Supporting Information

Polyphenylene as an Active Support for Ru Catalyzed Hydrogenolysis of 5-Hydroxymethylfurfural

Qiming Wang,[†] Xuze Guan,[†] Liqun Kang,[†] Bolun Wang,[†] Lin Sheng,[†] and Feng Ryan Wang^{,†}*

[†]Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE, London, United Kingdom.

* Corresponding author E-mail: ryan.wang@ucl.ac.uk

1. Supporting figures

Figure S1. N₂ physisorption isotherm of PPhen (black) and Ru/PPhen (red).

Figure S2. Swelling test of PPhen with ethanol. 200 mg of PPhen is used and mixed with certain amount of ethanol.

Figure S3. Illustraton of the intermolecular hydrogen bond.

Figure S4. Full range of the IR spectra for HMF over PPhen and SiO₂.

Figure S5. EDS spectrum of Ru/PPhen. The Pd signal should be at 3.3 kev, which is not observed here.

Figure S6. XPS spectra of Ru/PPhen (a) fresh Ru/PPhen, (b) Ru/PPhen after catalysis, (c) Ru/PPhen activated with H_2 , (d) Ru/PPhen activated with H_2/O_2 .

Figure S7. Particle size histogram for (a) 10wt% Pt/PPhen, (b) 18wt% Pt/PPhen, (c) 25%wt% Pt/PPhen, (d) 2.5wt% Au/PPhen, (e) 2.5wt% Fe/PPhen, (f) 2.5wt% Co/PPhen, (g) 2.5wt% Ni/PPhen and (h) 2.5wt% Cu/PPhen.

Figure S8. XRD patterns for (a) Pt/PPhen, (b) Co/PPhen and (c) Ru/PPhen.

Figure S9 XRD pattern and XPS spectrum of sample Ni/PPhen (left), Cu/PPhen (middle) and Fe/PPhen (right).

Figure S10 a. swelling test of PPhen with THF. **b.** PPhen volume expansion as a function of ethanol/PPhen ratio.

Figure S11. GC-MS chromatograms at Ru/HMF molar ratio of (a) 0.5%, (b) 2.8%.

Figure S12. MP-AES measurement of the Ru content in the filtrated solution (marked with red star).

Figure S13 (a,b) HAADF-STEM images of Ru/PPhen after reactivation under $H_2.(c)$ Corresponded size distribution histogram.

Figure S14 (a) HAADF-STEM images of Ru/PPhen after reactivation under H₂ and O₂ atmospheres. (c) Corresponded size distribution histogram.

Figure S15. TGA analysis of fresh PPhen (black), Ru/PPhen (red) and Ru/PPhen (blue) after reaction in air.

Figure S16. GC-MS chromatograms of the reaction without the presence of THF.

2. Supporting tables

Ru/HMF molar ratio (%)	Temperature (°C)	5-HMF conversion (%)	2,5 DMF yield (%)	Selectivity (%)
0.5	160	38	11.8	31
1.5	160	93	65	70
2.8	160	93	92	99
3.7	160	95	49	52
2.8	100	61	30	49
2.8	120	72	42	58
2.8	140	91	64	70
2.8	180	95	62	65

Table S1. Changes of 5-HMF conversion and 2,5-DMF yield at various conditions.

Table S2. The Performance comparison of the catalyic result of Ru/PPhen with those in the literatures.

			Reactio			
Catalyst -	HMF (mmol)	Т (°С)	p (Bar)	t (h)	Metal Loading (mg)	DMF yields (%)
Ru/PPhen	0.22	160	10	2 h	0.6	92
Cu/ZnO ¹	65.7%	220	15	1 h	1 h	41
Ru/C ²	3.6	180	8	2	18.2	95
Ru/Co ₃ O ₄ ³	2	130	7	24	40	93.4
Ru/NaY ⁴	1	220	15	1	0.5	78
Ru-MoO _x /C ⁵	3.96	180	15	1	15	79.5
Ru/HCS ⁶	0.16	140	10	2	0.6	90
Ru/SBA-15 ⁶	0.16	140	10	2	0.6	61
Raney Co ⁷	9.42	180	15	15	500	78.5
Co ₃ O ₄ ⁸	1.4	130	24	10	100	70
Co@C ⁹	1.84	180	8	50	20	91.9
CoCu@C ⁹	1.99	180	8	50	20	99.4
CoNi@C ⁹	1.96	180	8	50	20	97.8
CoZn@C ⁹	1.83	180	8	50	20	91.5
CoNi@C ⁹	1.96	180	8	50	20	97.8
CoZn@C ⁹	1.83	180	8	50	20	91.5
CoAg@C ⁹	1.92	180	8	50	20	96.2
CoNi/C ¹⁰	1.8	210	15	24	4.4	61
CuRu/C ¹¹	24.74	220	68	10	187.5	71
Cu/ZnO ¹	11.9	220	5	15	500	91.8
CuNi/TiO ₂ ¹²	4	200	8	25	30	84.3
Raney Ni ⁷	12	180	15	15	500	88.5
Ni-W ₂ C/AC ¹³	12	180	40	3	120	96
Ni ₂ -Fe ₁ /CNT ¹⁴	4	200	30	2	5.85	91.3

