Electronic Supporting Information

for

Bifurcated $\mu_{2}-I_{\cdots} \cdots(\mathbf{N}, \mathbf{O})$ Halogen Bonding: The Case of (Nitrosoguanidinate)Ni ${ }^{\text {II }} \mathbf{C o}$-crystals with Iodine(I)-based σ-Hole Donors

Zarina M. Efimenko, Anastasiya A. Eliseeva, Daniil M. Ivanov, Bartomeu Galmés, Antonio Frontera,* Nadezhda A. Bokach,* Vadim Yu. Kukushkin*

Table of Contents

Crystal data and structure refinement 2
View of the molecular structure of adducts with HSA 4
Results of the Hirshfeld surface analysis 15
Description of hydrogen bonds and other contacts 16
MEP surfaces of the XB donors 18

Crystal data and structure refinement

Table S1. Crystal data and structure refinement for $\mathbf{1} \cdot 2(1,2-\mathrm{FIB}), \mathbf{1} \cdot \mathrm{C}_{2} \mathrm{I}_{4}, \mathbf{2} \cdot 2(1,2-\mathrm{FIB})$, and $\mathbf{2} \cdot 2(1,4-\mathrm{FIB})$.

	1•2(1,2-FIB)	$1 \cdot \mathrm{C}_{2} \mathrm{I}_{4}$	2•2(1,2-FIB)	2•2(1,4-FIB)
CCDC No.	2036670	2036671	2036672	2036673
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{8} \mathrm{I}_{4} \mathrm{~N}_{8} \mathrm{NiO}_{2}$	$\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{I}_{4} \mathrm{~N}_{8} \mathrm{NiO}_{2}$	$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~F}_{8} \mathrm{I}_{4} \mathrm{~N}_{8} \mathrm{NiO}_{2}$	$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~F}_{8} \mathrm{I}_{4} \mathrm{~N}_{8} \mathrm{NiO}_{2}$
M_{W} / g	1092.68	820.58	1216.81	1216.81
T/K	100(2)	100(2)	100(2)	100(2)
Radiation	Mo K $\alpha(\lambda=0.71073)$	Mo K $\alpha(\lambda=0.7107)$	Mo K $\alpha(\lambda=0.71073)$	Mo K $\alpha(\lambda=0.7107)$
Crystal color, shape	red, prism	red, prism	red, prism	red, prism
Crystal size/mm ${ }^{3}$	$0.30 \times 0.22 \times 0.16$	$0.28 \times 0.16 \times 0.12$	$0.25 \times 0.20 \times 0.18$	$0.26 \times 0.18 \times 0.14$
Crystal system	triclinic	triclinic	monoclinic	triclinic
Space group	P-1	P-1	P2 ${ }_{1}$ /c	P-1
a / \AA	5.4904(5)	8.3289(3)	23.1438(4)	5.6497(4)
b/A	10.4468(7)	8.9118(3)	7.99700(10)	12.4400(13)
c / \AA	12.5239(7)	13.3421(5)	18.8981(3)	13.0921(4)
$\alpha /^{\circ}$	103.887(5)	87.145(3)	90	76.487(5)
$\beta 1^{\circ}$	91.850(6)	84.833(3)	93.464(2)	84.740(4)
$\gamma /{ }^{\circ}$	92.587(7)	84.478(3)	90	80.803(8)
V / \AA^{3}	695.94(9)	980.88(6)	3491.29(9)	881.75(12)
Z	1	2	4	1
$\rho_{\mathrm{c}} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	2.607	2.778	2.315	2.292
μ / mm^{-1}	5.222	7.302	4.177	4.135
$F(000)$	506.0	748.0	2280.0	570.0
2Θ range ${ }^{\circ}$	5.828 to 54.998	5.42 to 62.238	6.196 to 56.998	6.412 to 52
Reflections collected	10641	17909	46994	7577
Independent reflections	$\begin{aligned} & 3198\left[\mathrm{R}_{\text {int }}=0.0514,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0437\right] \end{aligned}$	$\begin{aligned} & 5640\left[\mathrm{R}_{\text {int }}=0.0320,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0358\right] \\ & \hline \end{aligned}$	$\begin{aligned} & 8840\left[\mathrm{R}_{\text {int }}=0.0393,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0289\right] \\ & \hline \end{aligned}$	$\begin{aligned} & 3446\left[R_{\text {int }}=0.0424,\right. \\ & \left.R_{\text {sigma }}=0.0527\right] \end{aligned}$
Data/restraints/parameters	3198/0/189	5640/0/212	8840/0/462	3446/0/233
Goodness-of-fit on F^{2}	1.089	1.037	1.061	1.090
Final R indexes [$I \geq 2 \sigma(I)$]	$\mathrm{R}_{1}=0.0414, \mathrm{wR}_{2}=0.1031$	$\mathrm{R}_{1}=0.0252, \mathrm{wR}_{2}=0.0465$	$\mathrm{R}_{1}=0.0249, \mathrm{wR}_{2}=0.0494$	$\mathrm{R}_{1}=0.0439, \mathrm{wR}_{2}=0.1067$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0494, \mathrm{wR}_{2}=0.1111$	$\mathrm{R}_{1}=0.0341, \mathrm{wR}_{2}=0.0498$	$\mathrm{R}_{1}=0.0328, \mathrm{wR}_{2}=0.0527$	$\mathrm{R}_{1}=0.0532, \mathrm{wR}_{2}=0.1183$
Largest diff. peak/hole/ e $\AA^{\circ}{ }^{-3}$	1.67/-1.94	1.36/-1.33	0.61/-0.57	2.38/-1.64

