Supplementary information

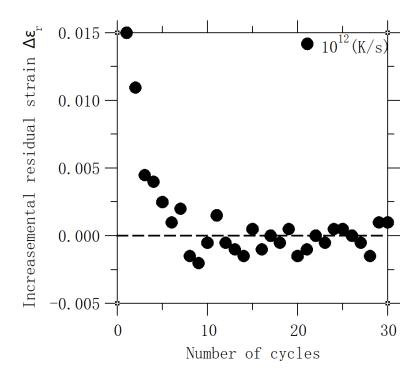
Bulk Metallic Glasses' Response to Oscillatory Stress is Governed by the Topography of the Energy Landscape

Longwen Tang^{1, 2}, Gang Ma¹, Han Liu², Wei Zhou^{1*}, Mathieu Bauchy^{2*}

¹ State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.

² Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA.

Corresponding Author


*Wei zhou (Email: zw_mxx@whu.edu.cn)

*Mathieu Bauchy (Email: <u>bauchy@ucla.edu</u>)

Contents:

Figure S1. Incremental residual strain as the function of cycle number

Figure S2. Potential energy of the glasses as a function of the number of cycles.

Figure S1. Incremental residual strain as the function of cycle number for a glass prepared with high cooling rate (10^{12} K/s) .

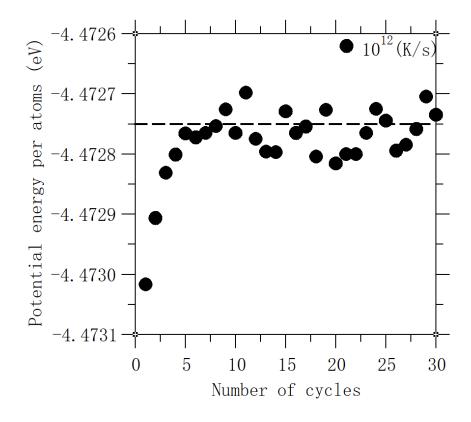


Figure S2. Potential energy of the glasses as a function of the number of cycles.