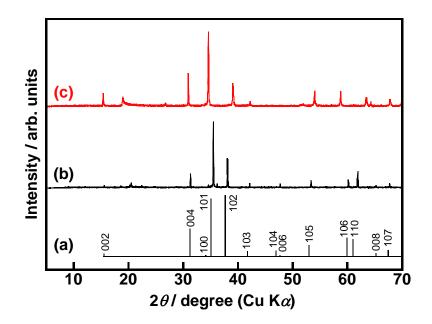
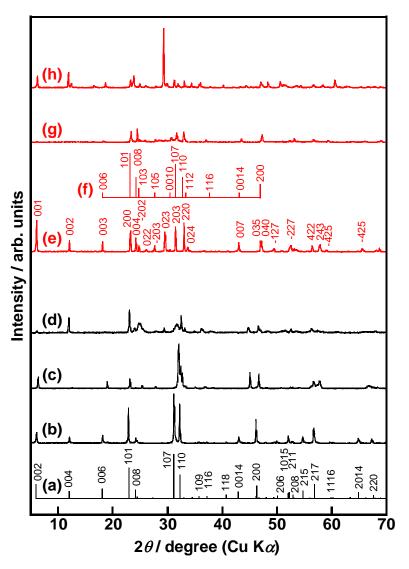
Supporting information

New Visible-Light-Driven H_2 - and O_2 -Evolving Photocatalysts Developed by Ag(I) and Cu(I) lon Exchange of Various Layered and Tunneling Metal Oxides Using Molten Salts Treatments

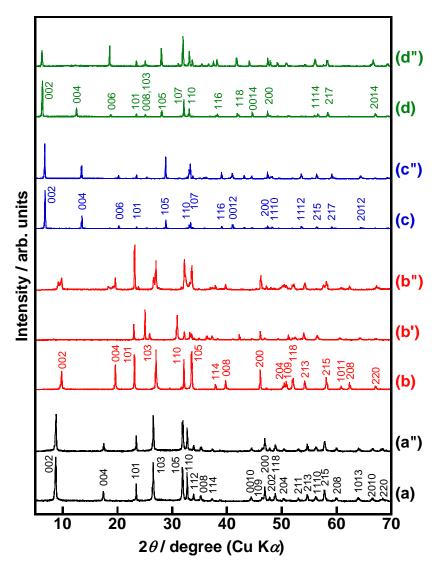
Kenta Watanabe¹, Katsuya Iwashina¹, Akihide Iwase^{1,2}, Shunsuke Nozawa³, Shin-ichi Adachi³, and Akihiko Kudo^{*1,2}

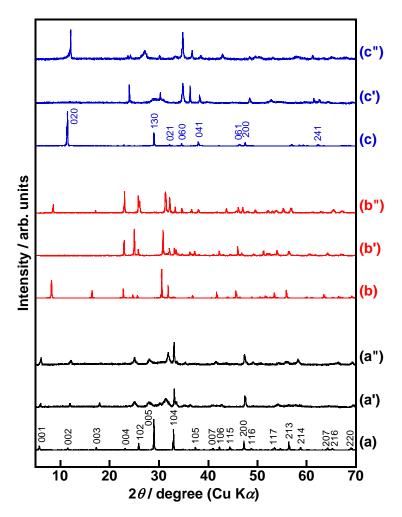

¹Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

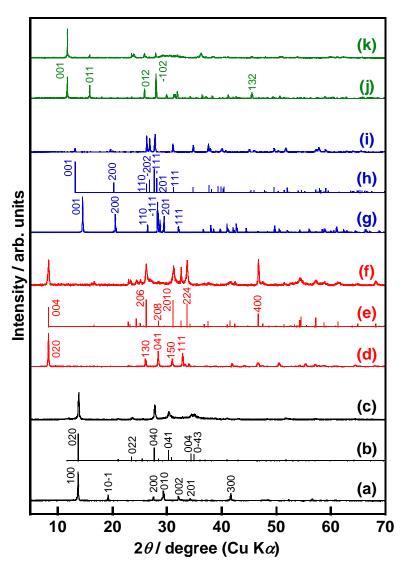
²Photocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki Noda-shi, Chiba-ken 278-8510, Japan


³Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Contents


Figure S1-S6. XRD patterns of the obtained layered materials.	2
Figure S7-S12. SEM images of some obtained layered materials.	8
Figure S13. XRD patterns of the obtained tunneling materials	10
Figure S14-S16. SEM images of some obtained tunneling materials	11
Figure S17. Crystal structure of Li ₂ Ti ₆ O ₁₃ .	12
Figure S18-S43. Diffuse reflectance spectra of obtained materials.	13
Figure S44. Photocatalytic O_2 evolution over $Ag(I)$ - $K_2SrTa_2O_7$ under visible light irradiation.	26
Figure S45. XRD patterns of Ag(I)-K ₂ SrTa ₂ O ₇ before and after sacrificial O ₂ evolution.	26
Figure S46. Photocatalytic H_2 evolution over Cu(I)-Li ₂ SrTi ₆ O ₁₄ under visible light irradiation.	27
Figure S47. Wavelength dependence of H_2 evolution over Cu(I)-Li ₂ SrTi ₆ O ₁₄ .	27
Figure S48. Crystal structure of $K_2La_2Ti_3O_{10}$ and $K_2SrTa_2O_7$.	28
Figure S49. XRD patterns of $Cu(I)$ - $K_2La_2Ti_3O_{10}$ and $Cu(I)$ - $Na_2La_2Ti_3O_{10}$.	28
Figure S50. XRD patterns of $Cu(I)$ - $K_2SrTa_2O_7$ before and after sacrificial H_2 evolution.	29
Figure S51. Sr3d and Ta4f XPS spectra of K ₂ SrTa ₂ O ₇ , Ag(I)-K ₂ SrTa ₂ O ₇ , and Cu(I)-K ₂ SrTa ₂ O ₇ .	29
Figure S52. Cu K-edge XANES spectrum of Cu(I)-KLaTa ₂ O ₇ .	30
Figure S53. XRD patterns of CuTa ₂ O ₆ .	30


Figure S1. XRD patterns of (a) CuFeO₂ (Hexagonal, PDF 1-79-1546), (b) CuLi_{1/3}Ti_{2/3}O₂ (Hexaconal), and (c) Cu(I)-Li₂SnO₃. CuCl was used as a flux for the synthesis of CuLi_{1/3}Ti_{2/3}O₂ and Cu(I)-Li₂SnO₃.


