Electronic Supporting Information

for

Bifurcated μ_2 -I···(N,O) Halogen Bonding: The Case of (Nitrosoguanidinate)Ni^{II} Co-crystals with Iodine(I)-based σ -Hole Donors

Zarina M. Efimenko, Anastasiya A. Eliseeva, Daniil M. Ivanov, Bartomeu Galmés,

Antonio Frontera,* Nadezhda A. Bokach,* Vadim Yu. Kukushkin*

Table of Contents

Crystal data and structure refinement	2
View of the molecular structure of adducts with HSA	4
Results of the Hirshfeld surface analysis	15
Description of hydrogen bonds and other contacts	16
MEP surfaces of the XB donors	18

Crystal data and structure refinement

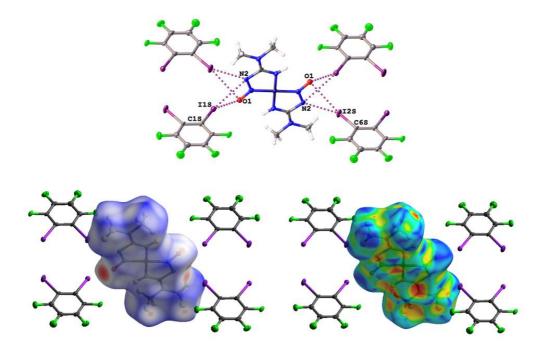

	1 ·2(1,2-FIB)	$1 \cdot C_2 I_4$	2 ·2(1,2-FIB)	2 ·2(1,4-FIB)
CCDC No.	2036670	2036671	2036672	2036673
Empirical formula	$C_{18}H_{14}F_8I_4N_8NiO_2$	C ₈ H ₁₄ I ₄ N ₈ NiO ₂	$C_{28}H_{18}F_8I_4N_8NiO_2$	$C_{28}H_{18}F_8I_4N_8NiO_2$
M_{W}/g	1092.68	820.58	1216.81	1216.81
T/K	100(2)	100(2)	100(2)	100(2)
Radiation	Mo Kα (λ = 0.71073)	Mo Kα (λ = 0.7107)	Mo Kα (λ = 0.71073)	Mo Kα (λ = 0.7107)
Crystal color, shape	red, prism	red, prism	red, prism	red, prism
Crystal size/mm ³	0.30 imes 0.22 imes 0.16	0.28 imes 0.16 imes 0.12	0.25 imes 0.20 imes 0.18	0.26 imes 0.18 imes 0.14
Crystal system	triclinic	triclinic	monoclinic	triclinic
Space group	P-1	P-1	$P2_1/c$	P-1
a/Å	5.4904(5)	8.3289(3)	23.1438(4)	5.6497(4)
b/Å	10.4468(7)	8.9118(3)	7.99700(10)	12.4400(13)
c/Å	12.5239(7)	13.3421(5)	18.8981(3)	13.0921(4)
$\alpha/^{\circ}$	103.887(5)	87.145(3)	90	76.487(5)
$\beta/^{\circ}$	91.850(6)	84.833(3)	93.464(2)	84.740(4)
γ/°	92.587(7)	84.478(3)	90	80.803(8)
$V/Å^3$	695.94(9)	980.88(6)	3491.29(9)	881.75(12)
Ζ	1	2	4	1
$\rho_{\rm c}/{\rm g}\cdot{\rm cm}^{-3}$	2.607	2.778	2.315	2.292
μ/mm^{-1}	5.222	7.302	4.177	4.135
<i>F</i> (000)	506.0	748.0	2280.0	570.0
2Θ range/°	5.828 to 54.998	5.42 to 62.238	6.196 to 56.998	6.412 to 52
Reflections collected	10641	17909	46994	7577
Independent reflections	$3198 [R_{int} = 0.0514,$	5640 [$R_{int} = 0.0320$,	$8840 [R_{int} = 0.0393,$	$3446 [R_{int} = 0.0424,$
independent reflections	$R_{sigma} = 0.0437$]	$R_{sigma} = 0.0358$]	$R_{sigma} = 0.0289$]	$R_{sigma} = 0.0527$]
Data/restraints/parameters	3198/0/189	5640/0/212	8840/0/462	3446/0/233
Goodness-of-fit on F^2	1.089	1.037	1.061	1.090
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0414, wR_2 = 0.1031$	$R_1 = 0.0252, wR_2 = 0.0465$	$R_1 = 0.0249, wR_2 = 0.0494$	
Final <i>R</i> indexes [all data]	$R_1 = 0.0494, wR_2 = 0.1111$	$R_1 = 0.0341, wR_2 = 0.0498$	$R_1 = 0.0328, wR_2 = 0.0527$	$R_1 = 0.0532, wR_2 = 0.1183$
Largest diff. peak/hole/ $e \cdot \text{\AA}^{-3}$	1.67/-1.94	1.36/-1.33	0.61/-0.57	2.38/-1.64