Table S2. Crystal data and structure refinement for $\mathbf{2} \cdot 2 \mathrm{C}_{2} \mathrm{I}_{4}, \mathbf{3} \cdot 2(1,2-\mathrm{FIB})$, and $\mathbf{3} \cdot 2(1,3,5-\mathrm{FIB})$.

	2.2C2 ${ }^{2} 4$	3•2(1,2-FIB)	3.2(1,3,5-FIB)
CCDC No.	2036674	2036675	2036676
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{I}_{8} \mathrm{~N}_{8} \mathrm{NiO}_{2}$	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{8} \mathrm{I}_{4} \mathrm{~N}_{8} \mathrm{NiO}_{2}$	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{I}_{6} \mathrm{~N}_{8} \mathrm{NiO}_{2}$
M_{W} / g	1476.33	1172.80	1388.60
T/K	100(2)	100(2)	100(2)
Radiation	Mo K $\alpha(\lambda=0.7107)$	Mo K α ($\lambda=0.7107$)	Mo K $\alpha(\lambda=0.71073)$
Crystal color, shape	red, prism	red, prism	red, prism
Crystal size/ $/ \mathrm{mm}^{3}$	$0.26 \times 0.20 \times 0.16$	$0.18 \times 0.12 \times 0.10$	$0.24 \times 0.20 \times 0.18$
Crystal system	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1
a / \AA	8.3457(4)	8.4755(4)	9.270(3)
b/A	9.9691(3)	9.0877(6)	9.7991(19)
clA	10.7301(5)	11.8801(8)	10.790(7)
$\alpha /^{\circ}$	90.952(3)	86.501(5)	81.20(4)
$\beta 1^{\circ}$	106.299(4)	75.723(5)	71.84(5)
$\gamma /^{\circ}$	90.632(3)	66.104(5)	72.97(2)
V / \AA^{3}	856.62(7)	809.98(9)	888.4(7)
Z	1	1	1
$\rho_{\mathrm{c}} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	2.862	2.404	2.595
μ / mm^{-1}	7.807	4.496	5.827
$F(000)$	662.0	550.0	638.0
2Θ range $/{ }^{\circ}$	5.498 to 61.646	5.42 to 61.912	5.572 to 62.118
Reflections collected	15285	7986	8478
Independent reflections	$\begin{aligned} & 4890 \\ & R_{\text {sigma }}=0.03981 \end{aligned} \quad\left[\mathrm{R}_{\text {int }}=0.0367,\right.$	$\begin{array}{lcc} \hline 4466 & {\left[\mathrm{R}_{\text {int }}=\right.} & 0.0328, \\ \left.\mathrm{R}_{\text {sigma }}=0.0591\right] \end{array}$	$\begin{array}{lrl} 4894 & {\left[\mathrm{R}_{\text {int }}=\right.} & 0.0329, \\ \left.\mathrm{R}_{\text {sigma }}=0.0517\right] \end{array}$
Data/restraints/parameters	4890/0/179	4466/0/214	4894/0/214
Goodness-of-fit on F^{2}	1.064	1.014	0.940
Final R indexes [$I \geq 2 \sigma(I)$]	$\mathrm{R}_{1}=0.0251, \mathrm{wR}_{2}=0.0467$	$\mathrm{R}_{1}=0.0381, \mathrm{wR}_{2}=0.0754$	$\mathrm{R}_{1}=0.0243, \mathrm{wR}_{2}=0.0404$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0330, \mathrm{wR}_{2}=0.0497$	$\mathrm{R}_{1}=0.0557, \mathrm{wR}_{2}=0.0831$	$\mathrm{R}_{1}=0.0344, \mathrm{wR}_{2}=0.0430$
Largest diff. peak/hole/e $e \AA^{-3}$	0.88/-1.08	1.86/-0.94	1.28/-1.23

View of the molecular structure of adducts with HSA

Figure S1. View of the molecular structure of $\mathbf{1} \cdot 2(1,2-\mathrm{FIB})$ with bifurcated XB (dotted lines) between I atom of $1,2-\mathrm{FIB}$ and N and O atoms of the nitrosoguanidinate ligand. Here and later thermal ellipsoids are shown at the 50% probability level (top). HSA mapped with $d_{\text {norm }}$ over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow+1.0$ (convex bumps; blue) for $\mathbf{1}$ in the XRD structure of $\mathbf{1} \cdot 2(1,2-\mathrm{FIB})$ (bottom).

