Distinct NO₂ effects on Cu-SSZ-13 and Cu-SSZ-39 in the selective catalytic reduction of NO_x with NH₃

Na Zhu^{a,d}, Yulong Shan^c, Wenpo Shan^{a,b}*, Yu Sun^{c,d}, Kuo Liu^c, Yan Zhang^{a,b}, Hong He^{a,c,d}

^a Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

^b Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China

^c State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^d University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding Author

Tel: +86 592 6190563; Fax: +86 592 6190990;

E-mail: wpshan@iue.ac.cn

Summary: Supporting information consists of 21 pages with 1 table and 13 figures.

1 Experimental

1.1 Activity tests

The SCR activity tests were carried out in a fixed-bed quartz flow reactor at atmospheric pressure. Before the tests, the catalysts were pressed, crushed and sieved to 40–60 mesh. The reaction conditions were controlled as follows: 500 ppm NO for standard SCR (or [NO] = $[NO_2]$ = 250 ppm for fast SCR), 500 ppm NH₃, 5 vol. % O₂, N₂ balance, and 500 mL/min total flow rate. The concentrations of N-containing effluent gases (NO, NH₃, NO₂, and N₂O) were continuously analyzed by an Antaris IGS gas analyzer (Thermo Fisher) equipped with a heated, low-volume multiple-path gas cell. The FTIR spectra were collected throughout and the results were recorded when the SCR reaction reached steady state.

1.2 Characterization

The elemental composition was determined with an inductively coupled plasma spectrometer (OPTIMA 7000DV) with a radial view of the plasma.

The morphology of the catalyst was examined by scanning electron microscopy (SEM) using a S4800 electron microscope. Transmission electron microscope (TEM) imaging and mapping tests were carried out on a JEOL JEM-ARM2100F electron microscope operating at 200 kV.

The surface areas and pore characteristics of the samples were obtained by N_2 adsorption/desorption analysis at -196 °C using a physisorption analyzer (MicrotracBEL). Prior to the N_2 physisorption, the catalysts were degassed at 300 °C for 2 h.

The H_2 temperature programmed reduction (H_2 -TPR) and the temperature programmed desorption of NH_3 (NH_3 -TPD) experiments were performed on a Micromeritics Autochem 2920

system. Prior to analysis, the samples were pretreated at 300 °C in a flow of Ar (50 mL·min⁻¹) for 1 h and cooled down to the room temperature. For H₂-TPR, the samples were heated from room temperature to 1000 °C in 10 vol. % H₂/Ar gas flow of 50 mL/min at a heating rate of 10 °C·min⁻¹, and H₂ consumption was monitored with a TCD detector. For NH₃-TPD, the samples were exposed to 2500 ppm NH₃/He at 50 °C for 1 h, followed by He purge for another 1 h. Finally, the temperature was raised to 650 °C at the rate of 10 °C·min⁻¹ and the signal was detected by a TCD detector.

NO₂-TPD results were obtained as part of the NH₃-SCR activity test. A 50-mg sample of catalyst was pre-treated in air with 20 % O_2/N_2 for 1 h at 500 °C and then cooled down to 30 °C. Afterwards, the sample was exposed to 500 ppm NO₂/N₂ for 1 h, followed by N₂ purging for another 1 h. Finally, the temperature was raised to 600 °C at the rate of 10 °C·min⁻¹ and the production of NO_x was detected by an Antaris IGS gas analyzer.

The pyridine adsorption infrared (Py-FTIR) experiments were performed on a Frontier FT-IR spectrometer. The samples were dehydrated at 350 °C for 2 h under a vacuum of 1.33×10^{-3} Pa, and then the adsorption of pure pyridine vapor was carried out at room temperature for 30 min. After reaching equilibrium, the Py-adsorbed system was evacuated for 0.5 h at 200 °C and 350 °C, respectively, and the corresponding Py-IR spectra were recorded.

