Boron Lewis Acid-Catalyzed Hydrophosphinylation of *N*-Heteroaryl-Substituted Alkenes with Secondary Phosphine Oxides

Jimin Han, Jongwon Kim, Jaehoo Lee, Younghun Kim, and Sarah Yunmi Lee*

Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea <u>sarahyunmi@yonsei.ac.kr</u>

Supporting Information

Table of Contents

I.	Development of Boron-Catalyzed Hydrophosphinylations of Alkenes	S2
II.	X-ray Crystallographic Data for 3ao	S 7
III.	X-ray Crystallographic Data for 3kp·HOTf	S 9
IV.	Reactivity and Mechanistic Studies	S11
v.	HPLC Spectra of 3kp (eq 2)	S23
VI.	¹ H, ¹³ C, and ³¹ P NMR Spectra of Isolated Compounds	S24
VII.	References	S135

I. Development of Boron-Catalyzed Hydrophosphinylations of Alkenes

0 H ⁻ ⁻ [\] 1a	Ph (Ph (R Me 2a of 2f 1.1 equiv	5–10% BF₃• toluene r.t., 3 h	Et ₂ O	$ \begin{array}{c} \begin{pmatrix} N & R & O \\ \mathcal{H} & \mathcal{H} \\ Me & Ph \\ Ph \end{array} $
	entry	alkene	catalyst	solvent	yield (%) ^c
	1	Н	5%	0.5 M	90
	2	Н	5%	1 M	99
	3	Ме	10%	0.5 M	66
	4	Ме	10%	1 M	84

Table S1. Effect of catalyst loadings and reaction concentrations.^{*a,b*}

[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1.2 equiv), and catalyst (5–10%) in toluene at r.t. for 3 h. [b] 2-(prop-1-en-1-yl)pyridine (*E*:*Z* ratio of 5.0:1.0) and (*E*)-2-(but-2-en-2-yl)pyridine were used. [c] Determined by ¹H NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.

Table S2. Effect of solvents for the reactions with challenging substrates.^{*a,b*}

	$H^{-1} R^{2} R^{2} R^{2}$	$\Upsilon^{R^5} \xrightarrow{10\% \text{ BF}_3 \bullet \text{Et}_2 \text{O}} \\ R^4 \qquad \text{r.t., 19 h}$	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	R ²
entry	phosphine oxide	alkene	solvent	yield (%) ^c
1 2	R ¹ , R ² =	Me N Me	toluene DCM	33 30
3 4	R ¹ , R ² = ≹→CI	Me N Me	tolunene DCM	53 40
5 6	R ¹ , R ² =	Et	toluene DCM	41 59
7 8	R ¹ , R ² = Me, Ph	Me Me	toluene DCM	18 11

[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1.0 equiv), and catalyst (10%) in toluene (0.5 M) at r.t. for 19 h. [b] 1-Methyl-2-(prop-1-en-1-yl)-1H-indole (*E*:*Z* ratio of 1.2:1.0) was used. Racemic mixture of methyl(phenyl)phosphine oxide was used. [c] Determined by ¹H NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.

: Our boron-catalyzed hydrophosphinylation generally proceeded well in either toluene or dichloromethane as a reaction solvent; when the phosphine oxide containing *p*-methoxyphenyl group was employed, the reaction in dichloromethane resulted in higher yield of the product compared to that in toluene, due to the low solubility of the phosphine oxide in toluene.

[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1.1 equiv), and catalyst (10%) in toluene (0.5 M) at r.t. for 19 h. [b] The yield of the product was determined by ¹H NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.

: The reaction of alkene **2c** (*E*:*Z* ratio 1:2) with **1a** proceeded faster than that of alkene **2c** (*Z* only).

