Supporting Information

High Selectivity of an α -Conotoxin LvIA Analog for $\alpha 3\beta 2$ Nicotinic Acetylcholine Receptors is Mediated by $\beta 2$ Functionally Important Residues

Xiaopeng Zhu,^{1,2#} Si Pan,^{3#} Manyu Xu,³ Lu Zhang,² Jinfang Yu,³ Jinpeng Yu,¹ Yong Wu,¹ Yingxu Fan,⁴ Haonan Li,² Igor E. Kasheverov,^{5,6} Denis S. Kudryavtsev,⁵ Victor I. Tsetlin,^{5,7} Yi Xue,⁴ Dongting Zhangsun,^{1,2} Xinquan Wang^{3*} and Sulan Luo^{1,2*}

¹ Medical School, Guangxi University, Nanning, 530004, China

² Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;

³ The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China

⁴ Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.

⁵ Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.

⁶ Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Street 8, bld. 2, 119991 Moscow, Russia.

⁷ PhysBio of MePhi, Kashirskoe Ave.31, 115409 Moscow, Russia

Table of contents

Figure S1. HPLC and Mass spectra profile of α-Conotoxin LvIA analogs.	p. S3
Figure S2. Three LvIA analogs have no potency at rat α 3 β 2 and α 3 β 4 nAChRs.	p. S4
Figure S3. Bar presentation of the change in potency of each analog of α-Conotoxin LvIA for <i>Ac</i> -AChBP.	p. S5
Figure S4. [N9A]LvIA blocks the rat α 3 β 2[S168I] nAChR mutant.	p. S6
Table S1. Contacting amino acid residues between α-CTx and Ac-AChBP with a distance cutoff 4.0 Å.	p. S7
Table S2. Modeled contacts of α -CTxs [N9A]LvIA and [D11A]LvIA with $r\alpha 3\beta 2$ and $r\alpha 3\beta 4$, respectively.	p. S8
Table S3. Sequences of primers used to construct point mutants.	p. S9
Table S4. Data collection and refinement statistics.	p. S10

Figure S1. HPLC and Mass spectra profile of α -Conotoxin LvIA analogs. The LvIA analogs were analyzed on a reversed-phase analytical Vydac C18 HPLC using a linear gradient of 5% to 40% buffer (0.5% TFA and 90% acetonitrile) over 30 min. Absorbance was monitored at 214 nm. The molecular weight was determined by electrospray ionization mass spectrometry (ESI-MS)

Figure S2. Three LvIA analogs have no potency at rat $\alpha 3\beta 2$ and $\alpha 3\beta 4$ nAChRs. *Xenopus* oocytes expressing $\alpha 3\beta 2$ and $\alpha 3\beta 4$ nAChRs were voltage clamp at -70 mV and subjected to a 2-s pulse of 100 μ M ACh every minute as described under Experimental Section. In each series, the Control represents control response to ACh, following which the oocytes were exposed to 10 μ M LvIA analogs for 5 min, respectively. The perfusion and ACh pulses were then resumed to measure the response to ACh during washout of LvIA analogs. Inhibition of currents with [H5A]LvIA (i), [P6A]LvIA (ii) and [H12A]LvIA (iii) on the $\alpha 3\beta 2$ (A) and $\alpha 3\beta 4$ (B) nAChRs, respectively.

Figure S3. Bar presentation of the change in potency of each analog of α -Conotoxin LvIA for *Ac*-AChBP. This change was evaluated as logarithm of ratio of IC₅₀ values for respective analog and LvIA. A decrease in affinity to *Ac*-AChBP for concrete analog as referred to LvIA is represented with bars below red arrow; and an increase—below green arrow.

Figure S4. [N9A]LvIA blocks the rat $\alpha 3\beta 2$ [S168I] nAChR mutant. *Xenopus* oocytes expressing $\alpha 3\beta 2$ [S168I] nAChR mutant was voltage clamp at -70 mV and subjected to a 2-s pulse of 100 μ M ACh every minute as described under Experimental Section. In each series, the Control represents control response to ACh, following which the oocytes were exposed to 10 nM [N9A]LvIA for 5 min. The perfusion and ACh pulses were then resumed to measure the response to ACh during washout of [N9A]LvIA. Inhibition of currents with [N9A]LvIA on the $\alpha 3\beta 2$ [S168I] mutant **A** and WT $\alpha 3\beta 2$ **B**; **C** represents concentration-response analysis for inhibition of $\alpha 3\beta 2$ [S168I] nAChRs mutant by [N9A]LvIA.