Figure S2. View of the molecular structure of $\mathbf{1} \cdot(1,4-\mathrm{FIB})$ with bifurcated XB (dotted lines) between I atom of 1,4-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with $d_{\text {norm }}$ over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow+1.0$ (convex bumps; blue) for $\mathbf{1}$ in the XRD structure of $\mathbf{1} \cdot(1,4-\mathrm{FIB})$ (bottom).

Figure S3. View of the molecular structure of $\mathbf{1} \cdot 2(1,3,5-\mathrm{FIB})$ with bifurcated XB (dotted lines) between I atom of 1,3,5-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with $d_{\text {norm }}$ over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow+1.0$ (convex bumps; blue) for $\mathbf{1}$ in the XRD structure of $\mathbf{1} \cdot 2(1,3,5-\mathrm{FIB})$ (bottom).

Figure S4. View of the molecular structure of $1 \cdot \mathrm{C}_{2} \mathrm{I}_{4}$ with bifurcated XB (dotted lines) between I atom of $\mathrm{C}_{2} \mathrm{I}_{4}$ and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with d_{norm} over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow+1.0$ (convex bumps; blue) for $\mathbf{1}$ in the XRD structure of $\mathbf{1} \cdot \mathrm{C}_{2} \mathrm{I}_{4}$ (bottom).

Figure S5. View of the molecular structure of $\mathbf{1} \cdot 2 \mathrm{I}_{2}$ with bifurcated XB (dotted lines) between I atom of I_{2} and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with $d_{\text {norm }}$ over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow+1.0$ (convex bumps; blue) for $\mathbf{1}$ in the XRD structure of $1 \cdot 2 \mathrm{I}_{2}$ (bottom).

Figure S6. View of the molecular structure of 2•2(1,2-FIB) with bifurcated XB (dotted lines) between I atom of 1,2-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with $d_{\text {norm }}$ over the range -0.2744 (red) to 1.1474 (blue) and shape index S , mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow+1.0$ (convex bumps; blue) for $\mathbf{2}$ in the XRD structure of $\mathbf{2} \cdot 2(1,2-\mathrm{FIB})$ (bottom).

Figure S7. View of the molecular structure of 2•2(1,4-FIB) with bifurcated XB (dotted lines) between I atom of 1,4-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with $d_{\text {norm }}$ over the -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow+1.0$ (convex bumps; blue) for $\mathbf{2}$ in the XRD structure of 2•2(1,4-FIB) (bottom).

Figure S8. View of the molecular structure of 2•2(1,3,5-FIB) with bifurcated XB (dotted lines) between I atom of 1,3,5-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with $d_{\text {norm }}$ over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow+1.0$ (convex bumps; blue) for $\mathbf{2}$ in the XRD structure of $\mathbf{2} \cdot 2(1,3,5-\mathrm{FIB})$ (bottom).

Figure S9. View of the molecular structure of $\mathbf{2} \cdot 2 \mathrm{C}_{2} \mathrm{I}_{4}$ with bifurcated XB (dotted lines) between I atom of $\mathrm{C}_{2} \mathrm{I}_{4}$ and N and O atoms of the nitrosoguanidinate ligand. (top). HSA mapped with $d_{\text {norm }}$ over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow+1.0$ (convex bumps; blue) for $\mathbf{2}$ in the XRD structure of $\mathbf{2} \cdot 2 \mathrm{C}_{2} \mathrm{I}_{4}$ (bottom).

Figure S10. View of the molecular structure of 3•2(1,4-FIB) with bifurcated XB (dotted lines) between I atom of 1,4-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with $d_{\text {norm }}$ over the range -0.2744 (red) to 1.1474 (blue) and shape index S , mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow+1.0$ (convex bumps; blue) for $\mathbf{3}$ in the XRD structure of $\mathbf{3} \cdot 2(1,4-\mathrm{FIB})$ (bottom).

Figure S11. View of the molecular structure of $\mathbf{3} \cdot 2(1,3,5-\mathrm{FIB})$ with bifurcated XB (dotted lines) between I atom of 1,3,5-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with $d_{\text {norm }}$ over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow+1.0$ (convex bumps; blue) for $\mathbf{3}$ in the XRD structure of $\mathbf{3} \cdot 2(1,3,5-\mathrm{FIB})$ (bottom).

Results of the Hirshfeld surface analysis

Table S3. Results of the Hirshfeld surface analysis for 1, 2, and $\mathbf{3}$ in X-ray structures of the cocrystals.