Table S3. The Z-to-E Isomerization of (Z)-2-(but-1-en-1-yl)pyridine in the presence of a borane.^a

	Et 19 h		Tweet
entry	catalyst	temperature	E:Z ^b
1	-	r.t.	< 1: 20
2	-	80 °C	< 1: 20
3	10% BF₃∙Et₂O	r.t.	1:4
4	10% BF ₃ •Et ₂ O	0° 08	> 20:1
5	10% B(C ₆ F ₅) ₃	r.t.	1:6
6	10% B(C ₆ F ₅) ₃	80 °C	10:1
entry 1 2 3 4 5 6	Catalyst _ _ _ 10% BF ₃ •Et ₂ O 10% BF ₃ •Et ₂ O 10% B(C ₆ F ₅) ₃ 10% B(C ₆ F ₅) ₃	temperature r.t. 80 °C r.t. 80 °C r.t. 80 °C	<i>E</i> : <i>Z^b</i> < 1: 20 < 1: 20 1:2 > 20:1 1:6 10:1

[a] Reaction conditions: alkene (1.0 equiv), and catalyst (10%) in toluene (0.5 M) at r.t. for 19 h. [b] The E:Z ratio was determined by ¹H NMR spectroscopic analysis.

: We observed the isomerization of alkene **2c** in the presence of a borane catalyst at room temperature or 80 °C.

Scheme S2. Reactions with no catalyst: background reactions for few substrates.^{*a,b*}

[a] Reaction conditions: **1a** (0.05 mmol), alkene (1.1 equiv) in toluene (0.5–1 M) at the given temperature for 12–24 h. [b] The yield of the product was determined by ¹H NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.

: Few alkene substrates reacted slowly with SPO **1a** in the absence of a catalyst.

Scheme S3. Reactions with chiral catalysts.^{*a,b*}

[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1.0 equiv), and catalyst (10%) in toluene (0.5 M).
[b] Determined by ¹H NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.
[c] Determined by AD column, IPA 10 – 20%.
[d] In the absence of the catalyst: <5% yield.

: Our brief investigations to develop catalytic asymmetric hydrophosphinylations were not successful.

Scheme S4. Reactions of alkene substrates that are not included in the main paper.^{a,b}

[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1.2 equiv), and catalyst (10%) in toluene (0.5 M). [b] Determined by ¹H NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.

: Since our hydrophosphinylation focused on the use of multisubstituted alkenes, we did not include these substrates in the paper, however, alkenes bearing a 4-pyridyl substituent and a pyrazyl substituent.

Scheme S5. Hydrophosphinylations catalyzed by a Brønsted acid.^{a,b}

[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1 equiv), and catalyst (10%) in toluene (1 M). [b] Determined by ¹H NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.

: Brønsted acids as a catalyst did not effectively promote the hydrophosphinylation.

II. X-ray Crystallographic Data for 3ao

Diphenyl[4-(pyridin-2-yl)but-2-en-1-yl]phosphine oxide (eq 1, 3ao).

Note: The structure of product **3ao** was determined by X-ray crystallography. Crystals suitable for X-ray crystallography were grown from the saturated solution of CHCl₃/hexanes at -20 °C.

The diffraction data from yellow crystals of **3ao** (0.075 × 0.035 × 0.020 mm³) mounted on a MiTeGen MicroMount© were collected at 100 on a ADSC Quantum 210 CCD diffractometer with synchrotron radiation (0.8000 Å) at Supramolecular Crystallography 2D, Pohang Accelerator Laboratory (PAL), Pohang, Korea. The ADSC Q210 ADX program¹ was used for data collection (detector distance is 66 mm, omega scan; $\Delta \omega = 3^{\circ}$, exposure time is 2 sec/frame for **3ao** and HKL3000sm (Ver. 703r)² was used for cell refinement, reduction and absorption correction. The crystal structures of **3ao** was solved by the direct method with SHELX-XT (Ver. 2014/5)³ and refined by full-matrix least-squares calculations with the SHELX-XL (Ver. 2016/4) ⁴ program package.