Figure S2. XRD patterns of (a) $K_2CaNaTa_3O_{10}$ (PDF 1-70-6006), (b) $K_2CaNaNb_3O_{10}$, (c) $Ag(I)-K_2CaNaNb_3O_{10}$, (d) $Cu(I)-K_2CaNaNb_3O_{10}$, (e) $KCa_2Nb_3O_{10}$, (f) $AgCa_2Ta_3O_{10}$ (PDF 52-1081), (g) $Ag(I)-KCa_2Nb_3O_{10}$, and (h) $Cu(I)-KCa_2Nb_3O_{10}$. CuCl was used as a flux for the synthesis of all Cu(I)-substituted materials. A plane index for $KCa_2Nb_3O_{10}$ was referred to PDF 1-75-9853.

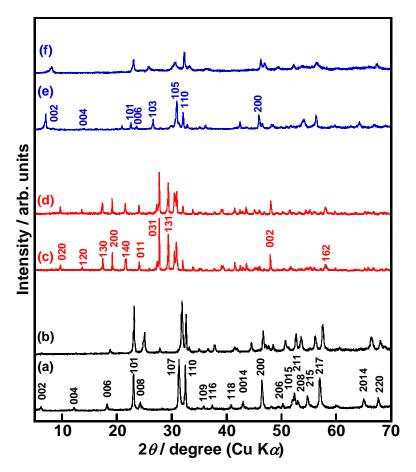

Figure S3. XRD patterns of layered metal oxides with and without molten salt treatments. Host materials, and their Ag(I)- and Cu(I)-ion-exchanged materials were labeled as (x), (x'), and (x"), respectively. (a) $LiLaTa_2O_7$, (b) $Li_2SrTa_2O_7$, (c) $Li_2La_2Ti_3O_{10}$, and (d) $Na_2La_2Ti_3O_{10}$. CuCl was used as a flux for the synthesis of all Cu(I)-substituted materials. Plane indices for $LiLaTa_2O_7$, $Li_2SrTa_2O_7$, $Li_2La_2Ti_3O_{10}$, and $Na_2La_2Ti_3O_{10}$ were referred to PDFs 1-82-8704, 1-89-8144, 1-87-1169, and 1-86-1369, respectively.

Figure S4. XRD patterns of layered metal oxides with and without molten salt treatments. Host materials, and their Ag(I)- and Cu(I)-ion-exchanged materials were labeled as (x), (x'), and (x"), respectively. (a) $CsLa_2Ti_2TaO_{10}$, (b) $K_2SrNb_{0.2}Ta_{1.8}O_7$, and (c) $K_{0.8}Mg_{0.4}Ti_{1.6}O_4$. CuCl was used as a flux for the synthesis of $Cu(I)-CsLa_2Ti_2TaO_{10}$ and $Cu(I)-K_2SrNb_{0.2}Ta_{1.8}O_7$. CuCl-Cul mixture was used as a flux for the synthesis of $Cu(I)-K_{0.8}Mg_{0.4}Ti_{1.6}O_4$. Plane indices for $CsLa_2Ti_2TaO_{10}$ and $K_{0.8}Mg_{0.4}Ti_{1.6}O_4$ were referred to PDFs 1-70-7828 and 1-73-671, respectively.

Figure S5. XRD patterns of (a) $K_2Ti_2O_5$, (b) $Ag_2Ti_2O_5$ (PDF: 56-131), (c) $Ag(I)-K_2Ti_2O_5$, (d) $KLaNb_2O_7$, (e) / β -AgLaNb₂O₇ (PDF: 1-82-14), (f) Ag(I)-KLaNb₂O₇, (g) LiVWO₆, (h) NaVWO₆ (PDF: 1-79-5682), (i) Ag(I)-LiVWO₆, (j) KV₃O₈, and (k) Ag(I)-KV₃O₈. Plane indices for $K_2Ti_2O_5$, KLaNb₂O₇, LiVWO₆, and KV₃O₈ were referred to PDFs 51-1890, 1-81-1191, 1-78-5901, and 1-86-2495, respectively.

Figure S6. XRD patterns of (a) K₂CaNaTa₃O₁₀, (b) Cu(I)-K₂CaNaTa₃O₁₀, (c) CsTi₂NbO₇, (d) Cu(I)-CsTi₂NbO₇, (e) K₂La_{2/3}Ta₂O₇, and (f) Cu(I)-K₂La_{2/3}Ta₂O₇. CuCl was used as a flux for the synthesis of Cu(I)-K₂CaNaTa₃O₁₀ and Cu(I)-K₂La_{2/3}Ta₂O₇. CuCl-CuI was used as a flux for the synthesis of Cu(I)-CsTi₂NbO₇. Plane indices for K₂CaNaTa₃O₁₀, K₂La_{2/3}Ta₂O₇, and CsTi₂NbO₇ were referred to PDF 1-70-6006, 1-72-5958, and 1-73-680, respectively.

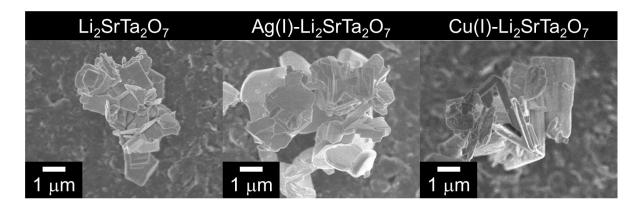


Figure S7. SEM images of Li₂SrTa₂O₇, Ag(I)-Li₂SrTa₂O₇, and Cu(I)-Li₂SrTa₂O₇.