X-ray structure	Contributions of various intermolecular contacts to the molecular Hirshfeld surface of 1, 2, and 3
1•2(1,2-FIB)	H-F 35.2%, H-N/N-H 16.4%, H-O/O-H $7.2 \%, \mathrm{H}-\mathrm{I} 7.1 \%, \mathrm{H}-\mathrm{H} 5.9 \%, \mathrm{O}-\mathrm{I} 5.7 \%, \mathrm{H}-\mathrm{C} / \mathrm{C}-$ $\mathrm{H} 5.2 \%, \mathrm{~N}-\mathrm{I} 3.5 \%, \mathrm{H}-\mathrm{Ni} / \mathrm{Ni}-\mathrm{H} 2.6 \%, \mathrm{~N}-\mathrm{Ni} / \mathrm{Ni}-\mathrm{N} 2.6 \%, \mathrm{C}-\mathrm{N} / \mathrm{N}-\mathrm{C} 2.2 \%, \mathrm{O}-\mathrm{C} 2.1 \%, \mathrm{~N}-\mathrm{N}$ 2.0%
1-(1,4-FIB)	$\mathrm{H}-\mathrm{F} 22.5 \%, \mathrm{H}-\mathrm{N} / \mathrm{N}-\mathrm{H}$ 19.4\%, H-O/O-H $14.3 \%, \mathrm{H}-\mathrm{H} 10.5 \%, \mathrm{H}-\mathrm{I} 9.0 \%, \mathrm{H}-\mathrm{C} / \mathrm{C}-\mathrm{H} 5.7 \%$, $\mathrm{H}-\mathrm{Ni} / \mathrm{Ni}-\mathrm{H} 4.2 \%, \mathrm{~N}-\mathrm{N} 3.6 \%, \mathrm{O}-\mathrm{I} 2.0 \%, \mathrm{O}-\mathrm{C} 1.8 \%, \mathrm{C}-\mathrm{N} / \mathrm{N}-\mathrm{C} 1.7 \%, \mathrm{O}-\mathrm{F} 1.4 \%$
1-2(1,3,5-FIB)	H-F $26.1 \%, \mathrm{H}-\mathrm{N} / \mathrm{N}-\mathrm{H} 15.8 \%, \mathrm{H}-\mathrm{H} 15.6 \%, \mathrm{H}-\mathrm{I} ~$ $50.9 \%, \mathrm{O}-\mathrm{I} 7.0 \%, \mathrm{~N}-\mathrm{I} 6.3 \%, \mathrm{H}-\mathrm{C} / \mathrm{C}-\mathrm{H}$ 5.0% H-O/O-H $4.8 \%, \mathrm{O}-\mathrm{C} 3.1 \%, \mathrm{Ni}-\mathrm{I} 2.6 \%, \mathrm{~N}-\mathrm{F} 1.4 \%$
1- $\mathrm{C}_{2} \mathrm{I}_{4}$	$\mathrm{H}-\mathrm{N} / \mathrm{N}-\mathrm{H} 23.2 \%, \mathrm{H}-\mathrm{I} 21.9 \%, \mathrm{H}-\mathrm{O} / \mathrm{O}-\mathrm{H} 20.6 \%, \mathrm{H}-\mathrm{H} 17.2 \%, \mathrm{H}-\mathrm{Ni} / \mathrm{Ni}-\mathrm{H} 4.2 \%, \mathrm{H}-\mathrm{C} / \mathrm{C}-\mathrm{H}$ $3.2 \%, \%, \mathrm{~N}-\mathrm{I} 2.1 \%, \mathrm{C}-\mathrm{N} / \mathrm{N}-\mathrm{C} 2.0 \%, \mathrm{O}-\mathrm{I} 1.8 \%, \mathrm{~N}-\mathrm{Ni} / \mathrm{Ni}-\mathrm{N} 1.2 \%, \mathrm{~N}-\mathrm{N} 1.2 \%$
1-2 I_{2}	$\mathrm{H}-\mathrm{I} 26.3 \%, \mathrm{H}-\mathrm{H} 23.6 \%, \mathrm{H}-\mathrm{N} / \mathrm{N}-\mathrm{H} 16.6 \%, \mathrm{H}-\mathrm{O} / \mathrm{O}-\mathrm{H} 16.2 \%, \mathrm{~N}-\mathrm{I} 7.3 \%, \mathrm{O}-\mathrm{I} 4.8 \%, \mathrm{C}-\mathrm{I}$ $2.8 \%, \mathrm{Ni}-\mathrm{I} 2.6 \%$