Table S1. Crystal data and structure refinement for $1 \cdot 2(1, 2 - \text{FIB})$, $1 \cdot \text{C}_2\text{I}_4$, $2 \cdot 2(1, 2 - \text{FIB})$, and $2 \cdot 2(1, 4 - \text{FIB})$.

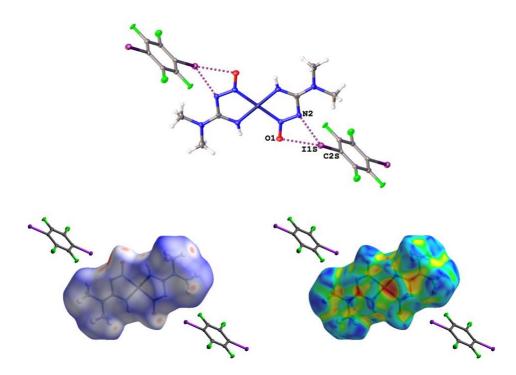
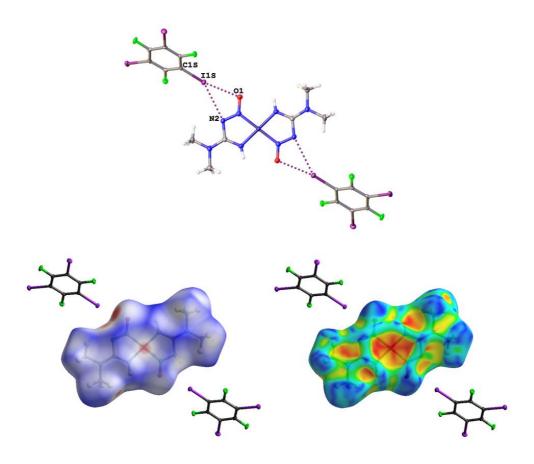

	$2 \cdot 2C_2I_4$	3 ·2(1,2-FIB)	3 ·2(1,3,5-FIB)	
CCDC No.	2036674	2036675	2036676	
Empirical formula	$C_{20}H_{18}I_8N_8NiO_2$	$C_{24}H_{22}F_8I_4N_8NiO_2$	$C_{24}H_{22}F_6I_6N_8NiO_2$	
M _W /g	1476.33	1172.80	1388.60	
T/K	100(2)	100(2)	100(2)	
Radiation	Mo Kα (λ = 0.7107)	Mo Kα (λ = 0.7107)	Mo K α (λ = 0.71073)	
Crystal color, shape	red, prism	red, prism	red, prism	
Crystal size/mm ³	$0.26 \times 0.20 \times 0.16$	$0.18 \times 0.12 \times 0.10$	$0.24 \times 0.20 \times 0.18$	
Crystal system	triclinic	triclinic	triclinic	
Space group	P-1	P-1	P-1	
a/Å	8.3457(4)	8.4755(4)	9.270(3)	
b/Å	9.9691(3)	9.0877(6)	9.7991(19)	
c/Å	10.7301(5)	11.8801(8)	10.790(7)	
$\alpha/^{\circ}$	90.952(3)	86.501(5)	81.20(4)	
β°	106.299(4)	75.723(5)	71.84(5)	
γ/°	90.632(3)	66.104(5)	72.97(2)	
V/Å ³	856.62(7)	809.98(9)	888.4(7)	
Ζ	1	1	1	
$\rho_{\rm c}/{\rm g}\cdot{\rm cm}^{-3}$	2.862	2.404	2.595	
μ/mm^{-1}	7.807	4.496	5.827	
<i>F</i> (000)	662.0	550.0	638.0	
2Θ range/°	5.498 to 61.646	5.42 to 61.912	5.572 to 62.118	
Reflections collected	15285	7986	8478	
Independent reflections	$\begin{array}{ll} 4890 & [R_{int} = & 0.0367, \\ R_{sigma} = 0.0398] \end{array}$	$\begin{array}{ll} 4466 & [R_{int}= & 0.0328, \\ R_{sigma}=0.0591] \end{array}$	$\begin{array}{ll} 4894 & [R_{int} = & 0.0329, \\ R_{sigma} = 0.0517] \end{array}$	
Data/restraints/parameters	4890/0/179	4466/0/214	4894/0/214	
Goodness-of-fit on F^2	1.064	1.014	0.940	
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$		$R_1 = 0.0381, wR_2 = 0.0754$		
Final <i>R</i> indexes [all data]	$R_1 = 0.0330, wR_2 = 0.0497$		$R_1 = 0.0344, WR_2 = 0.0430$	
Largest diff. peak/hole/ e·Å ⁻³	0.88/-1.08	1.86/-0.94	1.28/-1.23	

