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Experimental
Preparation of TizC2Tx/ACF electrode

The TisAlC>-MAX was purchased from FORSMAN, China and used to prepare
Ti3C,Tx (MXene). Other chemicals were purchased from Wako Chemicals, Japan and used
without further purification. The carbon fiber substrates were treated with conc. HNO3 (69-
70% mass/mass (1.42 g/ml)) for 24 h and washed with deionized water (DI) water for several
times to obtain the acid treated carbon fiber (AFC) substrates (3 x 3 cm?), which were used as
the current collectors of electrodes. The TizC2Tx was prepared by etching of Al from TizAIC:
using minimal intensive layered delamination (MILD) method with an in-situ HF formation
process. In a typical process, 0.8 g of LiF was slowly added in 10 ml of 9 M HCI solution with
stirring. Then, 0.5 g of TizAlC, powder was added slowly into this solution in a period of 10
min with continuous stirring, which was kept at 35 °C for 24 h under stirring. Thereafter, it was
centrifuged under 3500 rpm for 5 min and washed with DI water for several times until pH
became 6~7. Finally, the obtained dark supernatant of TizCoTx was drop casted on the ACF
support. The coated electrode was dried in vacuum oven at 50 °C. The mass loading amounts
of 0.9-2 mg/cm? of Ti3C,Tx on ACF were adjusted by repeating drop-casting and drying process.
Preparation of NiC0204@rGO/ACF electrode

Initially, graphene oxide (GO) was synthesized by using the traditional Hummers

method. Then, 0.5 g of GO powder was dispersed in 20 ml of DI water with ultrasonic treatment



for 4 h. Thereafter, the GO-sheets dispersed solution was used to prepare the GO-coated ACF
by a dip-dry process. Herein, in order to obtain a uniform coating of GO sheets with a proper
mass loading amount, the dip-dry process was repeated for 15 times. In the next step, 0.05 M
Ni(NO3)2.6H>20, 0.1 M Co(NO3)2.6H>0, 0.5 M urea and 0.2 M NH4F were added in 50 ml of
DI water and stirred for 10 min and the obtained solution was transferred into a 100 ml Teflon-
lined stainless autoclave. Then, the prepared GO/ACF electrode (3 x 3 cm?) was immersed in
the solution and the autoclave was heated to 150 °C in oven for 5 h. After cooled down, the
electrode was collected from the autoclave, rinsed in DI water for several times to remove the
remained chemicals and those loosely bounded materials, dried at 50 °C in oven for 12 h, and
further annealed at 300 °C for 3 h. Meanwhile, other two electrodes were also fabricated at 170
and 190 °C, respectively, with the same precursor solution. The mass loading of NiC0204@rGO
electrode material (synthesized at 170 °C) on AFC was 1.12 mg/cm?.

Fabrication of flexible all-solid-state hybrid supercapacitor (FHSCS)

Initially, the PVA-KOH electrolyte was prepared by dissolving 6 g of polyvinyl
alcohol (PVA) in 60 ml of DI water and heated at 70 [JC with continuous stirring until the
solution became transparent state. After that, the 20 ml of 6 M KOH solution was slowly added
in the above PVA solution and stirred for 2 h to obtain a gel-like solution of PVA-KOH, which
was poured in a porcelain plate and placed at room temperature for 24 h. As such, a flexible

and stretchable thin solid PVA-KOH electrolyte film was formed. Herein, the thickness of thin



solid electrolyte film was adjusted by changing the amount of gel-like solution. Finally, the
FHSC device was fabricated by sandwiching NiCo2O4@rGO/ACF positive and Ti3CoTx/ACF
negative electrodes with the solid PVA-KOH electrolyte film. The size of the FHSC device was
2x1 cm? with a footprint area of 2 cm? and a volume of 0.133 cm? (2x1x0.0668 cm?).
Characterizations of electrodes

Characterizations of the prepared electrodes and the powder samples were carried out
by using different techniques. The structural properties and material confirmation were carried
out by using an X-ray diffraction (XRD) spectroscopy equipped with a Cu K, radiation source
(A= 1.5406 A) (Rigaku Smart Lab). The surface morphology was observed by a scanning
electron microscopy (SEM) (Hitachi SU6600, Japan) and the nanostructure was determined by
a transmission electron microscopy (TEM) (JEOL, JEM-2100F). Elemental distributions were
determined using an energy-dispersive X-ray spectrometry (EDS) (Horiba EMAX) and the
chemical compositions and valences were measured by an X-ray photoelectron spectroscopy
(XPS) (VG Scientific ESCALab250i-XLunit, UK). The UV-vis spectra of materials were
recorded using UV-vis spectrophotometer V-650 JASCO. The mass of electroactive materials
was determined by a Sensitive weight balance SHIMADZU AUW220D.
Electrochemical measurements

