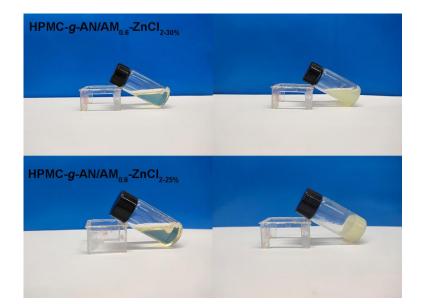
Supporting Information

Ultra-stretchable, tough, anti-freezing and conductive cellulose

hydrogel for wearable strain sensor


Daijun Chen^a, Xiaoli Zhao^a, Xinran Wei^a, Jialin Zhang^a, Dan Wang^a, Hao Lu^b, Pengxiang Jia^a*

^aKey Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China

^bMax Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

Corresponding Author

pxjia@nwu.edu.cn (P. Jia)

Figure S1. Images of HPMC-*g*-AN/AM_{0.6}-ZnCl_{2-30%} (top) and HPMC-*g*-AN/AM_{0.6}-ZnCl_{2-25%} (bottom) sample before and after grafting polymerization.



Figure S2. The FTIR spectra of HPMC-g-AN/AM $_{0.6}$ -ZnCl $_{2-25\%}$ and HPMC.

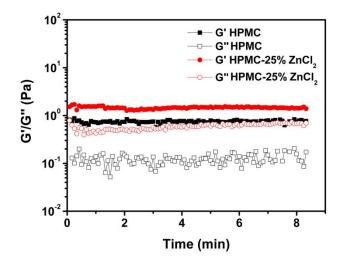


Figure S3. Rheological behavior of the HPMC and HPMC-25% $ZnCl_2$ solution.

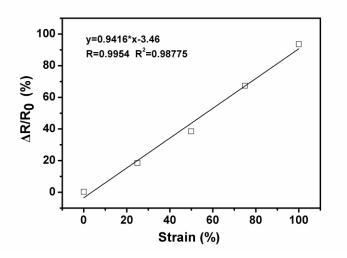


Figure S4. The plots of the relative variation of resistance as a function of strain.