Table S2. Crystal data and structure refinement for $2 \cdot 2C_2I_4$, $3 \cdot 2(1,2-FIB)$, and $3 \cdot 2(1,3,5-FIB)$.


View of the molecular structure of adducts with HSA

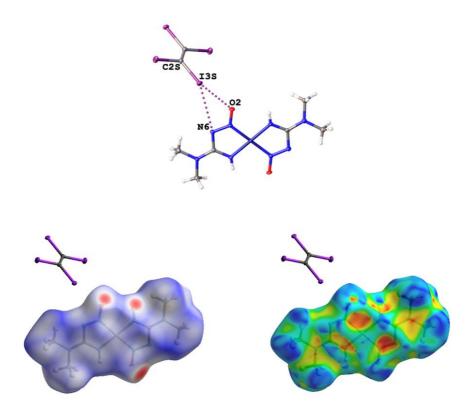
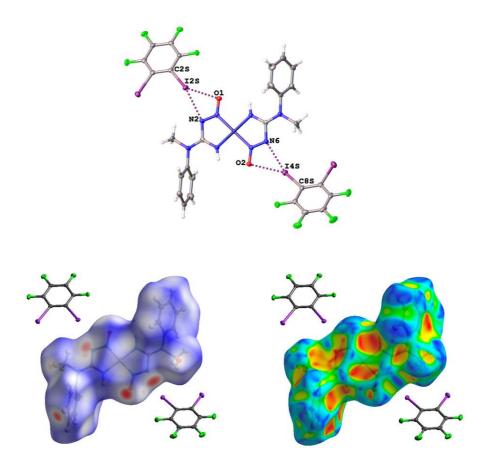
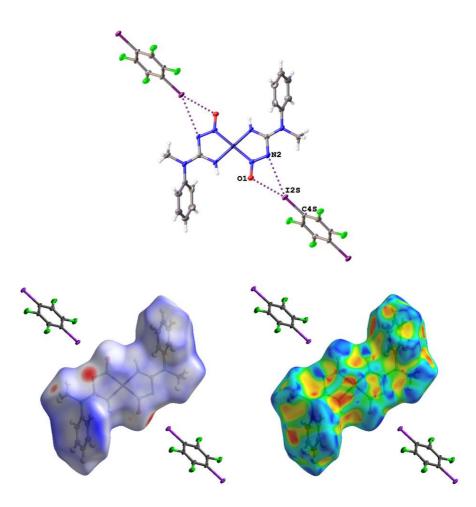
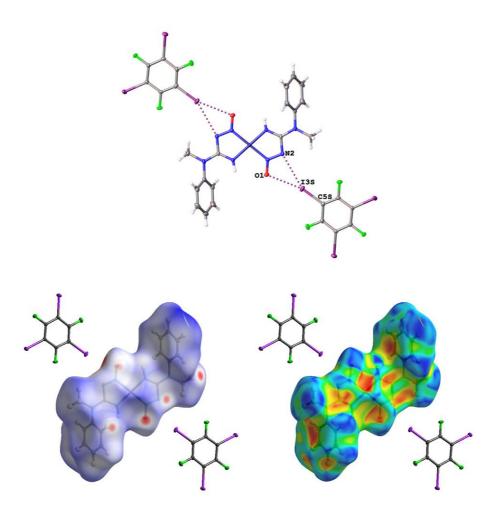
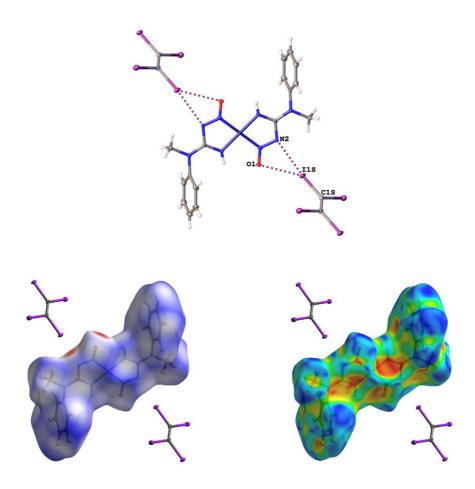