Identification code	3ao
Empirical formula	$C_{21}H_{20}NOP$
Formula weight	333.35
Temperature/K	100
Crystal system	monoclinic
Space group	P21/n
a/Å	5.8300(12)
b/Å	24.776(5)
c/Å	12.198(2)
$\alpha/^{\circ}$	90
β/°	101.64(3)
γ/°	90
Volume/Å ³	1725.7(6)
Z	4
$Q_{calc}g/cm^3$	1.283
µ/mm ⁻¹	0.227
F(000)	704.0
Crystal size/mm ³	$0.075 \times 0.035 \times 0.02$
Radiation	synchrotron (λ = 0.800)
2Θ range for data collection/°	3.7 to 55.994
Index ranges	$-6 \le h \le 6, -29 \le k \le 29, -14 \le l \le 14$
Reflections collected	10533
Independent reflections	2841 [$R_{int} = 0.0494$, $R_{sigma} = 0.0335$]
Data/restraints/parameters	2841/6/217
Goodness-of-fit on F ²	1.072
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0378$, $wR_2 = 0.1019$
Final R indexes [all data]	$R_1 = 0.0412$, $wR_2 = 0.1044$
Largest diff. peak/hole / e Å ⁻³	0.57/-0.34

Table S4. Crystal data and structure refinement for 3ao.

III. X-ray Crystallographic Data for 3kp·HOTf

Note: The structure of product **3kp** was determined by X-ray crystallography of the corresponding quinolinium triflate. Crystals suitable for X-ray diffraction were grown from dichloromethane/ether at room temperature.

(Only one enantiomer is shown.)

The diffraction data from yellow crystals of **LYM1** (0.09 × 0.09 × 0.04 mm³) mounted on a MiTeGen MicroMount© were collected at 100 on a ADSC Quantum 210 CCD diffractometer with synchrotron radiation (0.7000 Å) at Supramolecular Crystallography 2D, Pohang Accelerator Laboratory (PAL), Pohang, Korea. The ADSC Q210 ADX program¹ was used for data collection (detector distance is 66 mm, omega scan; $\Delta \omega = 3^{\circ}$, exposure time is 1 sec/frame for **LYM1** and HKL3000sm (Ver. 703r)² was used for cell refinement, reduction and absorption correction. The crystal structures of **LYM1** was solved by the direct method with SHELX-XT (Ver. 2014/5)³ and refined by full-matrix least-squares calculations with the SHELX-XL (Ver. 2016/4)⁴ program package.

Table S5. Crystal data and structure refinement for LYM1.

Identification code	LYM1
Empirical formula	C24.01H29.03F3NO4PS
Formula weight	515.73
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	8.5600(17)
b/Å	12.297(3)
c/Å	13.486(3)
$\alpha/^{\circ}$	69.28(3)
β/°	77.10(3)
$\gamma/^{\circ}$	75.74(3)
Volume/Å ³	1272.3(5)
Z	2
$Q_{calc}g/cm^3$	1.346
µ/mm ⁻¹	0.233
F(000)	540.0
Crystal size/mm ³	$0.09 \times 0.09 \times 0.04$
Radiation	synchrotron ($\lambda = 0.700$)
2Θ range for data collection/°	² 3.216 to 55.994
Index ranges	$\text{-}11 \leq h \leq 11, \text{-}16 \leq k \leq 16, \text{-}18 \leq l \leq 17$
Reflections collected	11356
Independent reflections	$5826 [R_{int} = 0.0420, R_{sigma} = 0.0825]$
Data/restraints/parameters	5826/0/390
Goodness-of-fit on F ²	0.854
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0579$, $wR_2 = 0.1445$
Final R indexes [all data]	$R_1 = 0.1276$, $wR_2 = 0.1703$
Largest diff. peak/hole / e Å-3	0.31/-0.43