All three-electrode and two-electrode electrochemical measurements were measured

on a Solartron SI11280B and PAR Versa STAT 4 systems. The three-electrode



electrochemical measurements of both NiC02,04@rGO/AFC and TizsCoTx/AFC
electrodes were tested in 3M KOH electrolyte. The platinum wire, Hg/HgO electrode
and synthesized electrodes were used as counter, reference and working electrodes,
respectively. The electrochemical properties of NiC0.0.@rGO/AFC electrode were
tested within a potential range from -0.2 to 0.6 V/vs Hg/HgO. For the negative electrode,
the potential range was from -1.0 to -0.2 V/Hg/HgO. For the testing of FHSC, two-
electrode system was used. The counter and reference electrodes had connected each
other. The ionic diffusion coefficients of both electrodes were calculated based on the

CV analysis. The relationship was based on the Randles—Sevcik equation as below.

ip=2.69 x10°n324D"2Cpv'? (S1)

_ [ B (Slope)
2.69x105 xn3/2 AC,

1? (82)

ip = current maximum in amps

n = number of electrons transferred in the redox event (usually 1)
A = electrode area in cm?

D = diffusion coefficient in cm?/s

C = concentration in mol/cm?

vy = scan rate in V/s

The specific and areal capacitances of electrodes and the FHSC device were
determined by integrating the discharge portion of CV curve using the following
equations.

Specific Capacitance = ﬁ [idv (S3)



Areal Capacitance = ﬁ [idv (S4)
where, ‘m’ is mass of loaded electrode material in mg, ‘v’ is the scan rate in mV/s, ‘V’
is operating potential window, ‘i’ is current in mA and A is footprint area of electrode
surface. The total mass loading of asymmetric supercapacitor was calculated by
considering masses of positive and negative electrode materials. For the FHSC device,
since the positive and negative electrodes were sandwiched with the PVA-KOH solid
electrolyte, the geometrical footprint area of one electrode was considered. From GCD
analysis, the specific, areal and volumetric capacitances of electrodes and the FHSC
device were calculated by integrating discharge portion using following equations,

Specific Capacitance

_ Ix fvdt
T M X V2

Areal Capacitance

_ Ix [vdt
"~ Area X V2

Volumetric Capacitance

_ Ix [fvdt
" Volume X V2

(S

Specific, areal and volumetric energy densities and power densities of the FHSC

device were calculated by using following equations,

Specific energy density = C;V? and

2 x3600

(S8)



Specific power density

_ED x 3600
=

Areal energy density = CaV? and

2 X3600

(S10)

Areal power density =

ED A x3600
Tq

Volummetric energy density = CyV? and

2 x3600

(S12)

Volumetric power density =

EDy %3600

- (513)

where, M is total mass of both electrode materials; Cs, Ca and Cy are specific, areal and
volumetric capacitances, respectively; ED, EDa, EDv are specific, areal and volumetric
energy densities, respectively; ‘Tq’ is discharging time, V is potential window.

The mass loading amounts on both electrodes were adjusted using following

equation,
M+

M-

_ Gy xVv~

CCrxvt

where, ‘M*’ and ‘M~ are masses of electroactive materials of NiC0.04,@rGO and

TisCoTx; ‘CY’ and 'V*’ are Cs and potential window of the NiCo,0.@rGO/ACF



electrode, respectively; ‘C5’ and V=’ are Cs and potential window of the TisC>Tx/ACF

electrode, respectively.
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Figure S1 SEM images of (A) TizAlC>-MAX, (B) delaminated TisCoTx-MXene, and (C)

exfoliated TizCoTx.
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Figure S2 (A and B) SEM images of acid treated carbon fiber (ACF), and (C and D) SEM

images of TizC2Tx/ACF electrodes.
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Figure S3 (A) Absorbance versus wavenumber plot for diluted TizCoTx-MXene ink, (B)
photographs of the prepared TizC.Tx-MXene ink and the Tyndall effect of it, (C and D) XRD

patterns of Ti3CoTx/ACF and ACF.
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Figure S4 SEM images of NiCo204@rGO/AFC electrode deposited at (A-C) 150 and (D-F)

190 °C

Dip dry cycles Hydrothermal treatment

Figure S5 SEM images of (A) HNOs treated carbon fiber (ACF), (B) GO/ACF, and (C)