2•2(1,2-FIB)	H-F $28.1 \%, \mathrm{H}-\mathrm{N} / \mathrm{N}-\mathrm{H} 21.3 \%, \mathrm{H}-\mathrm{H} 16.7 \%$, H-I $9.0 \%, \mathrm{H}-\mathrm{O} / \mathrm{O}-\mathrm{H} 7.8 \%, \mathrm{C}-\mathrm{H} / \mathrm{H}-\mathrm{C} 7.0 \%$, N-I $5.0 \%, \mathrm{C}-\mathrm{F} 3.8 \%, \mathrm{O}-\mathrm{F} 3.4 \%, \mathrm{H}-\mathrm{Ni} / \mathrm{Ni}-\mathrm{H} 3.1 \%$, C-I $2.3 \%, \mathrm{C}-\mathrm{C} 2.4 \%, \mathrm{~N}-\mathrm{F} 1.3 \%$
2•2(1,4-FIB)	H-H 27.0%, H-F 19.5%, C-H/H-C 12.8%, H-I 7.1\%, H-O/O-H $6.0 \%, \mathrm{H}-\mathrm{N} / \mathrm{N}-\mathrm{H} 4.8 \%$, O-I 3.9\%, N-I 3.7\%, H-Ni/Ni-H 3.4\%, C-F $2.9 \%, \mathrm{~N}-\mathrm{N} 2.9 \%, \mathrm{C}-\mathrm{N} / \mathrm{N}-\mathrm{C} 2.2 \%, \mathrm{C}-\mathrm{O} / \mathrm{O}-\mathrm{C}$ 1.8\%
2•2(1,3,5-FIB)	H-H 19.2%, H-F 18.8%, H-I 13.8%, C-H/H-C 11.6%, H-N/N-H 10.6%, H-O/O-H 9.1%, C-I 4.2%, O-I 1.9%, c-F $1.3 \%, \mathrm{H}-\mathrm{Ni} / \mathrm{Ni}-\mathrm{H} 1.2 \%$, Ni-F 1.1%
2-2(C2 C_{4})	$\mathrm{H}-\mathrm{H} 27.1 \%, \mathrm{H}-\mathrm{I} 21.9 \%, \mathrm{C}-\mathrm{H} / \mathrm{H}-\mathrm{C} 17.8 \%, \mathrm{H}-\mathrm{O} / \mathrm{O}-\mathrm{H} 7.7 \%, \mathrm{~N}-\mathrm{J} 7.1 \%, \mathrm{H}-\mathrm{N} / \mathrm{N}-\mathrm{H} 6.2 \%$, $\mathrm{O}-\mathrm{I} 5.0 \%, \mathrm{C}-\mathrm{I} 3.2 \%, \mathrm{H}-\mathrm{Ni} / \mathrm{Ni}-\mathrm{H} 1.7 \%$
3•2(1,2-FIB)	H-F 28.9%, H-H $18.2 \%, \mathrm{H}-\mathrm{N} / \mathrm{N}-\mathrm{H} 11.9 \%$, H-O/O-H 11.7%, H-I $6.8 \%, \mathrm{C}-\mathrm{H} / \mathrm{H}-\mathrm{C} 6.2 \%$, H-Ni/Ni-H 4.1\%, N-I 3.3\%, N-F 2.9\%, O-F 2.2\%, O-I 1.7\%, C-F 1.1%
3•2(1,4-FIB)	$\mathrm{H}-\mathrm{H} 25.7 \%, \mathrm{H}-\mathrm{F} 22.7 \%, \mathrm{H}-\mathrm{N} / \mathrm{N}-\mathrm{H} 14.2 \%, \mathrm{H}-\mathrm{I} 9.5 \%, \mathrm{H}-\mathrm{O} / \mathrm{O}-\mathrm{H} 5.1 \%, \mathrm{C}-\mathrm{H} / \mathrm{H}-\mathrm{C} 5.0 \%$, $\mathrm{H}-\mathrm{Ni} / \mathrm{Ni}-\mathrm{H} 4.6 \%, \mathrm{~N}-\mathrm{I} 4.2 \%, \mathrm{O}-\mathrm{I} 3.7 \%, \mathrm{O}-\mathrm{C} 2.8 \%$
3•2(1,3,5-FIB)	$\mathrm{H}-\mathrm{H} 22.0 \%, \mathrm{H}-\mathrm{F} 21.4 \%, \mathrm{H}-\mathrm{I} 20.3 \%, \mathrm{H}-\mathrm{C} 7.3 \%, \mathrm{O}-\mathrm{I} 6.3 \%, \mathrm{~N}-\mathrm{C} 5.5 \%, \mathrm{~N}-\mathrm{I} 5.1 \%, \mathrm{O}-\mathrm{F}$ $3.0 \%, \mathrm{Ni}-\mathrm{C} 2.0 \%, \mathrm{~N}-\mathrm{F} 2.0 \%, \mathrm{C}-\mathrm{I} 1.2 \%$