NiAl-850 ¹⁵	12	180	12	4	100	91.5
Fe-N/C ¹⁶	0.5	240	40	5	20	86

	Scattering	C.N. ^[b]	R [Å] ^[c]	σ^2	$\Delta E_0 [eV]$
Ru/PPhen	Ru-O(1)	1.7 ± 0.2	1.91 ± 0.02	0.003 ± 0.002	
before catalysis	Ru-O(2)	3.4 ± 0.5	2.05 ± 0.01	0.003 ± 0.002	-0.45 ± 1.45
	Ru-Ru	2.0 ± 0.6	2.73 ± 0.02	0.007 ± 0.002	
Ru/PPhen after	Ru-O(1)	1.6 ± 0.2	1.91 ± 0.02	0.003 ± 0.003	
catalysis	Ru-O(2)	3.1 ± 0.5	2.05 ± 0.01	0.003 ± 0.003	-1.73±1.16
	Ru-Ru	4.1 ± 0.8	2.68 ± 0.01	0.007 ± 0.003	
RuO ₂	Ru-O(1)	2.0	1.94		
	Ru-O(2)	4.0	1.99		
	Ru-Ru	2.0	3.10		
Ru foil	Ru-Ru	12.0	2.70		

Table S3. Fitting results of Ru K-edge EXAFS spectra of Ru/PPhen before and after catalysis^[a].

[a] Fitting

range is 3.4 Å⁻¹ < k < 11.5 Å⁻¹, 1 Å < R < 3 Å.¹⁷⁻³¹

[b] C.N. is the coordination number.

[c] *R* is the interatomic distance.

Table S4. Reactivation of the Ru/PPhen catalysts.

Cycles	5-HMF conversion (%)	2,5 DMF yield (%)	Selectivity (%)
First run	40	11	28
Recycle	11	4	36
H_2 activation	13	6	46
H_2/O_2 activation	13	7	54

*Reaction condition: 20 mg catalyst, 1 mmol phenylacetylene, 0.176 mmol dodecane, 1 mL water and reacted under 100 °C for 24 hours.

		Ru-PPhen Before Catalysis	Ru-PPhen After Catalysis	Ru-PPhen Reactivation under H ₂	Ru-PPhen Reactivation under H ₂ and O ₂
	Name	Binding Energy (eV)	Binding Energy (eV)	Binding Energy (eV)	Binding Energy (eV)
C 1s	C-C	284.7	284.7	284.7	284.7
	C-O	286.3	286.4	286.5	286.3
	C=O	288.9	288.3	288.8	289.0
RuO _x	Ru 3d _{5/2}	281.4	281.3	281.1	281.2
	Ru 3d _{3/2}	285.6	285.4	285.2	285.4
	Ru $3d_{5/2}$ sat.	282.9	282.9	282.6	282.8
	Ru 3d _{3/2} sat.	287.1	287.0	286.8	287.0

Table S5. XPS binding energy of Ru/PPhen before, after catalysis, and reactivation under H_2 and O_2 .

3. Reference

1. Zhu, Y.; Kong, X.; Zheng, H.; Ding, G.; Zhu, Y.; Li, Y.-W. J. C. S.; Technology. Efficient Synthesis of 2, 5-Dihydroxymethylfuran and 2, 5-Dimethylfuran from 5-Hydroxymethylfurfural Using Mineral-Derived Cu Catalysts as Versatile Catalysts. *Catal. Sci. Technol.* **2015**, *5*, 4208-4217.

2. Hu, L.; Tang, X.; Xu, J.; Wu, Z.; Lin, L.; Liu, S. J. I. Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2, 5-Dimethylfuran over Carbon-Supported Ruthenium. *Ind. Eng. Chem. Res.* **2014**, *53*, 3056-3064.

3. Zu, Y.; Yang, P.; Wang, J.; Liu, X.; Ren, J.; Lu, G.; Wang, Y. J. A. C. B. E. Efficient Production of the Liquid Fuel 2, 5-Dimethylfuran from 5-Hydroxymethylfurfural over Ru/Co3o4 Catalyst. *Appl. Catal. B-Environ.* **2014**, *146*, 244-248.