IV. Reactivity and Mechanistic Studies

Scheme 2a of the main paper. *Reaction in the presence of BHT.*

In a nitrogen-filled glovebox, diphenylphosphine oxide (10.1 mg, 0.050 mmol, 1 equiv.), (*E*)-2-styrylpyridine (7.30 mg, 0.050 mmol, 1 equiv.), 2,6-di-*tert*-butyl-4-methylphenol [128-37-0] (11.0 mg, 0.050 mmol) with 10% BF₃•Et₂O (0.005 mmol) and toluene (1 M) were combined in a 4-mL vial equipped with a stir bar. The resulting mixture was stirred at room temperature for 12 h. The mixture was then exposed to air, and the solvent was evaporated under reduced pressure. The yield of the product was determined by ¹H NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.

*Additional information: Reactions of other alkenes in the presence of BHT.

Scheme 2b of the main paper. Reaction with deuterated diphenylphosphine oxide.

In a nitrogen-filled glovebox, deuterated diphenylphosphine oxide (0.05 mmol, 1.0 equiv.), corresponding alkene (1.1 equiv.), 20% BF₃•Et₂O (0.010 mmol) and toluene (1 M) were combined in a 4-mL vial equipped with a stir bar. The resulting mixture was stirred at room temperature for 12 h. The mixture was then exposed to air, and the solvent was evaporated under reduced pressure. The yield of the product and deuterium incorporation was determined by ¹H NMR spectroscopic analysis.

*Note: Deuterated diphenylphosphine oxide was prepared according the following procedure. To an oven dried 20-mL vial was added diphenylphosphine oxide [4559-70-0] (0.6 mmol) and a stir-bar. The solid was then dissolved in *d*₄-MeOH (1.2 mL) to obtain a 0.5 M solution. The resulting solution was stirred at room temperature for 12 hours. The clear solution was concentrated *in vacuo*. ¹H NMR spectrum showed 92% D incorporation. ¹H NMR (400 MHz, MeOD) δ 8.73 (s, 0.08H), 7.81 – 7.73 (m, 2H), 7.72 – 7.65 (m, 1H), 7.64 –7.55 (m, 2H).

Scheme 2c of the main paper. *Reactivity trend of various phosphine oxides toward additions to an alkene.*

In a nitrogen-filled glovebox, secondary phosphine oxide (10.1 mg, 0.050 mmol), 2-(but-1-en-1-yl)pyridine [71532-20-2] (E:Z = 1.0:3.0; 9.96 mg, 0.055 mmol), BF₃•Et₂O (0.0050 mmol) and toluene (50 µL) were combined in a 4-mL vial equipped with a stir bar. The resulting mixture was stirred at room temperature for 2 h. The mixture was then quenched with 5 µL IPA, and the solvent was evaporated under reduced pressure. The yield of the product was determined by ¹H NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.

*Additional information: The same reactivity trend was observed for the reaction with alkene **2a**.

<NMR Spectroscopic studies>

- **1.** Monitoring of the catalytic reaction between SPO 1a and alkene 2c by ¹H and ³¹P NMR spectroscopy. 30% of BF₃•Et₂O was used to facilitate the NMR spectroscopic analysis.
- 1) Interaction between BF₃•Et₂O (30%) and alkene **2c** at r.t. in toluene-*d*₈. (¹H NMR spectra)

2) Interaction between BF₃•Et₂O (30%) and diphenylphosphine oxide **1a** at r.t. in toluene-*d*₈. (³¹P NMR spectra)

3) ¹H and ³¹P NMR spectra of the reaction between diphenylphosphine oxide **1a** and alkene **2c** in the presence of BF₃•Et₂O (30%) at r.t. in toluene-*d*₈, after ~30 min.

: Interaction between borane and alkene was observed during the catalytic reaction.

2. Monitoring of the catalytic reaction between SPOs 1a, 1d, 1f and alkene 2c by ¹H and ³¹P

NMR spectroscopy. 30% of $B(C_6F_5)_3$ was used to facilitate the NMR spectroscopic analysis. *Notes: a) Due to the low solubility of SPO **1d** in toluene, we performed these reactions in CDCl₃; b) The hydrophosphinylation in CDCl₃ proceeded smoothly to produce the corresponding products (see below); c) In CDCl₃, reactions with $B(C_6F_5)_3$ led to the formation of products in higher yields compared to that with BF₃•Et₂O.

