Supporting Information ## Ultrasmall Iron-Doped Titanium Oxide Nanodots for Enhanced Sonodynamic and Chemodynamic Cancer Therapy Shang Bai, Nailin Yang, Xianwen Wang, Fei Gong, Ziliang Dong, Yuehan Gong, Zhuang Liu*, and Liang Cheng* Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China. Email: lcheng2@suda.edu.cn; zliu@suda.edu.cn Figure S1. XRD patterns of various Fe-TiO₂ NDs (a) and Fe₃O₄ nanoparticles (b). Figure S2. The FT-IR spectra (a) and thermogravimetric analysis (b) of Fe-TiO₂ nanodots with the feeding ratio of 1:4 before and after surface modification. **Figure S3**. Hydrodynamic diameters obtained from the DLS analysis of the various relative Fe-TiO₂ NDs in some physiological solutions, including water, PBS, and 1640 cell culture medium. **Figure S4**. The photos of Fe-TiO₂ dispersed in H₂O, PBS and 1640 cell culture medium during 7 days. **Figure S5**. The SDT performance of various Fe-TiO₂ NDs reflected by the conversion of DPBF probe. **Figure S6**. The solid UV-vis spectra of pure TiO₂ and various Fe-TiO₂ NDs (a) and the band gap obtained from solid UV-vis spectra (b). Figure S7. The XPS image of Fe-TiO₂ after US treatment for 30 min. **Figure S8.** The effect of Fenton reaction with H_2O_2 (100 μ M) of various Fe-TiO₂ NDs, pure TiO₂, and Fe₃O₄ nanoparticles, reflected by the chromogenic reaction of TMB probe. **Figure S9**. The TEM image (a) and XRD pattern (b) of commercial TiO₂. The chemodynamic (c) and sonodynamic (d) performance reflected by UV-vis-NIR spectra using the relevant probe, similar to Fe-TiO₂ NDs. Figure S10. H&E staining of main organs after first and third ultrasound treatment. Figure S11. The average weight of the mice with different treatment.