4. Nagpure, A. S.; Lucas, N.; Chilukuri, S. V. Efficient Preparation of Liquid Fuel 2, 5-Dimethylfuran from Biomass-Derived 5-Hydroxymethylfurfural over Ru–NaY Catalyst. *ACS Sustain. Chem. Eng.* **2015**, *3*, 2909-2916.

5. Yang, Y.; Liu, Q.; Li, D.; Tan, J.; Zhang, Q.; Wang, C.; Ma, L. Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran on Ru–MoO_X/C Catalysts. *RSC Adv.* **2017**, *7*, 16311-16318.

6. Xu, R.; Kang, L.; Knossalla, J.; Mielby, J.; Wang, Q.; Wang, B.; Feng, J.; He, G.; Qin, Y.; Xie, J. J.; Swertz, A.-C.; He, Q.; Kegnas, S.; Brett, D. J. L.; Schueth, F.; Wang, F. R. Nanoporous Carbon: Liquid-Free Synthesis and Geometry-Dependent Catalytic Performance. *ACS nano* **2019**, *13*, 2463-2472.

7. Kong, X.; Zhu, Y.; Zheng, H.; Dong, F.; Zhu, Y.; Li, Y.-W. Switchable Synthesis of 2, 5-Dimethylfuran and 2, 5-Dihydroxymethyltetrahydrofuran from 5-Hydroxymethylfurfural over Raney Ni Catalyst. *RSC Adv.* **2014**, *4*, 60467-60472.

8. Yang, P.; Cui, Q.; Zu, Y.; Liu, X.; Lu, G.; Wang, Y. Catalytic Production of 2, 5-Dimethylfuran from 5-Hydroxymethylfurfural over Ni/Co₃O₄ Catalyst. *Catal. Commun.* **2015**, *66*, 55-59.

9. Chen, B.; Li, F.; Huang, Z.; Yuan, G. Carbon-Coated Cu-Co Bimetallic Nanoparticles as Selective and Recyclable Catalysts for Production of Biofuel 2, 5-Dimethylfuran. *Appl. Catal. B: Environ.* **2017**, *200*, 192-199.

10. Yang, P.; Xia, Q.; Liu, X.; Wang, Y. Catalytic Transfer Hydrogenation/Hydrogenolysis of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran over Ni-Co/C Catalyst. *Fuel* **2017**, *187*, 159-166.

11. Román-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Production of Dimethylfuran for Liquid Fuels from Biomass-Derived Carbohydrates. *Nature* **2007**, *447*, 982-985.

12. Seemala, B.; Cai, C. M.; Wyman, C. E.; Christopher, P. Support Induced Control of Surface Composition in Cu–Ni/Tio2 Catalysts Enables High Yield Co-Conversion of Hmf and Furfural to Methylated Furans. *ACS Catal.* **2017**, *7*, 4070-4082.

13. Huang, Y. B.; Chen, M. Y.; Yan, L.; Guo, Q. X.; Fu, Y. Nickel–Tungsten Carbide Catalysts for the Production of 2, 5-Dimethylfuran from Biomass-Derived Molecules. *ChemSusChem* **2014**, *7*, 1068-1072.

14. Yu, L.; He, L.; Chen, J.; Zheng, J.; Ye, L.; Lin, H.; Yuan, Y. Robust and Recyclable Nonprecious Bimetallic Nanoparticles on Carbon Nanotubes for the Hydrogenation and Hydrogenolysis of 5-Hydroxymethylfurfural. *ChemCatChem* **2015**, *7*, 1701-1707.

15. Kong, X.; Zheng, R.; Zhu, Y.; Ding, G.; Zhu, Y.; Li, Y.-W. Rational Design of Ni-Based Catalysts Derived from Hydrotalcite for Selective Hydrogenation of 5-Hydroxymethylfurfural. *Green Chem.* **2015**, *17*, 2504-2514.

16. Li, J.; Zhang, J. j.; Liu, H. y.; Liu, J. l.; Xu, G. y.; Liu, J. x.; Sun, H.; Fu, Y. Graphitic Carbon Nitride (G-C₃N₄)-Derived Fe-N-C Catalysts for Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran. *ChemistrySelect* **2017**, *2*, 11062-11070.

17. Iqbal, S.; Kondrat, S. A.; Jones, D. R.; Schoenmakers, D. C.; Edwards, J. K.; Lu, L.; Yeo, B. R.; Wells, P. P.; Gibson, E. K.; Morgan, D. J. Ruthenium Nanoparticles Supported on Carbon: An Active Catalyst for the Hydrogenation of Lactic Acid to 1, 2-Propanediol. *ACS Catal.* **2015**, *5*, 5047-5059.