In situ diffuse reflectance infrared Fourier transform spectra (*in situ* DRIFTS) were collected on a FTIR spectrometer (Nicolet IS50) equipped with a Smart Collector and an MCT/A detector cooled by liquid nitrogen. The reaction temperature was controlled precisely by an Omega programmable temperature controller. The catalysts were pretreated in 20% O_2/N_2 flow at 500 °C for 30 min, and then cooled down to the desired temperature. The background spectra were collected in flowing N_2 and automatically subtracted from the sample spectra. The reaction conditions were controlled as follows: 300 mL/min total flow rate, 500 ppm NH₃, 500 ppm NO_x, 5% O₂, and N₂ balance. For the experiments on NH₃ or NO_x adsorption, the sample was saturated with NH₃/N₂ or NO_x/N₂ for 40 min, and then purged with N₂ for 30 min. All spectra were recorded by accumulating 100 scans with a resolution of 4 cm⁻¹.

2 Results

Figure S1. NH₃-SCR performance of (a) H-SSZ-13 and (b) H-SSZ-39 zeolites. Reaction conditions: 500 ppm NO_x (500 ppm NO for standard SCR or 250 ppm NO + 250 ppm NO₂ for fast SCR), 500 ppm NH₃, $[O_2] = 5$ vol. %, N₂ balance, and GHSV = 400,000 h⁻¹

To investigate the effects of NO₂, activity tests were conducted on H-SSZ-13 and H-SSZ-39 under standard SCR and fast SCR conditions, respectively, and the results are shown in Figure S1. In the absence of NO₂, there was almost no NO_x conversion observed for H-SSZ-13 or H-SSZ-39, indicating that only the standard SCR reaction occurred on Cu active sites, i.e., NO only reacted with the NH₃ species adsorbed on Cu sites to form N₂. However, under fast SCR condition, the NO conversion sharply increased at temperatures above 250 °C, indicating that the fast SCR reaction can take place at the acid sites in the absence of Cu species. The NO conversion was still lower than the NO₂ conversion, which may be due to the accumulation or partial decomposition of NH₄NO₃, resulting in excessive consumption of NH₄NO₃.

Figure S2. TPD results after NH₃ and NO₂ adsorption at 130 °C for Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39. Adsorption conditions: $[NO_2] = [NH_3] = 500$ ppm, N₂ balance, total flow rate = 500 mL/min. Reaction conditions: heating rate = 10 °C min⁻¹

Figure S2 shows the TPD results after adsorption of NH_3 and NO_2 . The decomposition temperatures of NH_4NO_3 on $Cu_{1.8}$ -SSZ-13 and $Cu_{1.8}$ -SSZ-39 were almost the same, but the amounts of N_2O and NH_3 generated on $Cu_{1.8}$ -SSZ-13 were both much higher than those on $Cu_{1.8}$ -SSZ-39, due to more NH_4NO_3 accumulation on $Cu_{1.8}$ -SSZ-13.

Figure S3. *In situ* DRIFTS results of NH₃ adsorption at 200 °C over (a) Cu_{1.8}-SSZ-13 and (b) Cu_{1.8}-SSZ-39 and (c) IR spectra of T-O-T vibration regions (1000-850 cm⁻¹) after NH₃

adsorption.

The *in situ* DRIFTS results of NH₃ adsorption on Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39 catalysts are shown in Figure S3. The same NH₃ adsorbed species were observed on Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39. The band at 1446 cm⁻¹ was assigned to NH₄⁺ adsorbed at the Brønsted acid sites, and the bands at 1617 and 1264 cm⁻¹ were attributed to NH₃ species coordinated at the Lewis acid sites.¹ The bands at 3372, 3322 and 3273 cm⁻¹ were attributed to the N-H stretching vibration of NH₄⁺, and the band at 3184 cm⁻¹ was due to NH₃ adsorbed on Cu⁺.² The band at 897 cm⁻¹ was associated with the T-O-T framework vibration perturbed by Cu cations.³ The consumption bands at 3609 and 3576 cm⁻¹ were attributed to the depletion of Si-OH-A1 by NH₃.⁴ Specifically, the bands at 3609 and 3576 cm⁻¹ were assigned to Si-OH-Al groups positioned at cages and at 6MR, respectively.⁵ According to the intensity of the consumption band at 3609 cm⁻¹, Cu_{1.8}-SSZ-39 had more Si-OH-Al groups positioned at cages.

