Supporting Information

Red Algae-Derived Carrageenan Coatings for Marine Antifouling Applications

Dahee Kim and Sung Min Kang*

Department of Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea

* Corresponding Author

E-mail: smk16@chungbuk.ac.kr

Number of pages: 4

Number of table: 1

Number of figures: 4

	Polysaccharide	Solid substrate	Coating layers	External equipment
Previous approach	Limited to carboxyl- containing polysaccharides	Specific substrates	Single layer coating	Not required
Current approach	Not limited to carboxyl- containing polysaccharides	Various substrates	Thickness- controllable multilayer coating	Required

Table S1. Previous and current approaches to fabricate marine antifouling polysaccharide coatings.

Figure S1. FT-IR spectra of MPN-coated and MPN/ λ -CAR-coated Ti/TiO₂ surfaces. MPN, metal-polyphenol network; CAR, carrageenan.

Figure S2. AFM images of (a) uncoated, (b) MPN-coated, and (c) MPN/ λ -coated Ti/TiO₂ surfaces. MPN, metal-polyphenol network; CAR, carrageenan.

Figure S3. Relative thickness change of MPN/ λ -CAR coatings after acid (10 mM HCl), alkali (10 mM NaOH), EDTA, and sonication treatments. MPN, metal-polyphenol network; CAR, carrageenan.

Figure S4. XPS spectra (a and c) and atomic composition (%) (b and d) of MPN-coated Nylon and MPN-coated Glass surfaces before and after immersion in seawater for one week.