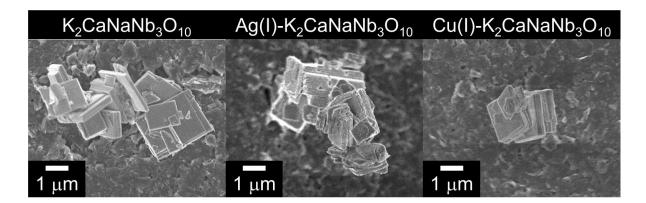


Figure S8. SEM images of K₂CaNaNb₃O₁₀, Ag(I)-K₂CaNaNb₃O₁₀, and Cu(I)-K₂CaNaNb₃O₁₀.

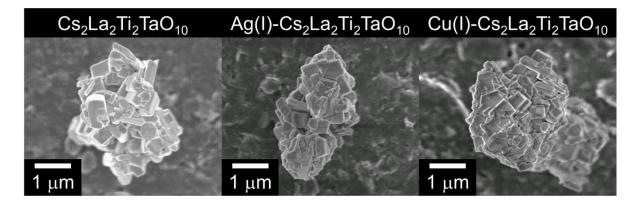


Figure S9. SEM images of $Cs_2La_2Ti_2TaO_{10}$, $Ag(I)-Cs_2La_2Ti_2TaO_{10}$, and $Cu(I)-Cs_2La_2Ti_2TaO_{10}$.

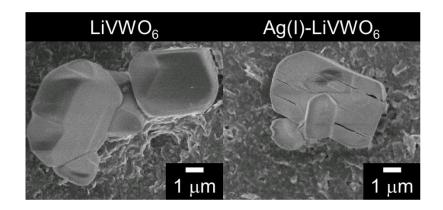


Figure S10. SEM images of LiVWO₆ and Ag(I)-LiVWO₆.

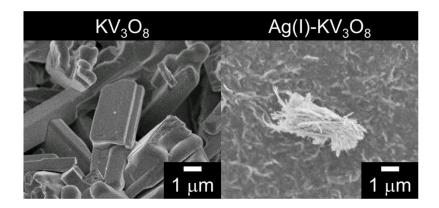


Figure S11. SEM images of KV_3O_8 and Ag(I)- KV_3O_8 .

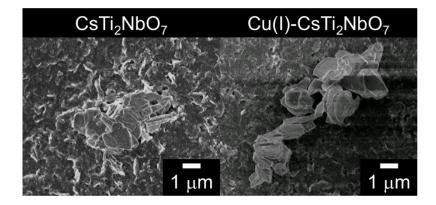
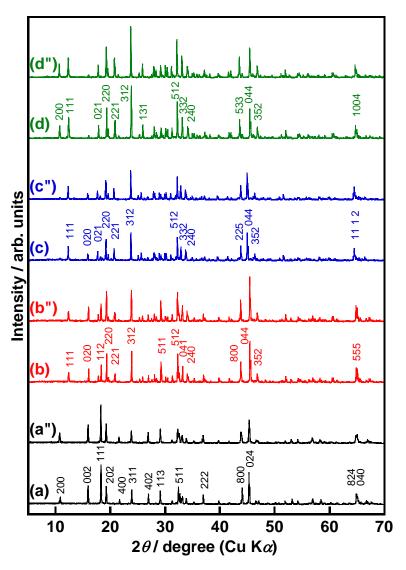



Figure S12. SEM images of CsTi₂NbO₇ and Cu(I)-CsTi₂NbO₇.

Figure S13. XRD patterns of metal oxides possessing a tunneling structure with and without molten salt treatments. Host materials and their Cu(I)-ion-exchanged materials were labeled as (x) and (x"), respectively. (a) $Li_2Na_2Ti_6O_{14}$, (b) $Li_2SrTi_6O_{14}$, (c) $Li_2BaTi_6O_{14}$, and (d) $Li_2PbTi_6O_{14}$. CuCl-CuI mixture was used as a flux for the synthesis of all Cu(I)-substituted materials. Plane indices for $Li_2Na_2Ti_6O_{14}$, $Li_2SrTi_6O_{14}$, $Li_2BaTi_6O_{14}$, and $Li_2PbTi_6O_{14}$ were referred to PDFs 52-690, 1-72-6072, 1-74-8154, and 1-74-8153, respectively.

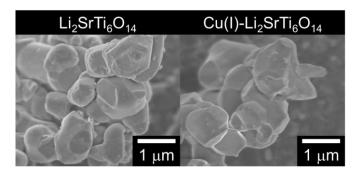


Figure S14. SEM images of $Li_2SrTi_6O_{14}$ and Cu(I)- $Li_2SrTi_6O_{14}$.