Description of hydrogen bonds and other contacts

HB. In the crystal structures of all adducts, we identified the following HBs: $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ HB in $\mathbf{1} \cdot 2(1,2-\mathrm{FIB}), \mathbf{1} \cdot(1,4-\mathrm{FIB}), \mathbf{3} \cdot 2(1,2-\mathrm{FIB})$, and $\mathbf{3} \cdot 2(1,4-\mathrm{FIB}), \mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ in $\mathbf{1} \cdot 2(1,2-\mathrm{FIB}), \mathbf{1} \cdot(1,4-$ FIB), $\mathbf{1} \cdot 2(1,3,5-\mathrm{FIB}), \mathbf{2} \cdot 2(1,2-\mathrm{FIB}), \mathbf{2} \cdot 2(1,4-\mathrm{FIB}), \mathbf{2} \cdot 2(1,3,5-\mathrm{FIB}), \mathbf{3} \cdot 2(1,2-\mathrm{FIB})$, and $\mathbf{3} \cdot 2(1,4-\mathrm{FIB})$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ in $\mathbf{1} \cdot 2 \mathrm{I}_{2}$, and $\mathbf{3} \cdot 2(1,3,5-\mathrm{FIB})$, $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ in $\mathbf{1} \cdot 2 \mathrm{I}_{2}, \mathbf{1} \cdot \mathrm{C}_{2} \mathrm{I}_{4}, \mathbf{2} \cdot 2(1,2-\mathrm{FIB})$, and $\mathbf{3} \cdot 2(1,3,5-\mathrm{FIB})$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=$ in $\mathbf{1} \cdot \mathrm{C}_{2} \mathrm{I}_{4}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}=$ in $\mathbf{1} \cdot \mathrm{C}_{2} \mathrm{I}_{4}, \mathbf{2} \cdot 2(1,2-\mathrm{FIB}), \mathbf{2} \cdot 2(1,4-\mathrm{FIB})$, and $\mathbf{2} \cdot 2(1,3,5-\mathrm{FIB})$, and $\mathrm{C}-$ $\mathrm{H} \cdot \cdots \mathrm{N}$ in $\mathbf{1} \cdot \mathrm{C}_{2} \mathrm{I}_{4}, \mathbf{1} \cdot 2(1,3,5-\mathrm{FIB}), \mathbf{2} \cdot 2(1,3,5-\mathrm{FIB})$, and $\mathbf{3} \cdot 2(1,2-\mathrm{FIB})$ (Table S4). As is follows from Table S4, HB with F are characteristic for adducts with perfluorinated arenes, while for adducts of I_{2} and $\mathrm{C}_{2} \mathrm{I}_{4} \mathrm{HB}$ with I are predominant. The strongest HB were found in adducts $\mathbf{1} \cdot 2(1,3,5-\mathrm{FIB})$ (C2-H2C \cdots F2S $2.373 \AA$), $\mathbf{1} \cdot \mathrm{C}_{2} \mathrm{I}_{4}(\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O} 22.394 \AA)$, and $\mathbf{2} \cdot 2(1,2-\mathrm{FIB})(\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{~F} 5 \mathrm{~S}$ 2.374 and $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 22.384 \AA$).

Table S4. Parameters of HB in the studied co-crystals.

Co-crystals	Contact A-H \bullet° B	$\mathbf{A} \cdot \bullet \cdot \mathrm{B}, \AA$	$\angle(\mathrm{A}-\mathrm{H} \cdot \cdots \cdot \mathrm{B}),^{\circ}$
1-2(1,2-FIB)	$\begin{aligned} & \text { N3-H3 } \cdots \text { F1S } \\ & \text { C2-H2A } \cdots \text { F2S } \\ & \text { C } 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{~F} 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 3.272(5) \\ & 3.362(6) \\ & 3.387(7) \\ & \hline \end{aligned}$	$\begin{aligned} & 149.7 \\ & 142.7 \\ & 144.7 \end{aligned}$
1-(1,4-FIB)	$\begin{aligned} & \text { N3-H3 } \cdots \text { F2S } \\ & \text { C2-H2B } \cdots \text { F1S } \\ & \text { C2-H2C } \cdots \text { I1S } \end{aligned}$	$\begin{aligned} & \hline 3.424(4) \\ & 3.393(4) \\ & 4.066(4) \end{aligned}$	$\begin{aligned} & 163.8 \\ & 153.1 \\ & 178.2 \end{aligned}$
1-2(1,3,5-FIB)	$\begin{aligned} & \mathrm{C} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~F} 1 \mathrm{~S} \\ & \mathrm{C} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{~F} 2 \mathrm{~S} \\ & \mathrm{C} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{~N} 2 \end{aligned}$	$\begin{aligned} & 3.392(5) \\ & 3.270(7) \\ & 3.467(8) \\ & \hline \end{aligned}$	$\begin{aligned} & 139.1 \\ & 151.9 \\ & 138.5 \\ & \hline \end{aligned}$
1- $\mathrm{C}_{2} \mathrm{I}_{4}$	N3-H3 \cdots O2 C3-H3C…O1 C3-H3A…I3S C6-H6B…I3S C6-H6A…N2 N8-H8…O1 C6-H6A…O1	$\begin{aligned} & 3.054(4) \\ & 3.213(4) \\ & 3.836(3) \\ & 4.080(4) \\ & 3.507(4) \\ & 3.236(4) \\ & 3.642(4) \\ & \hline \end{aligned}$	$\begin{aligned} & 133.9 \\ & 127.4 \\ & 136.3 \\ & 160.6 \\ & 144.9 \\ & 124.6 \\ & 162.4 \\ & \hline \end{aligned}$
1-2I ${ }_{2}$	$\begin{aligned} & \text { N3-H3 } \cdots \text { I2S-I1S } \\ & \text { C2-H2B } \cdots \text { I2S-I1S } \end{aligned}$	$\begin{aligned} & 3.926(3) \\ & 3.951(4) \end{aligned}$	$\begin{aligned} & 174.5 \\ & 165 \end{aligned}$
2•2(1,2-FIB)	$\begin{aligned} & \text { C7-H7A } \cdots \mathrm{O} 1 \\ & \text { C15-H15 } \cdots \text { O2 } \\ & \text { C } 8-\mathrm{H} 8 \cdots \text { F1S } \\ & \text { C16-H16 } \cdots \text { F5S } \\ & \text { C2-H2A } \cdots \text { F1S } \\ & \text { C10-H10A } \cdots \text { F6S } \\ & \text { C2-H2C } \cdots \text { I2S } \end{aligned}$	$\begin{aligned} & 3.328(4) \\ & 3.269(3) \\ & 3.172(3) \\ & 3.190(3) \\ & 3.450(3) \\ & 3.295(3) \\ & 3.972(3) \end{aligned}$	$\begin{aligned} & 153.9 \\ & 158.8 \\ & 117.9 \\ & 146.2 \\ & 152 \\ & 136.1 \\ & 164.2 \end{aligned}$