1) Interaction between B(C₆F₅)₃ (30%), SPO **1a**, and alkene at r.t. in CDCl₃. (³¹P NMR spectra)

: The ³¹P NMR signal (B-P interaction) disappeared upon the addition of alkene.

- 2) ¹H and ³¹P NMR spectra of the reaction between SPO **1a**, **1d**, **1f** and alkene **2c** in the presence of B(C₆F₅)₃ (30%) at r.t. in CDCl₃, after ~30 min.
 - (¹H NMR spectra of the crude mixture)

: The higher percentage of borane-alkene species was observed when the SPO contained electron-withdrawing groups (1f > 1a> 1d).

- 3. (Scheme 2d)
 - Monitoring the formation of the acid-base pair C between a borane and product 3kp by NMR spectroscopy: in comparison with the spectra of the quinolinium triflate of 3kp. *Note*: the structure of 3kp·HOTf was confirmed by X-ray crystallography.

: Based on the following ³¹P and ¹H spectra, we concluded that the <u>major</u> species formed by <u>the reaction between BF₃• Et₂O and product 3</u> was the the B–N acid-base pair.

1) ³¹P NMR spectra of the mixture of **3kp** and borane (1:1) at r.t. in CDCl₃ (after ~30 min)

2) ¹H NMR spectra of the mixture of **3kp** and borane (1:1) at r.t. in CDCl₃ (after ~30 min)

• Monitoring the generation of alkene-borane intermediate upon the addition of alkene 2p to the mixture of a borane and product 3kp by NMR spectroscopy.

Based on the following ¹H spectra, we concluded that the <u>major</u> species in the mixture of alkene 2p, a borane, and product 3kp was the activated form of alkene 2p.
 (Note: In the presence of a borane catalyst, the E/Z mixture of alkene 2p transformed into (E)-

- 4. (Additional information on the mechanism)
 Monitoring the interaction among B(C₆F₅)₃, alkene 2a, and reaction product 3aa by ¹H and ³¹P NMR spectroscopy.
- 1) Interaction among B(C₆F₅)₃ (30%), alkene **2a**, and product **3aa** at r.t. in CDCl₃. (¹H NMR spectra)

Note: <Spectrum C> Alkene 2a was added to the mixture of product 3aa and borane (30%). : It displayed both interactions of borane-alkene and borane-product (see also ³¹P spectra on the next page).

2) Interaction between B(C₆F₅)₃ (30%) and product **3aa** at r.t. in CDCl₃. (³¹P NMR spectra)

3) Interaction among B(C₆F₅)₃ (30%), product **3aa**, and alkene **2a** at r.t. in CDCl₃. (³¹P NMR spectra). *Addition of alkene* **2a** (1 *equiv) to the mixture of* B(C₆F₅)₃ (30%) *and product* **3aa** (1 *equiv)*

: The interaction between product and borane considerably diminished upon adding alkene.

V. HPLC Spectra of 3kp (eq 2)

(*R*)-*tert*-Butyl(phenyl)((*R*)-1-(quinolin-2-yl)butan-2-yl)phosphine oxide (eq 2, 3kp). The *ee* of the product was determined by HPLC (Daicel CHIRALCEL AD-H column; solvent system: 10.0% *i*-PrOH in hexanes; 1.0 mL/min; retention times: 6.16 min (minor), 8.49 min (major)).