Figure S1. View of the molecular structure of 1.2(1,2-FIB) with bifurcated XB (dotted lines) between I atom of 1,2-FIB and N and O atoms of the nitrosoguanidinate ligand. Here and later thermal ellipsoids are shown at the 50% probability level (top). HSA mapped with d_{norm} over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow +1.0$ (convex bumps; blue) for **1** in the XRD structure of 1.2(1,2-FIB) (bottom).

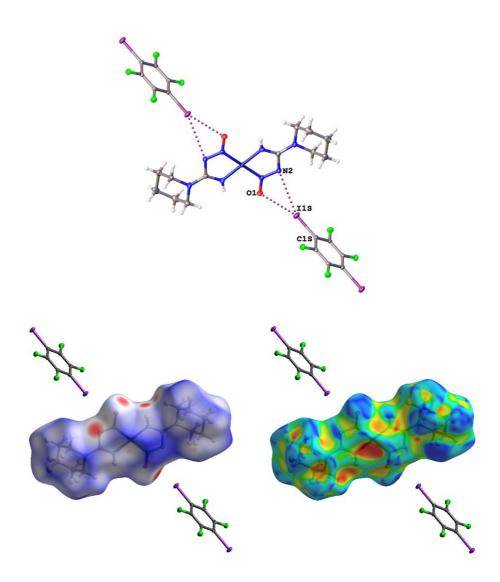
Figure S2. View of the molecular structure of $1 \cdot (1,4$ -FIB) with bifurcated XB (dotted lines) between I atom of 1,4-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with d_{norm} over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow +1.0$ (convex bumps; blue) for **1** in the XRD structure of $1 \cdot (1,4$ -FIB) (bottom).


Figure S3. View of the molecular structure of $1 \cdot 2(1,3,5$ -FIB) with bifurcated XB (dotted lines) between I atom of 1,3,5-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with d_{norm} over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow +1.0$ (convex bumps; blue) for **1** in the XRD structure of $1 \cdot 2(1,3,5$ -FIB) (bottom).


Figure S4. View of the molecular structure of $1 \cdot C_2I_4$ with bifurcated XB (dotted lines) between I atom of C₂I₄ and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with d_{norm} over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow +1.0$ (convex bumps; blue) for **1** in the XRD structure of $1 \cdot C_2I_4$ (bottom).


Figure S5. View of the molecular structure of $1 \cdot 2I_2$ with bifurcated XB (dotted lines) between I atom of I₂ and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with d_{norm} over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow +1.0$ (convex bumps; blue) for **1** in the XRD structure of $1 \cdot 2I_2$ (bottom).