$\mathbf{2} \cdot 2(1,4-\mathrm{FIB})$	C8-H8 \cdots O1	$3.286(10)$	130.2
	C2-H2A \cdots F1S	$3.219(6)$	142.2
	C7-H7 \cdots F3S	$3.292(9)$	132.2
	C6-H6 \cdots F2S	$3.336(8)$	131.7
$\mathbf{2} \cdot 2(1,3,5-\mathrm{FIB})$	C2-H2B \cdots O1	$3.389(3)$	161.9
	C4-H4A \cdots N2	$3.441(3)$	151
	C5-H5 \cdots F2S	$3.210(3)$	118.3
$\mathbf{3} \cdot 2(1,2-\mathrm{FIB})$	N3-H3 \cdots F2S	$3.131(5)$	123.4
	C6-H6B \cdots F2S	$3.448(6)$	142.6
	C5-H5B \cdots F3S	$3.648(4)$	130.2
	C4-H4A \cdots N1	$3.506(6)$	137
$\mathbf{3} \cdot 2(1,4-\mathrm{FIB})$	N3-H3 \cdots F2S	$3.248(3)$	168
	C2-H2B \cdots F1S	$3.405(3)$	171.7
$\mathbf{3} \cdot 2(1,3,5-$ FIB $)$	N3-H3 \cdots I1S	$3.959(4)$	160.7
	C6-H6A \cdots I1S	$4.027(3)$	147.4

R is interatomic distance to vdW sum ratio, the sum of Bondi vdW radii $\mathrm{R}_{\mathrm{vdw}}(\mathrm{H})+\mathrm{R}_{\mathrm{vdW}}(\mathrm{O})=2.72$,
$R_{\mathrm{vdW}}(\mathrm{H})+\mathrm{R}_{\mathrm{vdW}}(\mathrm{N})=2.75, \mathrm{R}_{\mathrm{vdW}}(\mathrm{H})+\mathrm{R}_{\mathrm{vdW}}(\mathrm{F})=2.67$, and $\mathrm{R}_{\mathrm{vdW}}(\mathrm{H})+\mathrm{R}_{\mathrm{vdW}}(\mathrm{I})=3.18 \AA$.

Table S5. Parameters of lone pair $-\pi$ interactions in the studied co-crystals.

