Co-assembly of C_{13} -dipeptides: gelations from solutions and precipitations Tan Hu^{†,‡1}, Zhuo Zhang^{†,‡1}, Stephen Robert Euston §, Mengjie Geng^{†,‡}and Siyi Pan^{*†,‡} †College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan, Hubei 430070, PR China ‡ Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China §Institute of Mechanical, Process & Energy Engineering School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom 1 Tan Hu and Zhuo Zhang contributed equally. ## HPLC analysis and Mass analysis of C₁₃-dipeptides **Figure S1** HPLC (a) and mass spectroscopy (b) of synthesized C_{13} -WD. Figure S2 HPLC (a) and mass spectroscopy (b) of synthesized C_{13} -KW. **Figure S3.** HPLC (a) and mass spectroscopy (b) of synthesized C_{13} -YK. **Figure S4.** The atomic charges at pH=4.6 of (a) C_{13} -KW, (b) C_{13} -YK, (c) C_{13} -WD²-, and (d) C_{13} -WD⁵. **Figure S5.** The total energies of the individual systems for the 500 ns trajectories. **Figure S6.** The details of FT-IR in 1500cm⁻¹~1800cm⁻¹of C_{13} -WD, C_{13} -KW, C_{13} -YK, C_{13} -WD/ C_{13} -KW and C_{13} -WD/ C_{13} -YK. **Figure S7.** The charge distribution of C_{13} -KW at pH=4.6. **Figure S8.** The charge distribution of C_{13} -YK at pH=4.6. **Figure S9.** Molecular contributions to the hydrophobic (as revealed by Lennard-Jones potentials, solid lines) and electrostatic (as revealed by Coulomb potentials, dashed lines) interactions, ε , for various molecules and systems. **Table S1.** Lennard-Jones potentials and the Coulomb potentials averaged from the last 100 ns of the trajectories for a single C_{13} -dipeptide molecule. | Name | C ₁₃ -KW | C ₁₃ -YK | C_{13} -WD ² - | C ₁₃ -WD | |----------------------------------|---------------------|---------------------|-----------------------------|---------------------| | Lennard-Jones potential (kJ/mol) | -54.82±5.09 | -32.11±4.54 | -34.26±6.06 | -35.98±5.98 | | Coulomb
potential
(kJ/mol) | -799.75±25.48 | -951.29±25.91 | -521.54±21.16 | -640.55±48.33 |