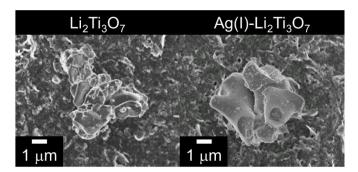
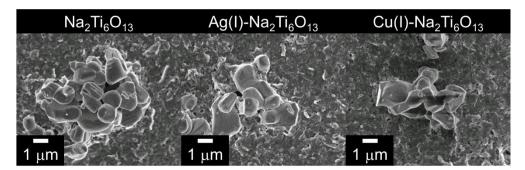
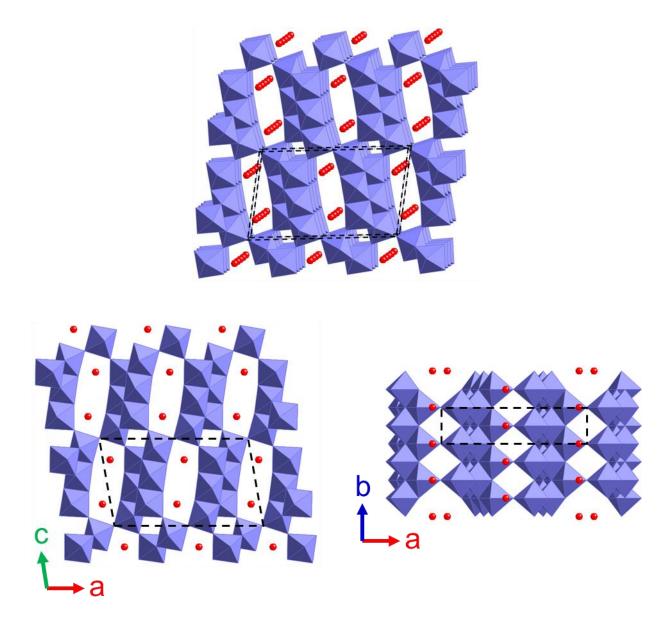
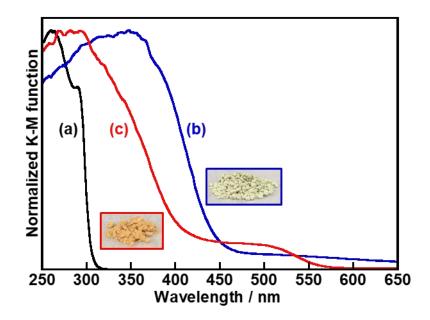
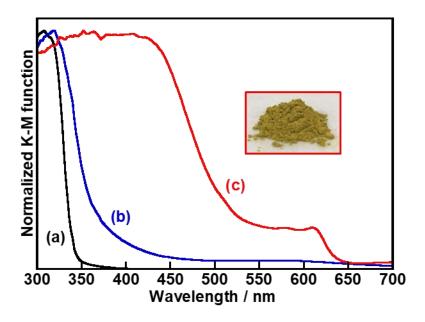
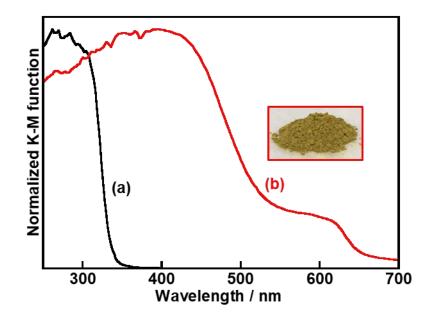
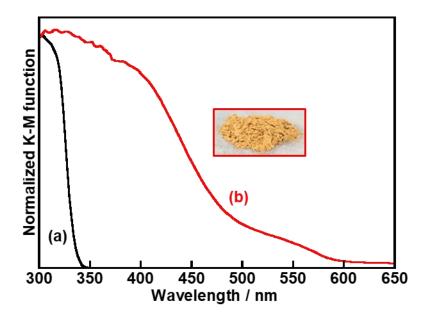


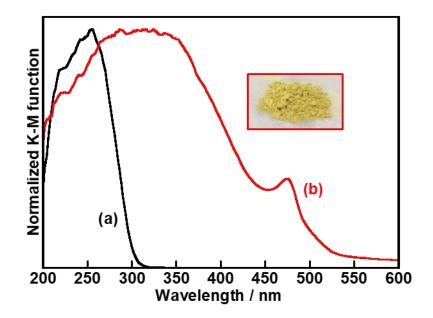
Figure S15. SEM images Li₂Ti₃O₇ and Ag(I)-Li₂Ti₃O₇.

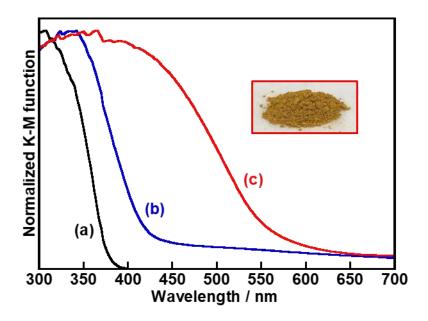




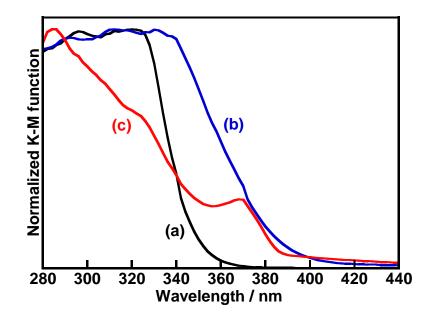

Figure S16. SEM images of $Na_2Ti_6O_{13}$, $Ag(I)-Na_2Ti_6O_{13}$, and $Cu(I)-Na_2Ti_6O_{13}$.

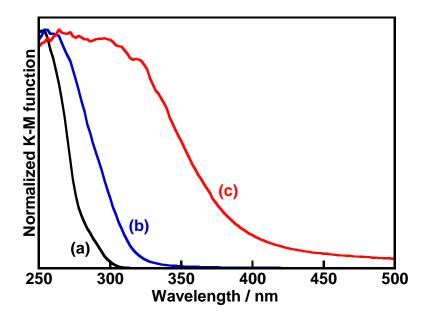

Figure S17. Crystal structure of $Li_2Ti_6O_{13}$ with a tunneling structure. Red spheres and blue octahedra indicate Li^+ and TiO_6 , respectively.


Figure S18. Diffuse reflectance spectra of (a) Li₂SrTa₂O₇, (b) Ag(I)-Li₂SrTa₂O₇, and (c) Cu(I)-Li₂SrTa₂O₇, and photographs of Ag(I)-Li₂SrTa₂O₇ (red frame) and Cu(I)-Li₂SrTa₂O₇ (blue frame).