Co-crystals	Contact C \cdots X-R	$\mathbf{C} \cdots \mathbf{X},{ }_{\text {A }}$	R ${ }^{\text {II }}$	$\angle(\mathbf{C} \cdots \mathrm{X}-\mathrm{R}){ }^{\circ}$	Comments
1-(1,4-FIB)	C3S \cdots O1-N1	3.067(4)	0.95	164.4(2)	$\operatorname{lp}(\mathrm{O})-\pi \mathrm{h}\left(\mathrm{Ar}_{\mathrm{F}}\right)$ reported, Ref. ${ }^{2}$
1-2(1,3,5-FIB)	C6S \cdots I3S-C3S	3.598(5)	0.98	73.73(16)	$\operatorname{lp}(\mathrm{I})-\pi \mathrm{h}\left(\mathrm{Ar}_{\mathrm{F}}\right)$ $\text { reported, Ref. }{ }^{1}$
1. $\mathrm{C}_{2} \mathrm{I}_{4}$	C1S \cdots I4S-C2S	3.639(3)	0.99	138.30(11)	$\mathrm{lp}(\mathrm{I})-\pi \mathrm{h}\left(\mathrm{C}_{2} \mathrm{I}_{4}\right)$
1. $2 \mathrm{I}_{2}$	C1 \cdots I1S-I2S	3.598(5)	0.98	82.13(6)	$\operatorname{lp}(\mathrm{I})-\pi \mathrm{h}\left(\mathrm{C}_{\mathrm{NG}}\right)$ reported, Ref. ${ }^{1}$
2•2(1,2-FIB)	C1 \cdots I1S-C1S C9…I3S-C7S C11S...I4S-C8S C5S...I2S-C2S C10S...O2-N5 C11S...O2-N5	$\begin{aligned} & \hline 3.609(3) \\ & 3.648(3) \\ & 3.682(3) \\ & 3.664(3) \\ & 3.012(4) \\ & 3.099(4) \end{aligned}$	$\begin{aligned} & \hline 0.98 \\ & 0.99 \\ & 1.00 \\ & 1.00 \\ & 0.94 \\ & 0.96 \end{aligned}$	$\begin{aligned} & \hline 130.11(8) \\ & 123.47(8) \\ & 84.47(8) \\ & 81.08(8) \\ & 145.33(16) \\ & 157.46(16) \end{aligned}$	$\begin{aligned} & \operatorname{lp}(\mathrm{I})-\pi \mathrm{h}\left(\mathrm{C}_{\mathrm{NG}}\right) \\ & \operatorname{lp}(\mathrm{I})-\pi \mathrm{h}\left(\mathrm{C}_{\mathrm{NG}}\right) \\ & \operatorname{lp}(\mathrm{I})-\pi \mathrm{h}\left(\mathrm{Ar}_{\mathrm{F}}\right) \\ & \operatorname{lp}(\mathrm{I})-\pi \mathrm{h}\left(\mathrm{Ar}_{\mathrm{F}}\right) \\ & \operatorname{lp}(\mathrm{O})-\pi \mathrm{h}\left(\mathrm{Ar}_{\mathrm{F}}\right) \\ & \operatorname{lp}(\mathrm{O})-\pi \mathrm{h}\left(\mathrm{Ar}_{\mathrm{F}}\right) \end{aligned}$
2•2(1,3,5-FIB)	$\begin{aligned} & \hline \mathrm{C} 4 \mathrm{~S} \cdots \mathrm{O} 1-\mathrm{N} 1 \\ & \mathrm{C} 3 \mathrm{~S} \cdots \mathrm{O} 1-\mathrm{N} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.132(3) \\ & 3.186(3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.97 \\ & 0.99 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 86.30(13) \\ & 111.50(14) \\ & \hline \end{aligned}$	$\operatorname{lp}(\mathrm{O})-\pi \mathrm{h}\left(\mathrm{Ar}_{\mathrm{F}}\right)$ reported, Ref. ${ }^{2}$
3•2(1,4-FIB)	$\begin{aligned} & \mathrm{C} 3 \mathrm{~S} \cdots \mathrm{O} 1-\mathrm{N} 1 \\ & \mathrm{C} 4 \mathrm{~S} \cdots \mathrm{~F} 1 \mathrm{~S}-\mathrm{C} 2 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 2.903(3) \\ & 3.076(3) \end{aligned}$	$\begin{aligned} & \hline 0.90 \\ & 0.96 \end{aligned}$	$\begin{aligned} & \hline 159.06(16) \\ & 109.07(14) \end{aligned}$	$\operatorname{lp}(\mathrm{O})-\pi \mathrm{h}\left(\mathrm{Ar}_{\mathrm{F}}\right)$ reported, Ref. ${ }^{2}$ $\operatorname{lp}(\mathrm{I})-\pi \mathrm{h}\left(\mathrm{Ar}_{\mathrm{F}}\right)$

${ }^{I} R$ is interatomic distance to vdW sum ratio, the sum of Bondi vdW radii $\mathrm{R}_{\mathrm{vdW}}(\mathrm{C})+\mathrm{R}_{\mathrm{vdW}}(\mathrm{O})=3.22, \mathrm{R}_{\mathrm{vdW}}(\mathrm{C})+$ $\mathrm{R}_{\mathrm{vdW}}(\mathrm{I})=3.68$, and $\mathrm{R}_{\mathrm{vdW}}(\mathrm{C})+\mathrm{R}_{\mathrm{vdW}}(\mathrm{F})=3.17 \AA$.

Table S6. Parameters of Type II halogen-halogen interactions in the structures of $\mathbf{1} \cdot \mathrm{C}_{2} \mathrm{I}_{4}$ and 1• 2(1,3,5-FIB).

Co-crystals	Contact C-I $\cdots \mathbf{I}-\mathbf{C}$	$\mathbf{I} \cdots \mathbf{I}, \boldsymbol{\AA}$	$\mathbf{R}^{\text {II }}$	$\mathbf{C}-\mathbf{I} \cdots \mathbf{I}),{ }^{\circ}$	$\angle(\mathbf{I} \cdots \mathbf{I}-\mathbf{C}),{ }^{\circ}$
$\mathbf{1} \cdot \mathrm{C}_{2} \mathrm{I}_{4}$	C1S-I2S \cdots I3S-C2S	$3.7449(4)$	0.95	$166.14(9)$	$84.20(9)$
$\mathbf{1} \cdot 2(1,3,5-$	C3S-I2S \cdots I13-C1S	$3.8234(6)$	0.97	$171.88(12)$	$111.50(14)$
$\mathrm{FIB})$					

${ }^{I I} \mathrm{R}$ is interatomic distance to vdW sum ratio, the sum of Bondi vdW radii $2 \mathrm{R}_{\mathrm{vdW}}(\mathrm{I})=3.96 \AA$.

MEP surfaces of the XB donors

Figure S12. MEP surfaces (isosurface 0.001 a.u.) of the XB donors. The energies at selected points of the surfaces are given in $\mathrm{kcal} / \mathrm{mol}$.

