Co-assembly of C_{13}-dipeptides: gelations from solutions and precipitations

Tan $\mathrm{Hu}^{\dagger, \hbar 1}$, Zhuo Zhang ${ }^{\dagger, \$ 1}$, Stephen Robert Euston ${ }^{\S}$, Mengjie Geng ${ }^{\dagger, \dagger \text { and Siyi Pan }}{ }^{* \dagger, \ddagger}$
\dagger College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan, Hubei 430070, PR China
\ddagger Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China
§Institute of Mechanical, Process \& Energy Engineering School of Engineering \& Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

1 Tan Hu and Zhuo Zhang contributed equally.

HPLC analysis and Mass analysis of \mathbf{C}_{13}-dipeptides

a)

b)

Figure S1 HPLC (a) and mass spectroscopy (b) of synthesized $\mathrm{C}_{13}-\mathrm{WD}$.

Figure S2 HPLC (a) and mass spectroscopy (b) of synthesized $\mathrm{C}_{13}-\mathrm{KW}$.

Figure S3. HPLC (a) and mass spectroscopy (b) of synthesized $\mathrm{C}_{13}-\mathrm{YK}$.
(a)
(b)

(c)

(d)

Figure S4. The atomic charges at $\mathrm{pH}=4.6$ of (a) $\mathrm{C}_{13}-\mathrm{KW}$, (b) $\mathrm{C}_{13}-\mathrm{YK}$, (c) $\mathrm{C}_{13}-\mathrm{WD}^{2-}$, and (d) C_{13}-WD ${ }^{-}$

Figure S5. The total energies of the individual systems for the 500 ns trajectories.

Figure S6. The details of FT-IR in $1500 \mathrm{~cm}^{-1} \sim 1800 \mathrm{~cm}^{-1}$ of $\mathrm{C}_{13}-\mathrm{WD}, \mathrm{C}_{13}-\mathrm{KW}, \mathrm{C}_{13}-\mathrm{YK}, \mathrm{C}_{13}-$ $\mathrm{WD} / \mathrm{C}_{13}-\mathrm{KW}$ and $\mathrm{C}_{13}-\mathrm{WD} / \mathrm{C}_{13}-\mathrm{YK}$.

Figure S7. The charge distribution of $\mathrm{C}_{13}-\mathrm{KW}$ at $\mathrm{pH}=4.6$.

Figure S8. The charge distribution of $\mathrm{C}_{13}-\mathrm{YK}$ at $\mathrm{pH}=4.6$.

Figure S9. Molecular contributions to the hydrophobic (as revealed by Lennard-Jones potentials, solid lines) and electrostatic (as revealed by Coulomb potentials, dashed lines) interactions, ε, for various molecules and systems.

Table S1. Lennard-Jones potentials and the Coulomb potentials averaged from the last 100 ns of the trajectories for a single C_{13}-dipeptide molecule.

Name	$\mathrm{C}_{13}-\mathrm{KW}$	$\mathrm{C}_{13}-\mathrm{YK}$	$\mathrm{C}_{13}-\mathrm{WD}^{2-}$	$\mathrm{C}_{13}-\mathrm{WD}^{-}$
Lennard-Jones potential $(\mathrm{kJ} / \mathrm{mol})$	-54.82 ± 5.09	-32.11 ± 4.54	-34.26 ± 6.06	-35.98 ± 5.98
Coulomb potential $(\mathrm{kJ} / \mathrm{mol})$	-799.75 ± 25.48	-951.29 ± 25.91	-521.54 ± 21.16	-640.55 ± 48.33