Figure S6. View of the molecular structure of $2 \cdot 2(1,2$ -FIB) with bifurcated XB (dotted lines) between I atom of 1,2-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with d_{norm} over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow +1.0$ (convex bumps; blue) for **2** in the XRD structure of $2 \cdot 2(1,2$ -FIB) (bottom).


Figure S7. View of the molecular structure of $2 \cdot 2(1,4$ -FIB) with bifurcated XB (dotted lines) between I atom of 1,4-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with d_{norm} over the -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow +1.0$ (convex bumps; blue) for **2** in the XRD structure of $2 \cdot 2(1,4$ -FIB) (bottom).

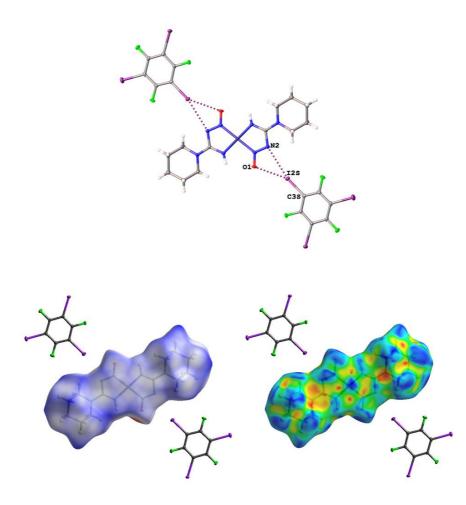

Figure S8. View of the molecular structure of $2 \cdot 2(1,3,5\text{-FIB})$ with bifurcated XB (dotted lines) between I atom of 1,3,5-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with d_{norm} over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow +1.0$ (convex bumps; blue) for **2** in the XRD structure of $2 \cdot 2(1,3,5\text{-FIB})$ (bottom).

Figure S9. View of the molecular structure of $2 \cdot 2C_2I_4$ with bifurcated XB (dotted lines) between I atom of C_2I_4 and N and O atoms of the nitrosoguanidinate ligand. (top). HSA mapped with d_{norm} over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow +1.0$ (convex bumps; blue) for **2** in the XRD structure of $2 \cdot 2C_2I_4$ (bottom).

Figure S10. View of the molecular structure of $3 \cdot 2(1,4$ -FIB) with bifurcated XB (dotted lines) between I atom of 1,4-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with d_{norm} over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow +1.0$ (convex bumps; blue) for **3** in the XRD structure of $3 \cdot 2(1,4$ -FIB) (bottom).

Figure S11. View of the molecular structure of $3 \cdot 2(1,3,5$ -FIB) with bifurcated XB (dotted lines) between I atom of 1,3,5-FIB and N and O atoms of the nitrosoguanidinate ligand (top). HSA mapped with d_{norm} over the range -0.2744 (red) to 1.1474 (blue) and shape index S, mapped from -1.0 (concave hollows; red) $-1 \rightarrow 0.0$ (minimal saddle; green) $\rightarrow +1.0$ (convex bumps; blue) for **3** in the XRD structure of $3 \cdot 2(1,3,5$ -FIB) (bottom).

Results of the Hirshfeld surface analysis

Table S3. Results of the Hirshfeld surface analysis for 1, 2, and 3 in X-ray structures of the co-

crystals.