AChBP	[N9A]LvIA	[D11A]LvIA			
Principal side					
Tyr-91		His-5			
Trp-145	Ala-7	Pro-6, Ala-7			
Ser-148	Asp-11				
Glu-151	Asp-11				
Tyr-186	His-5	Gly-1, His-5			
Ser-187		Gly-1			
Cys-188	Cys-2	Cys-2			
Cys-189	Cys-2, Cys-8, His-12	His-12			
Glu-191	Asp-11, His-12	His-12			
Tyr-193	Ala-7, Cys-8, Asp-11	Ala-7, Cys-8, His-12			
Complementary side					
Thr-34	Cys-3	Cys-3			
Gln-55	Cys-3, Cys-16	Asn-9, Cys-16			
Arg-57	Ala-9, Val-10, Pro-13	Pro-13-Cys-16			
Asp-75	Asp-11				
Arg-77	Asp-11				
Met-114	Ala-9	Ala-9, Val-10			
Asp-157	Cys-16	Cys-16			
Asp-162	Cys-3, Ser-4	Cys-3, Ser-4			
Ser-164	Gly-1, Ser-4	Gly-1, Ser-4			
Ser-165	Ser-4, His-5	Ser-4			

Table S1. Contacting amino acid residues between α-CTx and Ac-AChBP with a distance cutoff 4.0 Å.

[N9A]Lv	A-ra3β2 model	[N9A]L	vIA-rα3β4 model	[D11A]L	vIA-ra3β2 model	[D11A]I	.vIA-ra3β4 model
ra3β2	[N9A]LvIA	ra3β4	[N9A]LvIA	ra3β2	[D11A]LvIA	ra3β4	[D11A]LvIA
Principal side							
Trp-150	Ala-7	Trp-150	Ala-7	Tyr-94	His5	Tyr-94	His-5
Asp-153	Asp-11	Asp-153	Asp-11	Trp-150	Ala-7	Trp-150	Ala-7
Tyr-191	His-5	Tyr-191	His-5	Tyr-191	His-5	Tyr-191	Gly-1, His-5
Glu-196	His-12	Glu-196	His-12	Glu-196	His-12	Glu-196	His-12
Tyr-198	Ala-7, Asp-11, His-12	Tyr-198	Asp-11, His-12	Tyr-198	His-12	Tyr-198	His-12
			Complex	nentary side	2		
Lys-79	Asp-11	Lys-59	Cys-16	Lys-79	Ala-11	Lys-59	Asn-9, Cys-16
Arg-81	Asp-11	Arg-81	Asp-11	Lys-163	Pro-13, Cys-16	Arg-113	Val-10, Ala-11
Val-111	Val-10	Arg-113	Val-10, Asp-11	Asp-170	Gly-1	Gln-119	Val-10, Pro-13
Phe-119	Ala-9	Gln-119	Val-10	Asp-171	Ser-4	Lys-163	Cys-16
Lys-163	Pro-13, Cys-16	Lys-163	Pro-13, Ile-15			Asp-170	Gly-1
Ser-168	Gly-1, Ser-4	Asp-170	Gly-1				
Asp-170	Gly-1	Asp-171	Ser-4, His-5				
Asp-171	His-5						

Table S2. Modeled contacts of α -CTxs [N9A]LvIA and [D11A]LvIA with $r\alpha 3\beta 2$ and $r\alpha 3\beta 4$, respectively.

