Supporting information

Site occupancies, VUV-UV-vis photoluminescence and X-ray radioluminescence of Eu²⁺ doped RbBaPO₄

Rongfu Zhou^{*a*}, Fengkai Ma^{*a*}, Fang Su^{*a*}, Yiyi Ou^{*a*}, Zeming Qi^{*b*}, Jianhui Zhang^{*a*}, Yan Huang^{*c*}, Pieter Dorenbos^{*d*}, Hongbin Liang^{*a*,*}

^a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China

^b National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China

^c Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, P. R. China

^d Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands

* Email: cesbin@mail.sysu.edu.cn

Atom	Wyckoff position	Х	У	Z	Occ.	B _{iso}
Ba	4c	0.494(1)	0.75	0.305(2)	1	0.76(1)
Rb	4c	0.158(2)	0.75	0.587(4)	1	0.95(9)
Р	4c	0.267(3)	0.25	0.416(3)	1	1.00(0)
01	8d	0.199(9)	0.25	0.561(7)	1	1.00(0)
O2	4c	0.465(2)	0.25	0.418(6)	1	1.78(6)
03	4c	0.203(8)	0.029(3)	0.343(8)	1	1.00(8)

Table S1. The final Refined Structural Parameters of RbBaPO₄^e Host.

^e Symmetry: orthorhombic; space group: *Pnma*; lattice parameters: *a* = 7.8178(8) Å, *b*

= 5.7386(4) Å, c = 10.0586(0) Å, V = 451.26(8) Å³, Z = 4; reliability factors: $R_{wp} = 5.66$ %, $R_p = 3.83$ % and $R_B = 4.76$ %.

Bonds	Lengths (Å)	Bonds	Lengths (Å)
Ba-O1	2.741	Rb-O1 (x2)	2.899
Ba-O1	2.881	Rb-O1	3.176
Ba-O2	2.796	Rb-O2	2.945
Ba-O2 (x2)	3.096	Rb-O3(x2)	2.950
Ba-O3 (x2)	2.739	Rb-O3(x2)	3.069
Ba-O3 (x2)	2.805	Rb-O3(x2)	3.177
Average	2.855		3.031

Table S2. Bond Lengths (Å) of Ba²⁺-O²⁻ and Rb⁺-O²⁻ in RbBaPO₄ Sample.

Table S3. The Emissions of Eu^{2+} at Ba^{2+}/Sr^{2+} Sites of Isomorphic Host Compounds KSrPO₄ and KBaPO₄.

Phosphor	Emission peak of Eu^{2+} at Ba^{2+}/Sr^{2+} site	Reference	in
	(nm)	manuscript	
KBa _{0.995} Eu _{0.005} PO ₄	420	[26]	
KBa _{0.97} Eu _{0.03} PO ₄	417	[19]	
KSr _{0.999} Eu _{0.001} PO ₄	422	[20]	
KSr _{0.995} Eu _{0.005} PO ₄	424	[26]	

Table S4. Fitting parameters for the Synchrotron radiation middle-far IR spectrum of RbBa_{0.995}Eu_{0.005}PO₄ via the complex dielectric function.

$\omega_{0,k}$ (cm ⁻¹)	$\omega_{p,k}$ (cm ⁻¹)	γ_k
100.85	158.23	22.215
122.77	123.1	12.374
140.03	133.87	17.172
154.13	180.01	16.897

177.73	120.62	14.828
207.28	33.081	10.631
426.25	252.15	132.48
523.55	195.2	72.724
553.82	130.53	15.666
700.68	180.94	130.59
885.17	305.86	181.71
1000.7	282.26	47.122
1031.8	112.08	30.298
2062.9	985.92	1808.8

Table S5. Fitting Parameters via Inokuti-Hirayama (I-H) model and Yokota-Tanimoto

(Y-T) model for $RbBa_{1-x}Eu_xPO_4$ (x = 0.04 and 0.08) samples.

x (model)	$n_{a} (m^{-3})$	$n_{d} (m^{-3})$	C_{DA} (m ⁶ /s)	D (m ² /s)	C_{DD} (m ⁶ /s)	R_{adj}^{2}
0.04 (I-H)	3.55×10 ²⁶	-	3.08×10 ⁻⁴⁸	-	-	0.995
0.08 (I-H)	7.04×10 ²⁶	-	3.32×10 ⁻⁴⁸	-	-	0.995
0.04 (Y-	7.98×10 ²⁵	2.75×10 ²⁶	2.53×10 ⁻⁴⁸	1.07×10 ⁻²³	1.78×10 ⁻⁵⁰	0.996
T)						
0.08 (Y-	1.95×10 ²⁶	5.14×10 ²⁶	2.51×10 ⁻⁴⁸	3.06×10 ⁻²³	2.20×10-50	0.995
T)						

Figure S1. Highest-height normalized emission spectra of RbBa_{1-x}Eu_xPO₄ (a, x = 0.001; b, x = 0.02; c, x = 0.06, 15 K) under different excitation wavelengths; the insets in plots a, b and c are the excitation wavelength dependency of the total integral area, respectively, showing that the intensity of Eu²⁺ emission band decreases with the increase of excitation wavelength.

Figure S2. P-XRD patterns of $RbBa_{1-x}Eu_xPO_4$ (x = 0.001-0.08) samples and refined result of $RbBaPO_4$ host.

Figure S3. Rietveld refinement of P-XRD data of $RbBa_{1-x}Eu_xPO_4$ (a, x = 0.02; b, x = 0.04; c, x = 0.08) samples.

Figure S4. VUV-UV excitation ($\lambda_{em} = 313 \text{ nm}$; 10 K) and emission ($\lambda_{ex} = 273 \text{ nm}$; 10 K) spectra of Rb_{1.02}Ba_{0.96}Gd_{0.02}PO₄ sample.

Figure S5. VUV-UV excitation ($\lambda_{em} = 325 \text{ nm}$) and emission ($\lambda_{ex} = 300 \text{ nm}$) spectra of $Rb_{1.003}Ba_{0.994}Ce_{0.003}PO_4$ sample at 10 K.

Figure S6. Highest-height normalized emission ($\lambda_{ex} = 325$, 360 and 390 nm; 15 K) spectra of RbBa_{0.995}Eu_{0.005}PO₄ sample and corresponding Gaussian fitting results.

Figure S7. Emission spectra ($\lambda_{ex} = 310$; RT) of RbBa_{1-x}Eu_xPO₄ samples.