X-ray structure	Contributions of various intermolecular contacts to the molecular Hirshfeld surface of 1, 2, and 3
1 ·2(1,2-FIB)	H–F 35.2%, H–N/N–H 16.4%, H–O/O–H 7.2%, H–I 7.1%, H–H 5.9%, O–I 5.7%, H–C/C– H 5.2%, N–I 3.5%, H–Ni/Ni–H 2.6%, N–Ni/Ni–N 2.6%, C–N/N–C 2.2%, O–C 2.1%, N–N 2.0%
1 ·(1,4-FIB)	H–F 22.5%, H–N/N–H 19.4%, H–O/O–H 14.3%, H–H 10.5%, H–I 9.0%, H–C/C–H 5.7%, H–Ni/Ni–H 4.2%, N–N 3.6%, O–I 2.0%, O–C 1.8%, C–N/N–C 1.7%, O–F 1.4%
1 ·2(1,3,5-FIB)	H–F 26.1%, H–N/N–H 15.8%, H–H 15.6%, H–I 10.9%, O–I 7.0%, N–I 6.3%, H–C/C–H 5.0%, H–O/O–H 4.8%, O–C 3.1%, Ni–I 2.6%, N–F 1.4%
1 •C ₂ I ₄	H–N/N–H 23.2%, H–I 21.9%, H–O/O–H 20.6%, H–H 17.2%, H–Ni/Ni–H 4.2%, H–C/C–H 3.2%, %, N–I 2.1%, C–N/N–C 2.0%, O–I 1.8%, N–Ni/Ni–N 1.2%, N–N 1.2%
$1 \cdot 2I_2$	H–I 26.3%, H–H 23.6%, H–N/N–H 16.6%, H–O/O–H 16.2%, N–I 7.3%, O–I 4.8%, C–I 2.8%, Ni–I 2.6%
2 ·2(1,2-FIB)	H–F 28.1%, H–N/N–H 21.3%, H–H 16.7%, H–I 9.0%, H–O/O–H 7.8%, C–H/H–C 7.0%, N–I 5.0%, C–F 3.8%, O–F 3.4%, H–Ni/Ni–H 3.1%, C–I 2.3%, C–C 2.4%, N–F 1.3%
2 ·2(1,4-FIB)	H–H 27.0%, H–F 19.5%, C–H/H–C 12.8%, H–I 7.1%, H–O/O–H 6.0%, H–N/N–H 4.8%, O–I 3.9%, N–I 3.7%, H–Ni/Ni–H 3.4%, C–F 2.9%, N–N 2.9%, C–N/N–C 2.2%, C–O/O–C 1.8%
2 ·2(1,3,5-FIB)	H–H 19.2%, H–F 18.8%, H–I 13.8%, C–H/H–C 11.6%, H–N/N–H 10.6%, H–O/O–H 9.1%, C–I 4.2%, O–I 1.9%, c–F 1.3%, H–Ni/Ni–H 1.2%, Ni–F 1.1%
2 ·2(C ₂ I ₄)	H–H 27.1%, H–I 21.9%, C–H/H–C 17.8%, H–O/O–H 7.7%, N–J 7.1%, H–N/N–H 6.2%, O–I 5.0%, C–I 3.2%, H–Ni/Ni–H 1.7%
3 ·2(1,2-FIB)	H–F 28.9%, H–H 18.2%, H–N/N–H 11.9%, H–O/O–H 11.7%, H–I 6.8%, C–H/H–C 6.2%, H–Ni/Ni–H 4.1%, N–I 3.3%, N–F 2.9%, O–F 2.2%, O–I 1.7%, C–F 1.1%
3 ·2(1,4-FIB)	H–H 25.7%, H–F 22.7%, H–N/N–H 14.2%, H–I 9.5%, H–O/O–H 5.1%, C–H/H–C 5.0%, H–Ni/Ni–H 4.6%, N–I 4.2%, O–I 3.7%, O–C 2.8%
3 ·2(1,3,5-FIB)	H–H 22.0%, H–F 21.4%, H–I 20.3%, H–C 7.3%, O–I 6.3%, N–C 5.5%, N–I 5.1%, O–F 3.0%, Ni–C 2.0%, N–F 2.0%, C–I 1.2%

Description of hydrogen bonds and other contacts

HB. In the crystal structures of all adducts, we identified the following HBs: N–H···F HB in 1·2(1,2-FIB), 1·(1,4-FIB), 3·2(1,2-FIB), and 3·2(1,4-FIB), C–H···F in 1·2(1,2-FIB), 1·(1,4-FIB), 1·2(1,3,5-FIB), 2·2(1,2-FIB), 2·2(1,4-FIB), 2·2(1,3,5-FIB), 3·2(1,2-FIB), and 3·2(1,4-FIB), N–H···I in 1·2I₂, and 3·2(1,3,5-FIB), C–H···I in 1·2I₂, 1·C₂I₄, 2·2(1,2-FIB), and 3·2(1,3,5-FIB), N–H···O= in 1·C₂I₄, C–H···O= in 1·C₂I₄, 2·2(1,2-FIB), 2·2(1,4-FIB), and 2·2(1,3,5-FIB), and C– H···N in 1·C₂I₄, 1·2(1,3,5-FIB), 2·2(1,3,5-FIB), and 3·2(1,2-FIB) (**Table S4**). As is follows from **Table S4**, HB with F are characteristic for adducts with perfluorinated arenes, while for adducts of I₂ and C₂I₄ HB with I are predominant. The strongest HB were found in adducts 1·2(1,3,5-FIB) (C2–H2C···F2S 2.373 Å), 1·C₂I₄ (N3–H3···O2 2.394 Å), and 2·2(1,2-FIB) (C16–H16···F5S 2.374 and C15–H15···O2 2.384 Å).