Figure S19. Diffuse reflectance spectra of (a) $K_2La_2Ti_3O_{10}$, (b) $Ag(I)-K_2La_2Ti_3O_{10}$, and (c) $Cu(I)-K_2La_2Ti_3O_{10}$, and a photograph of $Cu(I)-K_2La_2Ti_3O_{10}$.


Figure S20. Diffuse reflectance spectra of (a) $Na_2La_2Ti_3O_{10}$ and (b) $Cu(I)-Na_2La_2Ti_3O_{10}$, and a photograph of $Cu(I)-Na_2La_2Ti_3O_{10}$.


Figure S21. Diffuse reflectance spectra of (a) $Li_2La_2Ti_3O_{10}$ and (b) $Cu(I)-Li_2La_2Ti_3O_{10}$, and a photograph of $Cu(I)-Li_2La_2Ti_3O_{10}$.


Figure S22. Diffuse reflectance spectra of (a) $K_2CaNaTa_3O_{10}$ and (b) $Cu(I)-K_2CaNaTa_3O_{10}$, and a photograph of $Cu(I)-K_2CaNaTa_3O_{10}$.

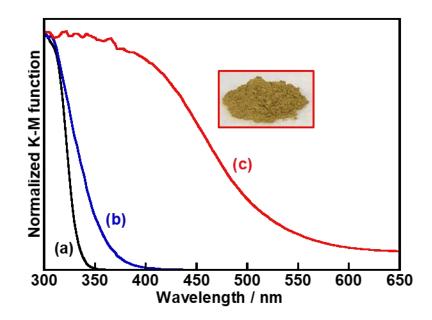

Figure S23. Diffuse reflectance spectra of (a) $K_2CaNaNb_3O_{10}$, (b) $Ag(I)-K_2CaNaNb_3O_{10}$, and (c) $Cu(I)-K_2CaNaNb_3O_{10}$, and a photograph of $Cu(I)-K_2CaNaNb_3O_{10}$.

Figure S24. Diffuse reflectance spectra of (a) KCa₂Nb₃O₁₀, (b) Ag(I)-KCa₂Nb₃O₁₀, and (c) Cu(I)-KCa₂Nb₃O₁₀.

Figure S25. Diffuse reflectance spectra of (a) $CsSr_2Ta_3O_{10}$, (b) Ag(I)- $CsSr_2Ta_3O_{10}$, and (c) Cu(I)- $CsSr_2Ta_3O_{10}$.

Figure S26. Diffuse reflectance spectra of (a) $CsLa_2Ti_2TaO_{10}$, (b) Ag(I)- $CsLa_2Ti_2TaO_{10}$, and (c) Cu(I)- $CsLa_2Ti_2TaO_{10}$, and a photograph of Cu(I)- $CsLa_2Ti_2TaO_{10}$.

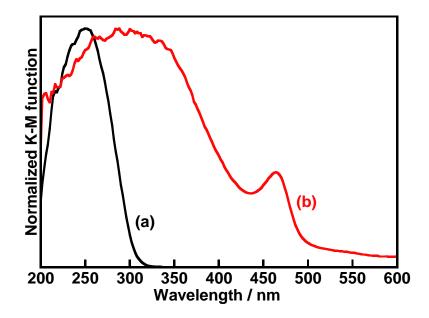
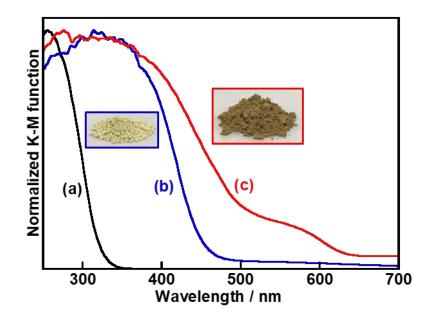
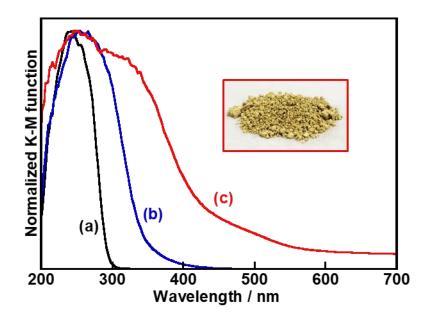




Figure S27. Diffuse reflectance spectra of (a) K₂La_{2/3}Ta₂O₇ and (b) Cu(I)-K₂La_{2/3}Ta₂O₇.

Figure S28. Diffuse reflectance spectra of (a) $K_2SrNb_{0.2}Ta_{1.8}O_7$, (b) $Ag(I)-K_2SrNb_{0.2}Ta_{1.8}O_7$, and (c) $Cu(I)-K_2SrNb_{0.2}Ta_{1.8}O_7$, and photographs of $Ag(I)-K_2SrNb_{0.2}Ta_{1.8}O_7$ (red frame) and $Cu(I)-K_2SrNb_{0.2}Ta_{1.8}O_7$ (blue frame).

Figure S29. Diffuse reflectance spectra of (a) KLaTa₂O₇, (b) Ag(I)-KLaTa₂O₇, and (c) Cu(I)-KLaTa₂O₇, and a photograph of Cu(I)-KLaTa₂O₇.

