along [100] direction. In the calculation, 

we take M = 0, B = 10 meV, α = 10 eV ⋅ Å, γ = 17 eV ⋅ Å. 

 

Effective Hamiltonian for Weyl Points  
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For the first pair of Weyl points which locate at 𝐾1 = (±√
B

α
, 0,0), one can derive the 

degenerate eigenstates at these two points, specifically, 

|𝜓1⟩ =
1

√2
(−1,0,0,1)𝑇, |𝜓2⟩ =

1

√2
(0, −1,1,0)𝑇. 

Then the effective Hamiltonian around 𝐾1 is given by 

ℋ1 = (
⟨𝜓1|ℋ𝑠𝑜𝑐|𝜓1⟩ ⟨𝜓1|ℋ𝑠𝑜𝑐|𝜓2⟩

⟨𝜓2|ℋ𝑠𝑜𝑐|𝜓1⟩ ⟨𝜓2|ℋ𝑠𝑜𝑐|𝜓2⟩
). 

Then we expand the model at K1, after a unitary transformation, we have the 

Hamiltonian takes the form as 

ℋ1(𝒒) = 𝑣𝑥𝑞𝑥𝜎𝑧 + [(𝛾+𝑞−
2 + 𝛾−𝑞+

2 )𝜎+ + ℎ. 𝑐. ], 

with γ± =
1

8
(√3𝛼 ± γ), 𝑞± = 𝑞𝑦 ± 𝑖𝑞𝑧 , 𝜎± = 𝜎𝑥 ± 𝑖𝜎𝑦. The chirality of the Weyl 

point is determined by sgn (|γ+| − |γ−|) = ±2.  

 

The effective Hamiltonian expanded from 𝐾2=(±√
B

2α
, 0,0) can be derived in the 

same way. Here, the degenerate states take the form of  

𝜓3 =
1

2√2
(−2, −√3, 0,1)

𝑇
, 𝜓4 =

1

2√2
(0,1,2, √3)

𝑇
. 

Such that the effective Hamiltonian for the band crossing around 𝐾2 is given by 

ℋ2 = (
⟨𝜓3|ℋ𝑠𝑜𝑐|𝜓3⟩ ⟨𝜓3|ℋ𝑠𝑜𝑐|𝜓4⟩

⟨𝜓4|ℋ𝑠𝑜𝑐|𝜓3⟩ ⟨𝜓4|ℋ𝑠𝑜𝑐|𝜓4⟩
). 

To derive the main feature at K2, we also expand it at this point, thus 

ℋ2(𝒒) = 𝑣𝑥𝑞𝑥𝜎𝑧 + 𝑣𝑦𝑞𝑦𝜎𝑦 − 𝑣𝑧𝑞𝑧𝜎𝑥. 

Here, 𝑣𝑦 = 𝑣𝑧 = 𝛾√
𝑀

𝛼
 , 𝑣𝑥 = 2√𝑀𝛼. This model is a typical single Weyl point. 


