Supporting Information

High Safety and Long-Life Silicon-based Lithium-ion Batteries via a Multifunctional Binder

Hua Liu,^{†, §} Tongqing Chen,^{†, §} Zhixin Xu,[‡] Zuozhen Liu,^{†, #} Jun Yang,^{‡, *} Jianding Chen^{†,*}

†School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

[‡]Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

*Sino Polymer Co., Ltd., Shanghai 200237, China.

Corresponding Authors

*E-mail: yangj723@sjtu.edu.cn

*E-mail: jiandingchen@ecust.edu.cn

§H. Liu and T. Chen contributed equally to this work.

Figure S1. (a) FTIR spectra of AG-601, DOPO and FREP. (b) FTIR spectra of PAA, FREP and PAA-FREP. (c) Enlarged detail in the range of 1000-2000 cm⁻¹ of (b).

Figure S2. Differential scanning calorimetry (DSC) of PAA, FREP and PAA-FREP (10 °C min⁻¹).

Figure S3. (a) Cyclic voltammetry of PAA-FREP from 0.01 V to 1.2 V. (b) Linear sweep voltammetry of PAA-FREP from 1.0 V to 3.0 V. The electrodes were composed by PAA-FREP, and Super P conductive carbon with a mass ratio 1:1.

Figure S4. Voltage profiles and the initial Coulombic efficiencies of SiNPs electrodes with PAA-FREP and PAA binders cycled at 0.1 A g^{-1} .

Figure S5. SEM images of SiNPs electrodes with different binders. (a) PAA and (b) PAA-FREP binders before cycling, (c) PAA and (d) PAA-FREP binders after the first cycle.

Figure S6. Cross-sectional SEM images of SiNPs electrodes before (upper) and after (lower) first cycle. Using PAA-FREP (left) and PAA (right) binders.

Figure S7. The cycle performance of SiNPs electrodes with different mass loading using PAA-FREP binder.

Figure S8. Cross-sectional SEM images of SiNPs electrodes before (upper) and after (lower) 20 cycles. Using PAA-FREP (left) and PAA (right) binders.

Figure S9. Contact angles of LiPF₆/EC-DMC-FEC electrolyte on (a) PAA film and (b) PAA-FREP film.

Figure S10. CVs of the SiNPs anodes. Using (a) PAA and (b) PAA-FREP binders between 0.01 and 1.2 V at different scan rates.

Figure S11. Linear fits for the anodic and cathodic peak currents versus scan rates of SiNPs electrodes using PAA-FREP (black) and PAA (red).

Figure S12. EIS of cells with SiNPs electrodes using PAA-FREP and PAA binders after 50 cycles.

Table S1. Typical data for PAA and PAA-FREP combustion behaviors

Binders	Combustion time (s)	Flame spread	Drip	LOI data(%)
PAA	43.2	Yes	Yes	18.2
PAA-FREP	0.2	No	No	23.6

Table S2. TG data of PAA and PAA-FREP in air

Samples	T _{-5%} (°C)	T _{-50%} (°C)	T _{max} (°C)	Char residue (%) at 550 °C
PAA	192	363	316, 517	0
PAA-FRE P	172	378	251	21.6

Table S3. Structural assignments of FREP in the Py-GC-MS.

m/z	time(min)	structure
58	1.697	N +
91	6.135	CH ₂ +
154	14.25	
154	14.362	N H
168	16.037	
139	16.037	+PH-
141	16.037	H ₂ Q+
105	18.098	+