No.	Mutant	Primer (5'-3')		
1	82(E10(V)	FM: GCATGTACGAAGTCTCCGTCTATTCCAATGCTGTG		
1	β2(F106V)	RM: CACAGCATTGGAATAGACGGAGACTTCGTACATGC		
2	β2(S108T)	FM: CATGTACGAAGTCTCCTTCTATACGAATGCTGTGGTCTCCTATGATG		
2		RM: CATCATAGGAGACCACAGCATTCGTATAGAAGGAGACTTCGTACATG		
2	R2(A 11037)	FM: GTCTCCTTCTATTCCAATGTTGTGGTCTCCTATGATGGC		
3	p2(A110V)	RM: GCCATCATAGGAGACCACAACATTGGAATAGAAGGAGAC		
4	4 β2(S113R)	FM: CAATGCTGTGGTCCGCTATGATGGCAGC		
4		RM: GCTGCCATCATAGCGGACCACAGCATTG		
5	R2(V1145)	FM: CCAATGCTGTGGTCTCCTCTGATGGCAGCATCTTTTG		
3	p2(¥1148)	RM: CAAAAGATGCTGCCATCAGAGGAGACCACAGCATTGG		
6	R2(D115N)	FM: CAATGCTGTGGTCTCCTATAACGGCAGCATCTTTTGGCTAC		
0	p2(D115N)	RM: GTAGCCAAAAGATGCTGCCGTTATAGGAGACCACAGCATTG		
7	R2(D165D)	FM: GGTGCTCAAAAGTCCTGTGGCCAGTCTG		
,	p2(D103F)	RM: CAGACTGGCCACAGGACTTTTGAGCACC		
Q	R2(V146T)	FM: GGTGCTCAAAAGTGATACGGCCAGTCTGGATGAC		
0	β2(V1661)	RM: GTCATCCAGACTGGCCGTATCACTTTTGAGCACC		
0	β2(S168I)	FM: CTCAAAAGTGATGTGGCCATTCTGGATGACTTCACACCC		
9		RM: GGGTGTGAAGTCATCCAGAATGGCCACATCACTTTTGAG		
10	β2(L169M)	FM: CAAAAGTGATGTGGCCAGTATGGATGACTTCACACCCA		
10		RM: CTGGGTGTGAAGTCATCCATACTGGCCACATCACTTTTG		

Table S3. Sequences of primers used to construct point mutants

Data collection	Ac-AChBP/LvIA[N9A]	Ac-AChBP/LvIA[D11A]		
Beamline	SSRF BL17U	TPS 05A		
Wavelength	0.9796 Å	2.26-0.62 Å		
Space group	$P 4_1 2_1 2$	P 65		
Cell dimensions				
a, b, c (Å)	207.441, 207.441, 114.061	173.08, 173.08, 118.337		
α, β, γ (°)	90, 90, 90	90, 90, 120		
Resolution (Å)	50.00-3.00	50.00-2.89		
${}^{\mathrm{a}}R_{merge}$	0.265 (1.752)	0.081(0.759)		
${}^{\mathrm{b}}R_{pim}$	0.079 (0.504)	0.048(0.447)		
$^{c}CC_{1/2}$ of the highest resolution shell	0.987 (0.747)	0.640		
Ι/δΙ	9.376 (1.612)	15.817(1.824)		
Completeness (%)	99.99 (100)	98.8(100)		
Redundancy	13.2	3.7		
Refinement				
Resolution (Å)	46.39-2.998 (3.105-2.998)	39.22-2.803(2.903-2.803)		
No. reflections	48357(4859)	49433(4901)		
${}^{\mathrm{d}}R_{\mathrm{work}}/R_{\mathrm{free}}$ (%)	0.2635/0.3189	0.2045/0.2681		
No. atoms	8820	8818		
macromolecules	8815	8813		
ligands	5	5		
Wilson B-factor (Å ²)	56.07	84.58		
Average B-factors (Å ²)	59.84	83.05		
macromolecules	59.83	83.04		
ligands	80.77	100.79		
r.m.s. deviations				
Bond lengths (Å)	0.013	0.012		
Bond angles (°)	1.54	1.32		
Ramachandran plot (%)				
Favored	97	92		
Allowed	3	7.2		
Outlier	0.091	0.55		

Table S4. Data collection and refinement statistics

NOTE. ${}^{a}R_{merge} = \sum_{hkl} \sum_{j} |I_{j}(hkl) - \langle I(hkl) \rangle| / \sum_{hkl} \sum_{j} I_{j}(hkl)$, where *I* is the intensity of reflection.

 ${}^{b}R_{pim} = \sum_{hkl} [1/(N-1)]^{1/2} \sum_{j} |I_{j}(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_{j} I_{j}(hkl)$, where N is the redundancy of the dataset.

 $^{\rm c}{\rm CC}_{1/2}$ is the correlation coefficient of the half datasets.

 ${}^{d}R_{work} = \sum_{hkl} ||F_{obs}| - |F_{calc}|| / \sum_{hkl} |F_{obs}|$, where F_{obs} and F_{calc} is the observed and the calculated structure factor, respectively. R_{free} is the cross-validation R factor for the test set of reflections (5% of the total) omitted in model refinement.