Boron Lewis Acid-Catalyzed Hydrophosphinylation of N-Heteroaryl-Substituted Alkenes with Secondary Phosphine Oxides

Jimin Han, Jongwon Kim, Jaehoo Lee, Younghun Kim, and Sarah Yunmi Lee*

Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea sarahyunmi@yonsei.ac.kr

Supporting Information

Table of Contents

I. Development of Boron-Catalyzed Hydrophosphinylations of Alkenes S2
II. X-ray Crystallographic Data for 3ao S7
III. X-ray Crystallographic Data for 3kp•HOTf S9
IV. Reactivity and Mechanistic Studies S11
V. HPLC Spectra of 3kp (eq 2) S23
VI. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR Spectra of Isolated Compounds S24
VII. References S135

I. Development of Boron-Catalyzed Hydrophosphinylations of Alkenes

Table S1. Effect of catalyst loadings and reaction concentrations.a,b

[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1.2 equiv), and catalyst ($5-10 \%$) in toluene at r.t. for 3 h . [b] 2-(prop-1-en-1-yl)pyridine ($E: Z$ ratio of 5.0 :1.0) and (E)-2-(but-2-en-2-yl)pyridine were used. [c] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis with $1,1,2,2$-tetrachloroethane as an internal standard.

Table S2. Effect of solvents for the reactions with challenging substrates.a,b
entry
[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1.0 equiv), and catalyst (10%) in toluene $(0.5 \mathrm{M})$ at r.t. for 19 h . [b] 1-Methyl-2-(prop-1-en-1-yl)-1H-indole ($E: Z$ ratio of 1.2:1.0) was used. Racemic mixture of methyl(phenyl)phosphine oxide was used. [c] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis with 1,1,2,2tetrachloroethane as an internal standard.
: Our boron-catalyzed hydrophosphinylation generally proceeded well in either toluene or dichloromethane as a reaction solvent; when the phosphine oxide containing p-methoxyphenyl group was employed, the reaction in dichloromethane resulted in higher yield of the product compared to that in toluene, due to the low solubility of the phosphine oxide in toluene.

Scheme S1. Effect of alkene geometry on the reaction rate. ${ }^{\text {a,b }}$

[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1.1 equiv), and catalyst (10%) in toluene $(0.5 \mathrm{M})$ at r.t. for 19 h . [b] The yield of the product was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis with $1,1,2,2-$ tetrachloroethane as an internal standard.
: The reaction of alkene $\mathbf{2 c}(E: Z$ ratio $1: 2)$ with 1 a proceeded faster than that of alkene $\mathbf{2 c}(Z$ only $)$.

Table S3. The Z-to-E Isomerization of (Z)-2-(but-1-en-1-yl)pyridine in the presence of a borane. ${ }^{a}$

	catalyst	temperature	$\mathrm{E}: \mathrm{Z}^{b}$
entry	-	r.t.	$<1: 20$
1	-	$80^{\circ} \mathrm{C}$	$<1: 20$
2	r.t.	$1: 4$	
3	$10 \% \mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}$	$80^{\circ} \mathrm{C}$	$>20: 1$
4	$10 \% \mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}$	r.t.	$1: 6$
5	$10 \% \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$	$80^{\circ} \mathrm{C}$	$10: 1$
6	$10 \% \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$		

[a] Reaction conditions: alkene (1.0 equiv), and catalyst (10%) in toluene (0.5 M) at r.t. for 19 h . [b] The E:Z ratio was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis.
: We observed the isomerization of alkene $\mathbf{2 c}$ in the presence of a borane catalyst at room temperature or $80^{\circ} \mathrm{C}$.

Scheme S2. Reactions with no catalyst: background reactions for few substrates.a,b

31\%
r.t.
<1\%
r.t.

$<1 \%$, @ $80^{\circ} \mathrm{C}$ 8% @ $100^{\circ} \mathrm{C}$

$<1 \%$ @ $60^{\circ} \mathrm{C}$
<1\% @ r.t.
$<1 \%$ @ $80^{\circ} \mathrm{C}$

r.t.
[a] Reaction conditions: $\mathbf{1 a}(0.05 \mathrm{mmol})$, alkene (1.1 equiv) in toluene $(0.5-1 \mathrm{M})$ at the given temperature for $12-24 \mathrm{~h}$. [b] The yield of the product was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis with $1,1,2,2$-tetrachloroethane as an internal standard.
: Few alkene substrates reacted slowly with SPO 1a in the absence of a catalyst.

Scheme S3. Reactions with chiral catalysts., ${ }^{a, b}$

[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1.0 equiv), and catalyst (10%) in toluene (0.5 M). [b] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.
[c] Determined by AD column, IPA $10-20 \%$. [d] In the absence of the catalyst: <5\% yield.
: Our brief investigations to develop catalytic asymmetric hydrophosphinylations were not successful.