<HPLC trace of racemic 3kp>

4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>
		» ∞ ∞ ∞ ∞ ∞ ∞ ○ ○ ○ ○ ○	0
			<u> </u>
			- L
			_

S24

Table 2, 3aa ¹H NMR (400 MHz, CDCl₃)

 $<^{12.07}_{12.05}$

 Table 2, 3aa

 ¹³C NMR (101 MHz, CDCl₃)

0 ,`Ph Ph Mé

Table 2, 3aa³¹P NMR (162 MHz, CDCl₃)

0 ,`Ph Ph Ph

Table 2, 3ab¹H NMR (400 MHz, CDCl₃)

 Table 2, 3ab

 ¹³C NMR (101 MHz, CDCl₃)

		1 1			1 1	1	1	1		.	1	1		1	·		1	1		
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1C
	f1 (ppm)																			

0 Ph Ph Ρh

Table 2, 3ab³¹P NMR (162 MHz, CDCl₃)

0 Ph Ρh Eť

Table 2, 3ac¹H NMR (300 MHz, CDCl₃)

 $\underbrace{ \begin{pmatrix} \mathsf{N} \\ \mathsf{E} \\ \mathsf{H} \\ \mathsf{H} \\ \mathsf{P} \\ \mathsf$

 Table 2, 3ac

 ¹³C NMR (101 MHz, CDCl₃)

0 Ph Εť Ρh

Table 2, 3ac³¹P NMR (162 MHz, CDCl₃)

Table 2, 3ad¹H NMR (400 MHz, CDCl₃)

Table 2, 3ad¹³C NMR (101 MHz, CDCl₃)

		1			·		1			1					·	1		1		1 1	1			1				1		
190		180		170	160	15)	140	130	1	20	110	10	0	90		80		70	6	0	50	40	3	0	20	10	C)	-1C
	f1 (ppm)																													

0 '**P**h Me Me-

Table 2, 3ad³¹P NMR (162 MHz, CDCl₃)

Me 0 **`**Ph Ρh

Table 2, 3ae¹H NMR (400 MHz, CDCl₃)

S37

Me O P P Ph Ph

Table 2, 3ae¹³C NMR (101 MHz, CDCl₃)

Me O ,`Ph Ph

Table 2, 3ae³¹P NMR (162 MHz, CDCl₃)

Me Ph Me Ph

Table 2, 3af¹³C NMR (101 MHz, CDCl₃)

Me 0 Ph Ρh Mé

Table 2, 3af³¹P NMR (162 MHz, CDCl₃)

Table 2, 3ag¹H NMR (400 MHz, CDCl₃)

Table 2, 3ag

44.42

Me 0 Ph Ρh Ρĥ

 Table 2, 3ag

 ³¹P NMR (162 MHz, CDCl₃)

	1		1		1	1		1		1					1					1		1		1	1		1		1				
100		95		90	85		80		75		70	65	-)	60		55	50		45		40		35	30		25		20	15	ز	10	5	0
																	f1 (pp	om)															

7.1.65 **7**1.61

Table 2, 3ah¹H NMR (400 MHz, CDCl₃)

0 Ph Me Ph Ph

Table 2, 3ah³¹P NMR (162 MHz, CDCl₃)

Table 2, 3ai ¹H NMR (400 MHz, CDCl₃)

Table 2, 3ai³¹P NMR (162 MHz, CDCl₃)

		1 1	1	·		1						·		1 1						
100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0
										f1 (ppm	ר)									

0 **`**Ph S Ρh

Table 2, 3aj ¹H NMR (400 MHz, CDCl₃)

0 vîPh Ph S

 Table 2, 3aj

 ³¹P NMR (162 MHz, CDCl₃)

29.55

Table 2, 3ak¹³C NMR (75 MHz, CDCl₃)

0 Ph Рĥ Ph

Table 2, 3ak³¹P NMR (122 MHz, CDCl₃)

0 Ph. Ph Ph' Ρh Mé

Table 2, 3al¹H NMR (400 MHz, CDCl₃)

Table 2, 3al¹³C NMR (75 MHz, CDCl₃)

0 Ph-Ph Ph' Ph Mé

Table 2, 3al³¹P NMR (122 MHz, CDCl₃)