Co-crystals	Contact A-H•••B	A•••B, Å	∠(A–H•••B),°
$1 \cdot 2(1, 2 - FIB)$	N3–H3····F1S	3.272(5)	149.7
	C2–H2A····F2S	3.362(6)	142.7
	C3–H3C···F3S	3.387(7)	144.7
1 ·(1,4-FIB)	N3–H3···F2S	3.424(4)	163.8
	C2–H2B···F1S	3.393(4)	153.1
	C2-H2C···I1S	4.066(4)	178.2
1 ·2(1,3,5-FIB)	C2–H2A····F1S	3.392(5)	139.1
	C2–H2C···F2S	3.270(7)	151.9
	C3-H3C···N2	3.467(8)	138.5
$1 \cdot C_2 I_4$			
	N3–H3···O2	3.054(4)	133.9
	C3-H3C…O1	3.213(4)	127.4
	C3–H3A····I3S	3.836(3)	136.3
	C6–H6B…I3S	4.080(4)	160.6
	C6–H6A…N2	3.507(4)	144.9
	N8–H8…O1	3.236(4)	124.6
	C6-H6A…01	3.642(4)	162.4
$1 \cdot 2I_2$	N3–H3···I2S–I1S	3.926(3)	174.5
	C2–H2B····I2S–I1S	3.951(4)	165
2 ·2(1,2–FIB)	C7–H7A…O1	3.328(4)	153.9
	C15-H15O2	3.269(3)	158.8
	C8–H8…F1S	3.172(3)	117.9
	C16–H16…F5S	3.190(3)	146.2
	C2–H2A····F1S	3.450(3)	152
	C10–H10A…F6S	3.295(3)	136.1
	C2-H2C···I2S	3.972(3)	164.2

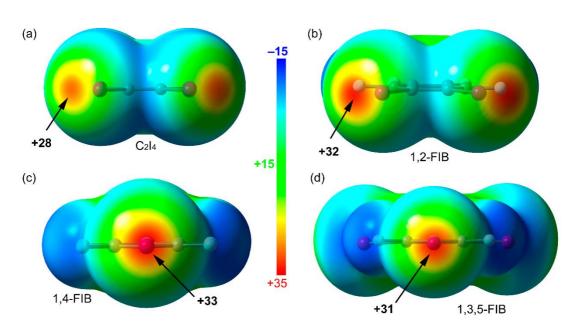
Table S4. Parameters of HB in the studied co-crystals.

$2 \cdot 2(1, 4 - FIB)$	С8-Н8…01	3.286(10)	130.2
	$C2-H2A\cdots$ F1S	3.219(6)	142.2
	$C7-H7\cdots F3S$	3.292(9)	132.2
	C6–H6···F2S	3.336(8)	132.2
$2 \cdot 2(1,3,5-\text{FIB})$	C2–H2B…O1	3.389(3)	161.9
	$C4-H4A\cdots N2$	3.441(3)	151
	C5–H5…F2S	3.210(3)	118.3
3 ·2(1,2-FIB)	N3–H3···F2S	3.131(5)	123.4
	C6–H6B····F2S	3.448(6)	142.6
	C5–H5B····F3S	3.648(4)	130.2
	C4–H4A····N1	3.506(6)	137
3 ·2(1,4-FIB)	N3–H3···F2S	3.248(3)	168
	C2–H2B····F1S	3.405(3)	171.7
3 ·2(1,3,5-FIB)	N3-H3···I1S	3.959(4)	160.7
	C6–H6A···I1S	4.027(3)	147.4

R is interatomic distance to vdW sum ratio, the sum of Bondi vdW radii $R_{vdW}(H) + R_{vdW}(O) = 2.72$, $R_{vdW}(H) + R_{vdW}(N) = 2.75$, $R_{vdW}(H) + R_{vdW}(F) = 2.67$, and $R_{vdW}(H) + R_{vdW}(I) = 3.18$ Å.