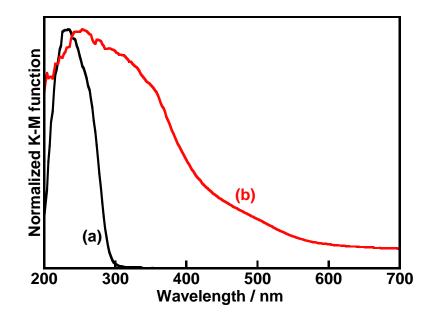
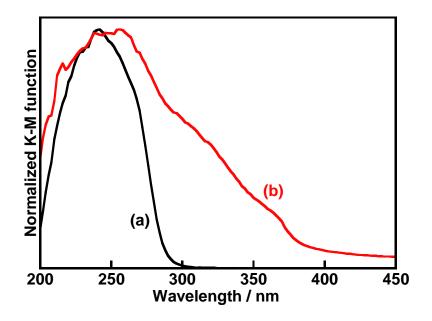
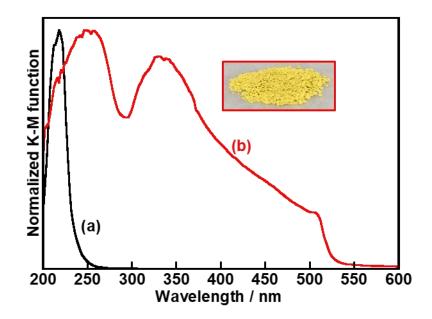
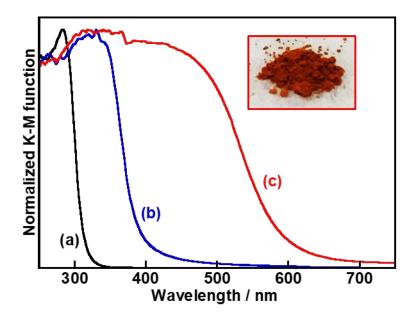


Figure S30. Diffuse reflectance spectra of (a) RbLaTa₂O₇ and (b) Cu(I)-RbLaTa₂O₇.

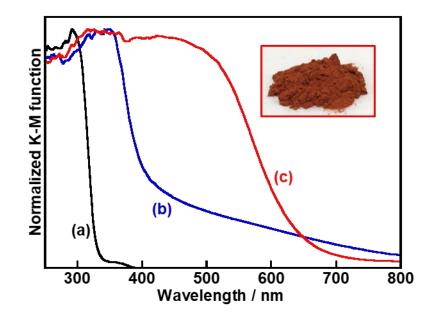
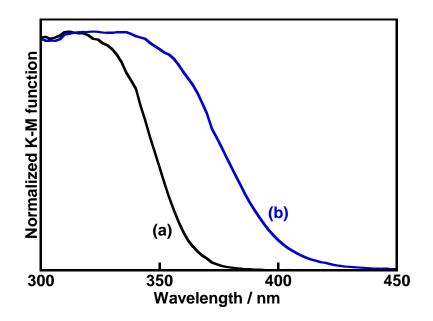
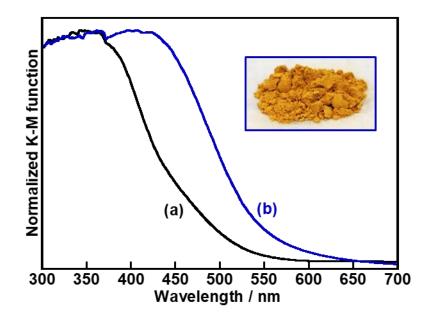
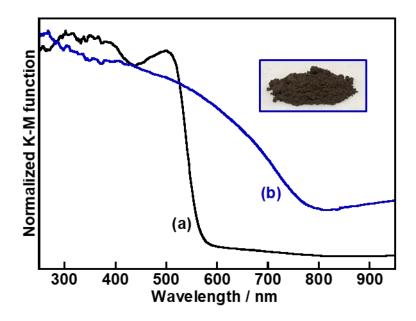
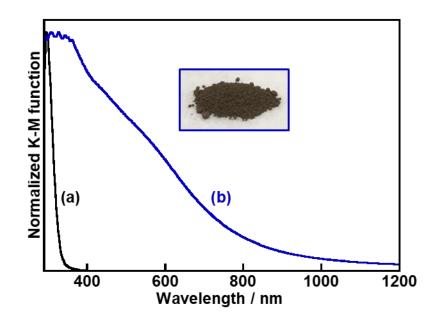

Figure S31. Diffuse reflectance spectra of (a) LiLaTa₂O₇ and (b) Cu(I)-LiLaTa₂O₇.

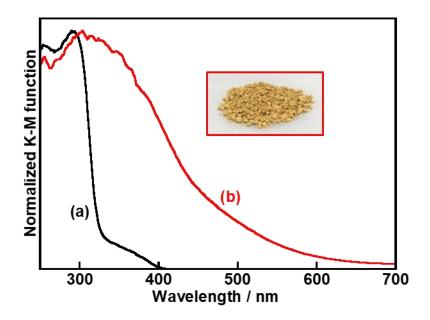
Figure S32. Diffuse reflectance spectra of (a) Li_2SnO_3 and (b) $Cu(I)-Li_2SnO_3$, and a photograph of $Cu(I)-Li_2SnO_3$.

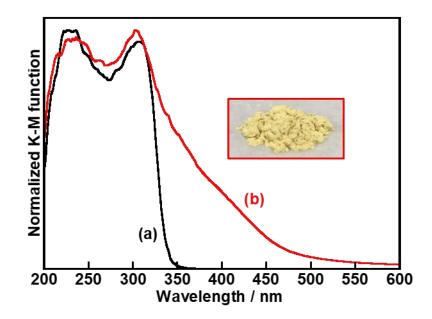
Figure S33. Diffuse reflectance spectra of (a) $K_{0.8}Mg_{0.4}Ti_{1.6}O_4$, (b) $Ag(I)-K_{0.8}Mg_{0.4}Ti_{1.6}O_4$, and (c) $Cu(I)-K_{0.8}Mg_{0.4}Ti_{1.6}O_4$, and a photograph of $Cu(I)-K_{0.8}Mg_{0.4}Ti_{1.6}O_4$.