NiCo204@rGO/ACF.
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Figure S6 XRD patterns of NiC0204@rGO/AFC electrodes deposited at 150, 170 and 190 °C.
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Figure S7 (A) SEM for elemental mapping of NiCo204@rGO/ACF, (B) EDS spectrum, and
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Figure S8 (A and B) CV curves of Ti3CoTx/AFC electrode measured at a scan rate of 100 mV/s
with the loading mass amounts of 0.9, 1.5 and 2 mg/cm? considering per unit area (cm?) and

mass (g), and (C) specific capacitance of all three electrodes.
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Figure S9 CV curves of AFC and TizCoTx/AFC electrodes.
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Figure S10 (A) Plot of log of current density versus log of scan rate, and (B) Total charge

stored on the electrode at different scan rates for the Ti3C,Tx/ACF electrode.
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Figure S11 Current density versus square root of scan rate plot of TisCoTx/AFC electrode.
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Figure S12 CV curves of AFC and NiCo0204@rGO/ACEF electrodes at a 100 mV/s scan rate.
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Figure S13 (A) GCD curves of NiCo204@rGO/ACF electrodes prepared at the hydrothermal

synthesis temperatures of 150, 170 and 190 °C, (B) current density versus scan rate plots, (C)

log of current density versus log of scan rate plot, which gives R? and b values, and (D) total

charges stored on the NiCo204@rGO/ACEF electrode at different scan rates.
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Figure S14 Current density versus square root of scan rate plot of NiCo,04@rGO/ACF

electrode.
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Figure S15 Specific capacity versus current density plot of NiCo,04@rGO/AFC electrode.
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Figure S16 Photographs of thickness measurement of the negative electrode.
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Table S1 Electrochemical performances of various Ti3C,Tx based electrodes.

Electrode
Material
N[ doped

Ti3C, Ty
Nlldoped
Tiz3Co Ty

Ti3C, T« /Mo0Oj3
Ti3C2Tx /SnOz
Ti3C, T /MnO;
Ti3Co Ty /TiO2 N
Ws

Ti3C, Ty —TiO3
Ti3CTx @PPy
Ti3C, T /PVA
Ti3C, Ty JOMC
NCOTi3C,Ty
Ti3C2 T /SWCN
T

rGO/TizCo Ty

Ti}CZTx /rGO

drl

Electrolyte

6 M KOH

6 M KOH

1 M KOH

6 M KOH

6 M KOH

6 M KOH

6 M KOH

1 M KOH

1 M KOH

6 M KOH

6 M KOH

1 M KOH

6 M KOH

2M KOH

6 M KOH

Capacitance

156-122 F/g
(5200 mV/s)
266-210 F/g
(5-200 mV/s)
151-105 F/g
(2-100 mV/s)
12501100 F/g
(1-10 A/g)
377-317 mF/cm?
(5-200 mV/s)
143-106 F/g
(2-100 mV/s)
143-117 F/g
(5-200 mV/s)
61001302 F/g
(0.5-25 A/g)
528-310 F/cm®
(2-100 mV/s)
1981150 F/cm?
(1-20 A/g)
82.8-49.5 F/g
(1-100 A/g)
314-205 F/em’
(2-100 mV/s)
37001206 F/cm?
(0.92-9.2 A/em?)
154.3-141.7
F/g (1005 A/g)
393-314 F/cm’

21

Stability
(“o)
100 (5000
cycles)
86.4 (2000
cycles)
93.7 (8000
cycles)
82 (8000
cycles)
95 (5000
cycles)
80 (6000
cycles)
92 (6000
cycles)
100 (14000
cycles)
~85 (10000
cycles)

100 (5000
cycles)
95 (10000
cycles)
100 (10000
cycles)
85 (6000
cycles)

100 (10000

Potential
V)
-1--04
-1--04
-1--0.3
-1--0.3
-1--04
-1--04
-1--0.35
0-0.6
-1--04
-1--04
-1.05 — —
0.15
-1--0.5
-1--0.3
-0.7-0
0.1-0.55

Ref
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TizC,T, /CNT
Ti3C, Ty foam

Ti3C Ty aerogel

Ti3Co Ty paper

Ti3C, Ty film on

Ni foam

Ti3C2Tx film

Ti3C,Tx/ACF

1 M KOH

1 M KOH

1 M KOH

1 M KOH

1 M KOH

3M KOH

(5-100 mV/s)
27101178 mF/em?
(5-100 mV/s)
1013-520 mF/cm?
(2-100 mV/s)
29501235 F/em®
(2-100 mV/s)
246-177 mF/cm?
(5-50 mV/s)

340 F/cm’

(2 mV/s)

2469 F/g (197
mF/cm?) at 4

mA/cm?

22

cycles)

88.7 (10 000
cycles)

95 (10000
cycles)

94.4 (15000
cycles)

100 (10000
cycles)

100 (10000
cycles)

96.7 (5000)

-1--0.5

-1--04

-0.9 -
-0.4

-0.75 -
0.25
-0.55-0

-1.0 - -
0.2
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