Table S5. Parameters of lone pair $-\pi$ interactions in the studied co-crystals.

¶


Co-crystals	Contact C····X–R	C····X, Å	R¶	∠(C····X–R),°	Comments
1 ·(1,4-FIB)	C3S…O1–N1	3.067(4)	0.95	164.4(2)	$lp(O)-\pi h(Ar_F)$ reported, Ref. ²
1 ·2(1,3,5-FIB)	C6S…I3S–C3S	3.598(5)	0.98	73.73(16)	$lp(I)-\pi h(Ar_F)$ reported, Ref. ¹
$1 \cdot C_2 I_4$	C1S···I4S–C2S	3.639(3)	0.99	138.30(11)	$lp(I)-\pi h(C_2I_4)$
$1 \cdot 2I_2$	C1…I1S–I2S	3.598(5)	0.98	82.13(6)	$lp(I)-\pi h(C_{NG})$ reported, Ref. ¹
2 ·2(1,2−FIB)	C1IIS-C1S C9I3S-C7S C11SI4S-C8S C5SI2S-C2S C10SO2-N5 C11SO2-N5	3.609(3) 3.648(3) 3.682(3) 3.664(3) 3.012(4) 3.099(4)	0.98 0.99 1.00 1.00 0.94 0.96	130.11(8) 123.47(8) 84.47(8) 81.08(8) 145.33(16) 157.46(16)	$\begin{array}{c} lp(I) - \pi h(C_{NG}) \\ lp(I) - \pi h(C_{NG}) \\ lp(I) - \pi h(Ar_F) \\ lp(I) - \pi h(Ar_F) \\ lp(O) - \pi h(Ar_F) \\ lp(O) - \pi h(Ar_F) \\ lp(O) - \pi h(Ar_F) \end{array}$
2 ·2(1,3,5-FIB)	C4S…O1–N1 C3S…O1–N1	3.132(3) 3.186(3)	0.97 0.99	86.30(13) 111.50(14)	$lp(O)-\pi h(Ar_F)$ reported, Ref. ²
3 ·2(1,4-FIB)	C3S…O1–N1 C4S…F1S–C2S	2.903(3) 3.076(3)	0.90	159.06(16) 109.07(14)	$\frac{lp(O)-\pi h(Ar_F)}{reported, Ref.^2}$ $\frac{lp(I)-\pi h(Ar_F)}{lp(I)-\pi h(Ar_F)}$

[¶]R is interatomic distance to vdW sum ratio, the sum of Bondi vdW radii $R_{vdW}(C) + R_{vdW}(O) = 3.22$, $R_{vdW}(C) + R_{vdW}(C) = 3.68$, and $R_{vdW}(C) + R_{vdW}(F) = 3.17$ Å.

Table S6. Parameters of Type II halogen–halogen interactions in the structures of $1 \cdot C_2I_4$ and $1 \cdot 2(1,3,5-FIB)$.

Co-crystals	Contact C–I····I–C	I…I, Å	R¶	∠(C–I····I),°	∠(I ··· I – C),°
$1 \cdot C_2 I_4$	C1S-I2S····I3S-C2S	3.7449(4)	0.95	166.14(9)	84.20(9)
1 •2(1,3,5- FIB)	C3S–I2S…I13–C1S	3.8234(6)	0.97	171.88(12)	111.50(14)

[¶]R is interatomic distance to vdW sum ratio, the sum of Bondi vdW radii $2R_{vdW}(I) = 3.96$ Å.

MEP surfaces of the XB donors

Figure S12. MEP surfaces (isosurface 0.001 a.u.) of the XB donors. The energies at selected points of the surfaces are given in kcal/mol.