S61

Table 2, 3am¹³C NMR (101 MHz, CDCl₃)

Me 0 'Ph Ph Mé

Table 2, 3am³¹P NMR (162 MHz, CDCl₃)

Table 2, 3an¹H NMR (400 MHz, CDCl₃)

 Table 2, 3an

 ³¹P NMR (162 MHz, CDCl₃)

	1		1	1	1		·		·	1 1	1	·		1	1	1 1	·	1		- I
100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0
										f1 (ppm	ר)									

0 ,`Ph Ph

eq 1, 3ao ¹H NMR (400 MHz, CDCl₃)

0 ,`Ph Ph

eq 1, 3ao ³¹P NMR (162 MHz, CDCl₃)

Table 3, 3bb³¹P NMR (162 MHz, CDCl₃)

Table 3, 3bi ¹H NMR (400 MHz, CDCl₃)

Table 3, 3bi³¹P NMR (162 MHz, CDCl₃)

	1		1		1 1	1		-		i			1		- 1		1		1		1		1		1		1	1	·					 \neg
100		95		90	85	5	80		75	7	0	65		60		55	Į	50		45		40		35	ć	30	2	25	20	15	1(C	5	0
																	f1 (ppm	1)															

 Table 3, 3cb

 ³¹P NMR (162 MHz, CDCl₃)

		1			·		1		1	1	1 1	1		· · ·	1		1 1				
100	95		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0
											f1 (ppm)									

Table 3, 3ci ¹H NMR (400 MHz, CDCl₃)

 Table 3, 3ci

 ³¹P NMR (162 MHz, CDCl₃)

0|| OMe Ph ÓМе

Table 3, 3db¹H NMR (400 MHz, CDCl₃)

Table 3, 3db³¹P NMR (162 MHz, CDCl₃)

- 4 CO C C C C C C C C C C C C C C C C C	-00040000004
8944888887777	∞∞ ⊳ ∽∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Table 3, 3dp ¹H NMR (400 MHz, CDCl₃)

Table 3, 3dp¹³C NMR (101 MHz, CDCl₃)

Table 3, 3dp³¹P NMR (162 MHz, CDCl₃)

Table 3, 3ea¹H NMR (400 MHz, CDCl₃)

Table 3, 3ea¹³C NMR (101 MHz, CDCl₃)

Table 3, 3ea³¹P NMR (162 MHz, CDCl₃)

Table 3, 3eb¹H NMR (400 MHz, CDCl₃)

Table 3, 3eb¹³C NMR (101 MHz, CDCl₃)

Table 3, 3eb³¹P NMR (162 MHz, CDCl₃)

	1		1		1	1	·		1	- 1	·	- I	· · · · ·	1	- I	1	·	- I I		
100	95	90	85	80	75	70	65	60	55	50	45	4(D 35	30	25	20	15	10	5	0
										f1 (ppr	n)									

0|| Eť CI

Table 3, 3fc ¹³C NMR (101 MHz, CDCl₃)

Table 3, 3fc³¹P NMR (162 MHz, CDCl₃)

	·	1	1	- I	1		1	1	1 1	1	1	1		1	1	1 1	1	1 1	· · · · ·	
100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0
										f1 (ppm))									

Table 3, 3ff¹H NMR (400 MHz, CDCl₃)

Table 3, 3ff¹³C NMR (101 MHz, CDCl₃)

Table 3, 3ff³¹P NMR (162 MHz, CDCl₃)

Table 3, 3gc¹H NMR (400 MHz, CDCl₃)

Eť CF₃ ĊF₃

Table 3, 3gc³¹P NMR (162 MHz, CDCl₃)

	1			1	1		·				1	1	1 1		1 1			1 1	· · · · ·	
100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0
										f1 (ppm))									

Table 3, 3gd³¹P NMR (162 MHz, CDCl₃)