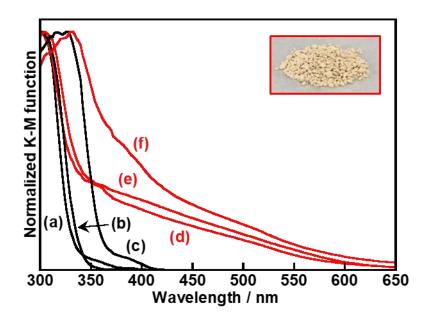
Figure S34. Diffuse reflectance spectra of (a) $K_{0.8}Zn_{0.4}Ti_{1.6}O_4$, (b) Ag(I)- $K_{0.8}Zn_{0.4}Ti_{1.6}O_4$, and (c) Cu(I)- $K_{0.8}Zn_{0.4}Ti_{1.6}O_4$, and a photograph of Cu(I)- $K_{0.8}Zn_{0.4}Ti_{1.6}O_4$.

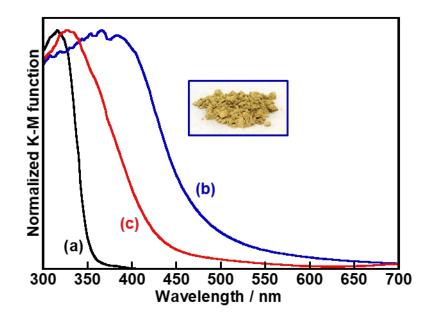




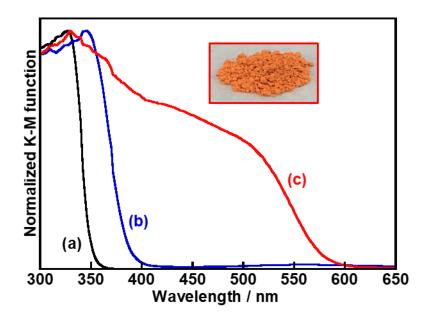

Figure S35. Diffuse reflectance spectra of (a) KLaNb₂O₇ and (b) Ag(I)-KLaNb₂O₇.

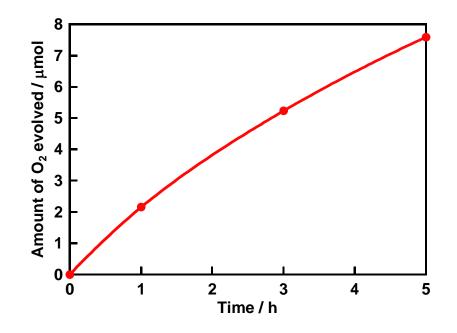

Figure S36. Diffuse reflectance spectra of (a) $LiVWO_6$ and (b) $Ag(I)-LiVWO_6$, and a photograph of $Ag(I)-LiVWO_6$.

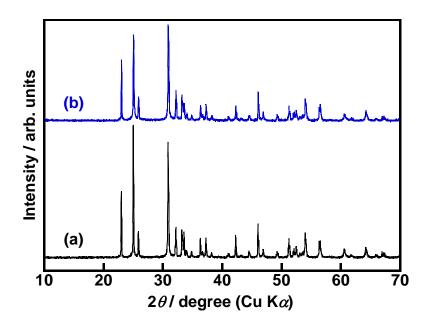

Figure S37. Diffuse reflectance spectra of (a) KV_3O_8 and (b) Ag(I)- KV_3O_8 , and a photograph of Ag(I)- KV_3O_8 .

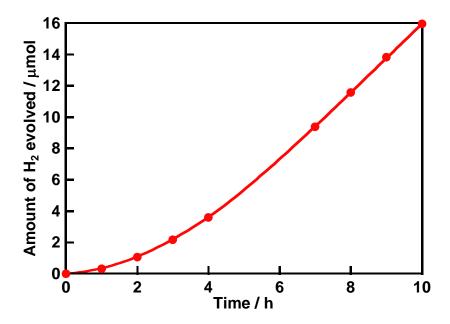

Figure S38. Diffuse reflectance spectra of (a) $K_2Ti_2O_5$ and (b) $Ag(I)-K_2Ti_2O_5$, and a photograph of $Ag(I)-K_2Ti_2O_5$.

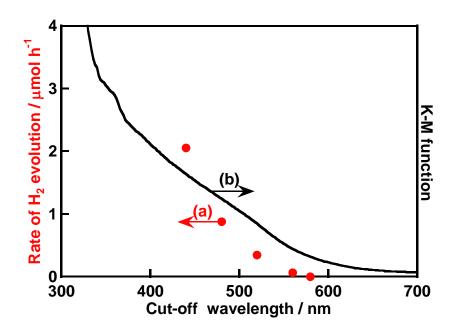

Figure S39. Diffuse reflectance spectra of (a) CsTi₂NbO₇ and (b) Cu(I)-CsTi₂NbO₇, and a photograph of Cu(I)-CsTi₂NbO₇.

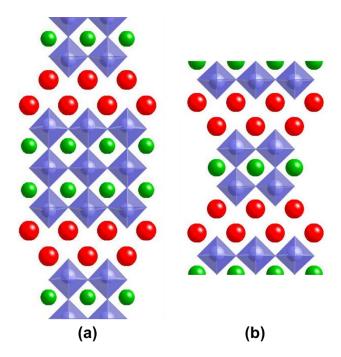

Figure S40. Diffuse reflectance spectra of (a) $Li_2Na_2Ti_6O_{14}$ and (b) Cu(I)- $Li_2Na_2Ti_6O_{14}$, and a photograph of Cu(I)- $Li_2Na_2Ti_6O_{14}$.

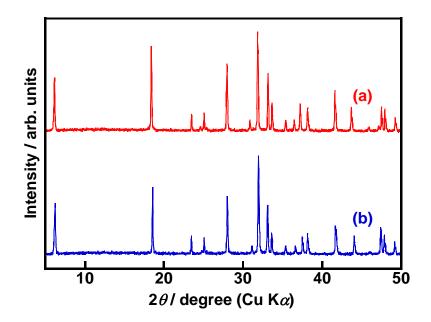

Figure S41. Diffuse reflectance spectra of (a) $Li_2SrTi_6O_{14}$, (b) $Li_2BaTi_6O_{14}$, (c) $Li_2PbTi_6O_{14}$, (d) $Cu(I)-Li_2SrTi_6O_{14}$, (e) $Cu(I)-Li_2BaTi_6O_{14}$, and (f) $Cu(I)-Li_2PbTi_6O_{14}$, and a photograph of $Cu(I)-Li_2SrTi_6O_{14}$.