Figure S3c showed the IR spectra in the zeolite T-O-T bond vibration region after NH₃ adsorption on the Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39. The negative peaks at 942 and 897 cm⁻¹ observed on the two catalysts were assigned to the zeolite T-O-T vibrations perturbed by Cu(OH)⁺- Z next to 8-membered ring (8MR) and Cu²⁺-2Z next to the 6-membered ring (6MR), respectively. Specifically, the band at 942 cm⁻¹ was very weak, while the band at 897 cm⁻¹ was relatively strong, indicating that the main Cu species for both Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39 were Cu²⁺ in 6MR, consistent with the H₂-TPR results.

Figure S4. *In situ* DRIFTS results of NO + O₂ adsorption at 200 °C over (a) Cu_{1.8}-SSZ-13 and (b) Cu_{1.8}-SSZ-39.

The *in situ* DRIFTS results of NO + O₂ adsorption on Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39 catalysts are shown in Figure S4. The band at 2190 (2184) cm⁻¹ may be assigned to NO⁺ species. The band at 1622 cm⁻¹ was attributed to bridge nitrate, and the bands at 1597 and 1575 cm⁻¹ were attributed to bidentate nitrate.⁶ After exposure to NO + O₂ and N₂ purging, the surface species on Cu_{1.8}-SSZ-13 was mainly NO⁺ species and the peak of nitrate was very weak. However, after the introduction of NO + O₂ to Cu_{1.8}-SSZ-39 and N₂ purging, the major species on the surface of Cu_{1.8}-SSZ-39 were bridge nitrate and bidentate nitrate, while the adsorption peak of NO⁺ species was very weak, indicating that the adsorbed NO_x species on the surfaces of Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39 were different.

Figure S5. *In situ* DRIFTS results of NO₂ + O₂ adsorption at 200 °C over (a) Cu_{1.8}-SSZ-13 and (b) Cu_{1.8}-SSZ-39.

Figure S5 shows the *in situ* DRIFTS results of $NO_2 + O_2$ adsorption results of $Cu_{1.8}$ -SSZ-13 and $Cu_{1.8}$ -SSZ-39 catalysts at 200 °C. Bands assigned to NO⁺ species (2190 cm⁻¹), bridge nitrate (1622 and 1609 cm⁻¹) and bidentate nitrate (1597 and 1575 cm⁻¹) were observed. For both $Cu_{1.8}$ -SSZ-13 and $Cu_{1.8}$ -SSZ-39, the adsorption behaviors of $NO_2 + O_2$ were similar to those of NO + O_2 . After the adsorption of $NO_2 + O_2$, the main surface species on $Cu_{1.8}$ -SSZ-13 was the NO⁺ species, while the main species on $Cu_{1.8}$ -SSZ-39 were bridge nitrate and bidentate nitrate.

Figure S6. NO₂-TPD results of Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39. Adsorption conditions: $[NO_2] = 500 \text{ ppm}$, N₂ balance, 500 mL/min. Reaction conditions: heating rate = 10 °C·min⁻¹

The NO₂-TPD results of Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39 are shown in Figure S6. Two desorption peaks of NO_x species were observed for both Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39. The peak at 100 °C was attributed to physically adsorbed NO_x or monodentate nitrate,^{7,8} while the peak at 325 °C may be assigned to bidentate nitrate and bridge nitrate.^{9,10} In contrast, the amount of monodentate nitrate on Cu_{1.8}-SSZ-13 was more than that on Cu_{1.8}-SSZ-39, while the amounts of bidentate nitrate and bridge nitrate on Cu_{1.8}-SSZ-39, while the amounts of in accordance with the *in situ* DRIFTS results of NO_x adsorption (Figure S4 and Figure S5).

