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Figure S1. Emission spectra of Ppdc (1.0 ×10-5 M) upon addition of 0-0.5 equiv of 

EuCl3 in ethanol at 25 °C (λex=300 nm). Inset shows the emission intensity of 5D0 

→7F2 change at 615 nm versus Eu3+/ Ppdc molar ratio. 

The coordination stoichiometry between Ppdc and Ln3+ was investigated by 

luminescence titration. As shown in Figure S1, upon stepwise addition of Eu3+, the 

characteristic emission bands of Eu3+ contributed to 5D0 →7FJ (J = 0−4) transitions 

appeared and increased gradually. As shown in Figure S1 inset, the curve of emission 

intensity of 5D0 →7FJ at 615 nm shows an inflection point at a molar ratio of 0.33, 

corresponding to a 3:1 Ppdc/Eu3+ coordination complex.1-2 Tb3+-Ppdc was prepared 

and characterized according to the same method.
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Figure S2. FT-IR spectra of (i) pdms, (ii) Ppdc, (iii) Eu-Ppdc, (iv) Tb-Ppdc.
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Figure S3. 1H NMR spectra of Ppdc at various concentrations in CDCl3.
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Figure S4. UV-Vis spectra of Ppdc, Eu-Ppdc and Tb-Ppdc in CHCl2 with the 

concentration of 10-3, 1.6 ×10-3 and 2.4×10-3 M, respectively.
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Figure S5. TGA curves of Ln-Ppdc.
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Figure S6. The excitation luminescence spectra of Eu-Ppdc (A) monitored at 615 nm 

and Tb-Ppdc (B) monitored at 543 nm.
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Figure S7. Decay curve of 5D4 state (Tb3+ in Tb-Ppdc, λex = 300 nm, λmonitored = 543 

nm). The curve was fitted according to the single-exponential function (I = 𝐼0 +𝐴 ×

).3-4exp [ ― (𝑡 ― 𝑡0)/𝜏]
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Figure S8. The excitation spectrum of Ppdc.
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Figure S9. Stress–strain curves of Eu-Ppdc (black line) and Tb-Ppdc (red line).
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Figure S10. Eu-Ppdc was subjected to a cycle of loading and unloading to various 

strains. Black, blue, red and green lines represent the first to the fourth cycles, 

respectively (tensile rate: 100 mm min-1).
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Figure S11. Frequency (ω) sweep tests at ω = 0.01–1000 rad s-1 and strain (γ) = 5% 

of Ppdc at room temperature.
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Figure S12. Storage modulus G' and loss modulus G'' of Eu-Ppdc versus temperature 

at ω = 1 Hz.
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Figure S13. DSC curves of Ln-Ppdc.

Figure S14. Emission spectra of (A) Eu-Ppdc and (B) Tb-Ppdc. They were obtained 

upon excitation at 300 nm, respectively. Red line and black line represent the 

materials upon TEA vapor and HCl gas, respectively.
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Figure S15. Responses of luminescence intensity at 615 nm of Eu-Ppdc (red line) and 

543 nm of Tb-Ppdc (green line) during triethylamine−HCl exposure cycles.

Figure S16. SEM images. (A): Eu-Ppdc, (B): Eu-Ppdc after TEA treatment, (C): (B) 

after HCl treatment.  

Figure S17. (A) Luminescence emission spectra of Ppdc-Eu after exposure different 

concentration of TEA and (B) their linear fit for the estimation of limit of detection.
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Figure S18. FT-IR spectra of Eu-Ppdc before (A) and after (B) exposure to TEA 

vapor.
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Figure S19. (A) and (B) represent Tb-Ppdc before and after exposure to TEA vapor 

under 302 nm UV irradiation, respectively. (C) is (B) under daylight. (D): cutting (C) 

into two peices. (E): the two peices healed to one. (F): stretching the healed one by 

hands. (C), (D), (E), and (F) are under daylight. 

Figure S20. The healed one in the Figure 3 I iv before (A) and (B) after exposure to 

TEA vapor, they are under 302 nm UV irradiation. (C) is the (B) under daylight. (D): 

stretching (C) by hands, (C) and (D) are under daylight.  
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Figure S21. Stress-strain curves of the original (black solid line) and healed (red solid 

line) material after self-healing for 36 h before exposure to TEA, and their 

corresponding curves black short dots and red short dots after exposure to TEA. All 

the fracture energy evaluated from the curves as listed in Table S3.      
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Figure S22. Ln-Ppdc as the switch adjusted by basic substances, such as aniline, 

cyclohexylamine. (A) and (C): Eu-Ppdc, (B) and (D): Tb-Ppdc. 

Figure S23. 1H NMR spectrum of Ppdc.
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Figure S24. 13C NMR spectrum of Ppdc.
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Figure S25. GPC curve of Ppdc.

2. Supporting Tables

Table S1. The 5D4 lifetimes (τ) of EuxTby-Ppdc monitored at 543 nm and 

energy-transfer efficiency from Tb3+ to Eu3+ ions (E).

Eu:Tb 8:2 6:4 5:5 4:6 2:8

τ (ms) 1.20 1.45 1.49 1.51 1.53

E 25.0% 9.4% 6.8% 5.6% 4.3%
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Table S2. The assignments of FT-IR spectra of Eu-Ppdc before (A) and after (B) 

exposure to TEA vapor in Figure S17.The unit of wavenumber is cm-1.

Assignment C=O (amide I ) C=N

A 1636 1564

B 1657 1540

Table S3. The fracture energy evaluated from the curves in the Figure S20.

Sample
Original 

Before

Healed 

Before 

Original 

After
Healed After

Fracture 

Energy 

(MJ m-3)

1.78 1.43 1.66 1.23
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