Figure S42. Diffuse reflectance spectra of (a) Li₂Ti₃O₇, (b) Ag(I)-Li₂Ti₃O₇, and (c) Cu(I)-Li₂Ti₃O₇, and a photograph of Ag(I)-Li₂Ti₃O₇.


Figure S43. Diffuse reflectance spectra of (a) $Na_2Ti_6O_{13}$, (b) $Ag(I)-Na_2Ti_6O_{13}$, and (c) $Cu(I)-Na_2Ti_6O_{13}$, and a photograph of $Cu(I)-Na_2Ti_6O_{13}$.


Figure S44. Photocatalytic O₂ evolution over Ag(I)-K₂SrTa₂O₇ from an aqueous AgNO₃ solution under visible light irradiation. Photocatalyst: 0.5 g, reactant solution: 20 mmol L⁻¹ AgNO_{3 aq.} (120 mL), cell: top-irradiation cell with a Pyrex window, light source: 300 W Xe-arc lamp with a long-pass filter (HOYA: L42).


Figure S45. XRD patterns of Ag(I)- K_2 SrTa₂O₇ (a) before and (b) after photocatalytic O₂ evolution from an aqueous AgNO₃ solution under visible light irradiation for 5 h in Figure S44.


Figure S46. Photocatalytic H₂ evolution over Rh(0.3wt%)/Cu(I)-Li₂SrTi₆O₁₄ from an aqueous solution containing sacrificial reagents under visible light irradiation. Photocatalyst: 0.3 g, cocatalyst: photodeposition (*in situ*), reactant solution: 0.5 mol L⁻¹ K₂SO₃ + 0.1 mol L⁻¹ Na₂S _{aq.} (120 mL), cell: top-irradiation cell with a Pyrex window, light source: 300 W Xe-arc lamp with a long-pass filter (HOYA; Y44).

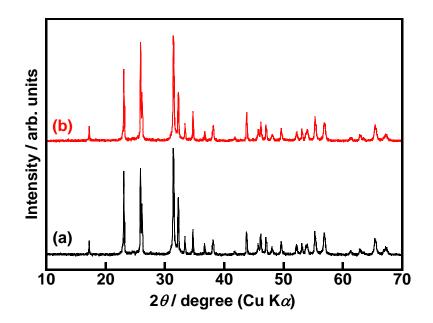
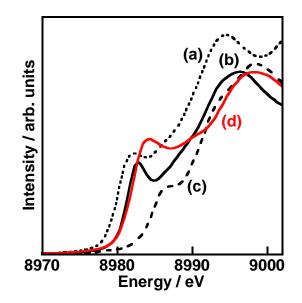

Figure S47. (a) Wavelength dependence of H_2 evolution from an aqueous solution containing sacrificial reagents and (b) diffuse reflectance spectrum of Cu(I)-Li₂SrTi₆O₁₄. CuCl-CuI mixture was used as a flux for the synthesis of all Cu(I)-Li₂SrTi₆O₁₄. Photocatalyst: 0.3 g, cocatalyst: Rh 1 wt%, reactant solution: 0.5 mol L⁻¹ K₂SO₃ + 0.1 mol L⁻¹ Na₂S _{aq.} (120 mL), cell: top-irradiation cell with a Pyrex window, light source: 300 W Xe-arc lamp with long-pass filters (HOYA; Y44, Y48, Y52, O56, R58).

Figure S48. Crystal structures of (a) $K_2La_2Ti_3O_{10}$ and (b) $K_2SrTa_2O_7$ with a Ruddlesden-Popper type layered perovskite structure. Red spheres, green spheres, and blue octahedra indicate K⁺, Sr²⁺/La³⁺, and TiO₆/TaO₆, respectively.


Figure S49. X-ray diffraction patterns of (a) Cu(I)- $K_2La_2Ti_3O_{10}$ and (b) Cu(I)- $Na_2La_2Ti_3O_{10}$. CuCl was used as a flux for the synthesis of Cu(I)- $K_2La_2Ti_3O_{10}$ and Cu(I)- $Na_2La_2Ti_3O_{10}$.

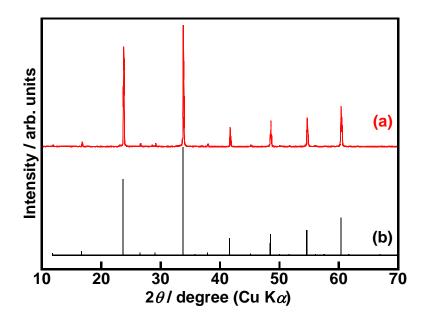

Figure S50. XRD patterns of Cu(I)- K_2 SrTa₂O₇ (a) before and (b) after photocatalytic H₂ evolution from an aqueous solution containing sacrificial reagents under visible light irradiation for 50 h in Figure 13.

Figure S51. Sr3d and Ta4f XPS spectra of (a) K₂SrTa₂O₇, (b) Ag(I)-K₂SrTa₂O₇, and (c) Cu(I)-K₂SrTa₂O₇. Binding energies of all peaks were calibrated with C1s (284.2 eV).

Figure S52. Cu K-edge XANES spectra of (a) Cu foil, (b) Cu₂O, (c) CuO, and (d) Cu(I)-KLaTa₂O₇. CuCl was used as a flux for the synthesis of Cu(I)-KLaTa₂O₇.

Figure S53. XRD patterns of (a) $CuTa_2O_6$ prepared by a solid state reaction at 1273 K for 20 h in air and (b) $Cu_{1.988}Ta_4O_{12}$ (PDF 1-76-7902).