18. Chakroune, N.; Viau, G.; Ammar, S.; Poul, L.; Veautier, D.; Chehimi, M. M.; Mangeney, C.; Villain, F.; Fiévet, F. Acetate-and Thiol-Capped Monodisperse Ruthenium Nanoparticles: Xps, Xas, and Hrtem Studies. *Langmuir* **2005**, *21*, 6788-6796.

19. Mori, K.; Miyawaki, K.; Yamashita, H. Ru and Ru–Ni Nanoparticles on TiO₂ Support as Extremely Active Catalysts for Hydrogen Production from Ammonia–Borane. *ACS Catal.* **2016**, *6*, 3128-3135.

20. Mitsudome, T.; Takahashi, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Hydrogenation of Sulfoxides to Sulfides under Mild Conditions Using Ruthenium Nanoparticle Catalysts. *Angew. Chem. In. Ed.* **2014**, *53*, 8348-8351.

21. Pendyala, V. R. R.; Shafer, W. D.; Jacobs, G.; Graham, U. M.; Khalid, S.; Davis, B. H. Fischer–Tropsch Synthesis: Effect of Reducing Agent for Aqueous-Phase Synthesis over Ru Nanoparticle and Supported Ru Catalysts. *Catal Lett* **2015**, *145*, 893-904.

22. Lin, Q.; Liu, X. Y.; Jiang, Y.; Wang, Y.; Huang, Y.; Zhang, T. Crystal Phase Effects on the Structure and Performance of Ruthenium Nanoparticles for CO₂ Hydrogenation. *Catal. Sci. Technol.* **2014**, *4*, 2058-2063.

23. Yu, J.-W.; Li, W.-Z.; Zhang, T.; Ma, D.; Zhang, Y.-W. Ruthenium Nanoclusters Dispersed on Titania Nanorods and Nanoparticles as High-Performance Catalysts for Aqueous-Phase Fischer–Tropsch Synthesis. *Catal. Sci. Technol.* **2016**, *6*, 8355-8363.

24. Satsuma, A.; Yanagihara, M.; Ohyama, J.; Shimizu, K. Oxidation of Co over Ru/Ceria Prepared by Self-Dispersion of Ru Metal Powder into Nano-Sized Particle. *Catal. Today* **2013**, *201*, 62-67.

25. Zhang, J.; Sun, B.; Huang, Y.; Guan, X. Catalyzing the Oxidation of Sulfamethoxazole by Permanganate Using Molecular Sieves Supported Ruthenium Nanoparticles. *Chemosphere* **2015**, *141*, 154-161.

26. Abe, H.; Niwa, Y.; Kitano, M.; Inoue, Y.; Murakami, Y.; Yokoyama, T.; Hara, M.; Hosono, H. High Oxidation Tolerance of Ru Nanoparticles on 12CaO·7Al₂O₃ Electride. *J. Phys. Chem. C* **2016**, *120*, 8711-8716.

27. Chen, I.-L.; Wei, Y.-C.; Chen, T.-Y.; Hu, C.-C.; Lin, T.-L. Oxidative Precipitation of Ruthenium Oxide for Supercapacitors: Enhanced Capacitive Performances by Adding Cetyltrimethylammonium Bromide. *J.Power Sources* **2014**, *268*, 430-438.

28. Ernst, J. B.; Muratsugu, S.; Wang, F.; Tada, M.; Glorius, F. Tunable Heterogeneous Catalysis: N-Heterocyclic Carbenes as Ligands for Supported Heterogeneous Ru/K-Al₂O₃ Catalysts to Tune Reactivity and Selectivity. *J. Am. Chem. Soc.* **2016**, *138*, 10718-10721.

29. Potter, M. E.; Purkis, J. M.; Perdjon, M.; Wells, P. P.; Raja, R. Understanding the Molecular Basis for the Controlled Design of Ruthenium Nanoparticles in Microporous Aluminophosphates. *Mol. Sys. Des. & Eng.* **2016**, *1*, 335-344.

30. Kuwahara, Y.; Kaburagi, W.; Fujitani, T. Catalytic Transfer Hydrogenation of Levulinate Esters to Γ -Valerolactone over Supported Ruthenium Hydroxide Catalysts. *RSC Adv.* **2014**, *4*, 45848-45855.

31. Yang, Y.; Sun, C.; Ren, Y.; Hao, S.; Jiang, D. New Route toward Building Active Ruthenium Nanoparticles on Ordered Mesoporous Carbons with Extremely High Stability. *Sci. Rep.* **2014**, *4*, 4540.