<a>8.52 7 16 7 10 7 08

3.33 3.33 3.33 3.32 3.32 3.32 3.32 3.32	1.14 1.12 1.09

Table 3, 3ha¹H NMR (400 MHz, CDCl₃)

Table 3, 3ha¹³C NMR (101 MHz, CDCl₃)

Table 3, 3ha³¹P NMR (162 MHz, CDCl₃)

P٢

Table 3, 3hb¹³C NMR (101 MHz, CDCl₃)

√50.68
√49.93

Table 3, 3hb³¹P NMR (162 MHz, CDCl₃)

255 255 255 255 255 255 255 255 255 255	62 55 55 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57

0 , [°]Ph Me Et

Table 4, 3jp (major) ¹H NMR (300 MHz, CDCl₃)

0 ,`Ph Me Et

Table 4, 3jp (minor) ¹H NMR (300 MHz, CDCl₃)

0 **,`P**h Me Eť

Table 4, 3jp³¹P NMR (122 MHz, CDCl₃)

∧3.67 √3.64 4.16 4.12 4.07

1.93 1.89

S118

0 v Ph Me Рń

Table 4, 3jq (major) ¹H NMR (300 MHz, CDCl₃)

-8.63 88.22 88.20 7.88 7.88 7.88 7.84 7.84 7.78 7.78 7.76 7.76 7.35 7.35 7.35 7.35 7.32 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.35 7.67 7.78 7.88 7.88 7.88 7.88 7.88 7.78 7.88 7.78 7.88 7.78 7.88 7.78 7.88 7.78 7.88 7.78 7.88 7.78 7.88 7.787 7.7287 7.7287 7.7287 7.7287 7.7287 7.7287 7.7287 7.7287 7.7287 7.7287 7.7287 7.7287 7.72007 7.7207 7

Table 4, 3jq (minor) ¹H NMR (300 MHz, CDCl₃)

O Ph Ρĥ Мe

Table 4, 3jq (major)³¹P NMR (122 MHz, CDCl₃)

ومراجع والمراجع المراجع والمقارب والمراجع والمرجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

O Ph Ρĥ Мe

Table 4, 3jq (minor)³¹P NMR (122 MHz, CDCl3)

Table 4, 3kp¹³C NMR (75 MHz, CDCl₃)

0 ∕⊃Ph *t-*Bu Eť

Table 4, 3kp³¹P NMR (122 MHz, CDCl₃)

∧1.40 √1.36 --3.72 -4.14 0 ∕⊃Ph *t-*Bu Рĥ Table 4, 3kq ¹H NMR (400 MHz, CDCl₃) S126

4.61

190

S127

-1C

0 ∖`Ph *t-*Bu Ph

Table 4, 3kq³¹P NMR (162 MHz, CDCl₃)

والعربة فيسيناها

-1.0

Me Ph

eq 3, 4aa ¹³C NMR (75 MHz, CDCl₃)

Þh Mé

eq 3, 4aa ³¹P NMR (122 MHz, CDCl₃)

S132

eq 3, 4gd ¹H NMR (400 MHz, CDCl₃)

³¹P NMR (122 MHz, CDCl₃)

S134

VII. References

(1) Arvai, A. J.; Nielsen, C. ADSC Quantum-210 ADX Program, Area Detector System Corporation: Poway, CA, USA, 1983.

(2) Otwinowski, Z.; Minor, W. *Methods in Enzymology*; Carter Jr., C. W. Jr.; Sweet, R. M., Eds.; Academic Press: New York, 1997, vol. 276, part A, pp. 307–326.

(3) Sheldrick, G. M. SHELXT – Integrated space-group and crystal structure determination. *Acta Cryst.* **2015**, *A71*, 3–8.

(4) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta. Cryst. 2015, C71, 3-8.

(5) Nie, S.-Z.; Davison, R. T.; Dong, V. M. Enantioselective Coupling of Dienes and Phosphine Oxides. *J. Am. Chem. Soc.* **2018**, *140*, 16450–16454.