Figure S7. In situ DRIFTS results of NO + O_2 adsorption after the adsorption of NH₃ and NO₂ at 200 °C over (a) Cu_{1.8}-SSZ-13 and (b) Cu_{1.8}-SSZ-39

When NO + O_2 was introduced to the Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39 with pre-adsorbed NH₃ and NO₂ (Figure S7), the reaction process was almost the same as for the introduction of NO (without O₂), with NO rapidly reacting with NH₄NO₃ on Cu_{1.8}-SSZ-39.

Figure S8. In situ DRIFTS results of TPD after the adsorption of NH_3 and NO_2 at 30 °C over (a) Cu_{1.8}-SSZ-13 and (b) Cu_{1.8}-SSZ-39

Figure S8 shows the *in situ* DRIFTS results of TPD after NH₃ and NO₂ adsorption on Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39. After NH₃ and NO₂ were adsorbed on Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39 at 30 °C, typical bands at 1485, 1256, 3279, 1569, 1589, 3038, 2822, 3609, and 897 cm⁻¹ appeared. The bands at 1485, 1256 and 3279 cm⁻¹ were assigned to NH₃ adsorbed species;^{1,2} the negative bands at 3609 and 897 cm⁻¹ were attributed to the consumption of Si-OH-Al by NH₃ and the T-O-T framework vibration by Cu, respectively;^{3,4} the bands at 1569 and 1589 cm⁻¹ were attributed to bidentate nitrate species.⁶ The bands at 3038 and 2822 cm⁻¹ could be attributed to the NH₄⁺ from NH₄NO₃,¹¹ confirming the formation of NH₄NO₃ on these two catalysts.

With the increase of temperature, the intensity of each adsorption peak decreased gradually, due to the decomposition of NH_4NO_3 and the desorption of NH_3 . On $Cu_{1.8}$ -SSZ-13, the band at 1485 cm⁻¹ significantly decreased above 300 °C and redshifted to 1441 cm⁻¹, which may be due to the desorbed NH_3 being physically adsorbed on NH_4^+ .¹² Moreover, the band at 1485 cm⁻¹ on $Cu_{1.8}$ -SSZ-39 significantly diminished and redshifted to 1441 cm⁻¹ at 200 °C.

Figure S9. SEM of (a, b) Cu_{1.8}-SSZ-13 and (c, d) Cu_{1.8}-SSZ-39

Figure S11. H_2 -TPR results of $Cu_{1.8}$ -SSZ-13 and $Cu_{1.8}$ -SSZ-39

Figure S12. NH₃-TPD results of Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39

Figure S13. Py-FTIR spectra of Cu_{1.8}-SSZ-13 and Cu_{1.8}-SSZ-39 catalysts at (a) 200 °C and (b) 350 °C

The Py-FTIR was carried out to investigate the surface acid sites, and the results are shown in Figure S13. The Py-FTIR spectra at 200 °C and 350 °C correspond to total acid sites as well as total moderate and strong acid sites. The bands at ca. 1540 and 1450 (1455) cm⁻¹ are assigned to the adsorption of pyridine on Brønsted (B) and Lewis (L) acid sites, respectively.^{13,14}

Samples	ABET	V	Cu content	Si/Al
	(m^2/g)	(cm^3/g)	(%)	molar ratio
Cu _{1.8} -SSZ-13	718	0.31	1.79	4.5
Cu _{1.8} -SSZ-39	650	0.26	1.85	8.2

Table S1. Specific surface areas and Cu contents of $Cu_{1.8}$ -SSZ-13 and $Cu_{1.8}$ -SSZ-39

References

(1) Long, R. Q.; Yang, R. T. Reaction mechanism of selective catalytic reduction of NO with NH₃ over Fe-ZSM-5 catalyst. *J. Catal.* **2002**, *207* (2), 224–231.

(2) Wang, D.; Zhang, L.; Kamasamudram, K.; Epling, W. S. In situ-DRIFTS study of selective catalytic reduction of NO_x by NH_3 over Cu-exchanged SAPO-34. *ACS Catal.* **2013**, *3* (5), 871–881.

(3) Wang, L.; Li, W.; Qi, G.; Weng, D. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH₃. *J. Catal.* **2012**, *289* (0), 21–29.

(4) Zhu, N.; Shan, W.; Shan, Y.; Du, J.; Lian, Z.; Zhang, Y.; He, H. Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO_x with NH₃. *Chem. Eng. J.* **2020**, *388*, 124250, DOI: 10.1016/j.cej.2020.124250.

(5) Ryu, T.; Kim, H.; Hong, S. B. Nature of active sites in Cu-LTA NH₃-SCR catalysts: A comparative study with Cu-SSZ-13. *Appl. Catal. B* **2019**, *245*, 513–521.

(6) Ruggeri, M. P.; Nova, I.; Tronconi, E.; Pihl, J. A.; Toops, T. J.; Partridge, W. P. In-situ DRIFTS measurements for the mechanistic study of NO oxidation over a commercial Cu-CHA catalyst. *Appl. Catal. B* **2015**, *166–167* (0), 181–192.

(7) Liu, F.; Asakura, K.; He, H.; Liu, Y.; Shan, W.; Shi, X.; Zhang, C. Influence of calcination temperature on iron titanate catalyst for the selective catalytic reduction of NO_x with NH₃. *Catal. Today* **2011**, *164* (1), 520–527.

(8) Ma, L.; Li, J.; Arandiyan, H.; Shi, W.; Liu, C.; Fu, L. Influence of calcination temperature on Fe/HBEA catalyst for the selective catalytic reduction of NO_x with NH₃. *Catal. Today* **2012**, *184*

(1), 145-152.

(9) Liu, F.; He, H.; Zhang, C.; Shan, W.; Shi, X. Mechanism of the selective catalytic reduction of NO_x with NH₃ over environmental-friendly iron titanate catalyst. *Catal. Today* 2011, *175* (1), 18–25.

(10) Xiong, Z.; Wu, C.; Hu, Q.; Wang, Y.; Jin, J.; Lu, C.; Guo, D. Promotional effect of microwave hydrothermal treatment on the low-temperature NH₃-SCR activity over iron-based catalyst. *Chem. Eng. J.* **2016**, *286*, 459–466.

(11) Xie, L.; Liu, F.; Liu, K.; Shi, X.; He, H. Inhibitory effect of NO₂ on the selective catalytic reduction of NO_x with NH₃ over one-pot-synthesized Cu-SSZ-13 catalyst. *Catal. Sci. Technol.* **2014**, *4* (4), 1104–1110.

(12) Giordanino, F.; Borfecchia, E.; Lomachenko, K. A.; Lazzarini, A.; Agostini, G.; Gallo, E.; Soldatov, A. V.; Beato, P.; Bordiga, S.; Lamberti, C. Interaction of NH₃ with Cu-SSZ-13 catalyst: a complementary FTIR, XANES, and XES study. *J. Phys. Chem. Lett.* **2014**, *5* (9), 1552–1559.

(13) Guo, L.; Fan, Y.; Bao, X.; Shi, G.; Liu, H. Two-stage surfactant-assisted crystallization for enhancing SAPO-11 acidity to improve n-octane di-branched isomerization. *J. Catal.* **2013**, *301*, 162–173.

(14) Emeis, C. A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. *J. Catal.* **1993**, *141*, 347–354.