Scheme S4. Reactions of alkene substrates that are not included in the main paper., ${ }^{\text {ab }}$

[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1.2 equiv), and catalyst (10%) in toluene (0.5 M). [b] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis with $1,1,2,2$-tetrachloroethane as an internal standard.
: Since our hydrophosphinylation focused on the use of multisubstituted alkenes, we did not include these substrates in the paper, however, alkenes bearing a 4 -pyridyl substituent and a pyrazyl substituent.

Scheme S5. Hydrophosphinylations catalyzed by a Bronsted acid.a,b

[a] Reaction conditions: Secondary phosphine oxide (0.05 mmol), alkene (1 equiv), and catalyst (10%) in toluene (1 M). [b] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.
: Brønsted acids as a catalyst did not effectively promote the hydrophosphinylation.

II. X-ray Crystallographic Data for 3ao

Diphenyl[4-(pyridin-2-yl)but-2-en-1-yl]phosphine oxide (eq 1, 3ao).

Note: The structure of product 3ao was determined by X-ray crystallography. Crystals suitable for X-ray crystallography were grown from the saturated solution of $\mathrm{CHCl}_{3} /$ hexanes at $-20^{\circ} \mathrm{C}$.

The diffraction data from yellow crystals of $\mathbf{3 a o}\left(0.075 \times 0.035 \times 0.020 \mathrm{~mm}^{3}\right)$ mounted on a MiTeGen MicroMount© were collected at 100 on a ADSC Quantum 210 CCD diffractometer with synchrotron radiation (0.8000 Å) at Supramolecular Crystallography 2D, Pohang Accelerator Laboratory (PAL), Pohang, Korea. The ADSC Q210 ADX program ${ }^{1}$ was used for data collection (detector distance is 66 mm , omega scan; $\Delta \omega=3^{\circ}$, exposure time is $2 \mathrm{sec} /$ frame for 3ao and HKL3000sm (Ver. 703r) ${ }^{2}$ was used for cell refinement, reduction and absorption correction. The crystal structures of 3ao was solved by the direct method with SHELX-XT (Ver. 2014/5) ${ }^{3}$ and refined by full-matrix least-squares calculations with the SHELX-XL (Ver. 2016/4) ${ }^{4}$ program package.

Table S4. Crystal data and structure refinement for 3ao.

Identification code	3 ao
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NOP}$
Formula weight	333.35
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a/Å	5.8300(12)
b / \AA	24.776(5)
c/A	12.198(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	101.64(3)
$\gamma /{ }^{\circ}$	90
Volume/ ${ }^{\text {a }}$	1725.7(6)
Z	4
$@_{\text {calcg }} / \mathrm{cm}^{3}$	1.283
μ / mm^{-1}	0.227
F(000)	704.0
Crystal size/mm ${ }^{3}$	$0.075 \times 0.035 \times 0.02$
Radiation	synchrotron ($\lambda=0.800$)
2Θ range for data collection/ ${ }^{\circ}$	3.7 to 55.994
Index ranges	$-6 \leq \mathrm{h} \leq 6,-29 \leq \mathrm{k} \leq 29,-14 \leq 1 \leq 14$
Reflections collected	10533
Independent reflections	2841 [$\left.\mathrm{Rint}=0.0494, \mathrm{R}_{\text {sigma }}=0.0335\right]^{\text {a }}$
Data/restraints/parameters	2841/6/217
Goodness-of-fit on F^{2}	1.072
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0378, \mathrm{wR}_{2}=0.1019$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0412, \mathrm{wR}_{2}=0.1044$
Largest diff. peak/hole / e \AA^{-3}	0.57/-0.34

III. X-ray Crystallographic Data for 3kp•HOTf

Note: The structure of product $3 \mathbf{k} \mathbf{p}$ was determined by X-ray crystallography of the corresponding quinolinium triflate. Crystals suitable for X-ray diffraction were grown from dichloromethane/ether at room temperature.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89(\mathrm{dd}, \mathrm{J}=17.0,9.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.71-7.56(\mathrm{~m}, 3 \mathrm{H}), 4.25-3.97(\mathrm{~m}, 2 \mathrm{H})$, $3.27-3.12(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 2 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, 9H), $0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathbf{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 60.75(\mathrm{~s})$.

(Only one enantiomer is shown.)

The diffraction data from yellow crystals of LYM1 $\left(0.09 \times 0.09 \times 0.04 \mathrm{~mm}^{3}\right)$ mounted on a MiTeGen MicroMount© were collected at 100 on a ADSC Quantum 210 CCD diffractometer with synchrotron radiation ($0.7000 \AA$) at Supramolecular Crystallography 2D, Pohang Accelerator Laboratory (PAL), Pohang, Korea. The ADSC Q210 ADX program ${ }^{1}$ was used for data collection (detector distance is 66 mm , omega scan; $\Delta \omega=3 \mathbf{}$, exposure time is $1 \mathrm{sec} /$ frame for LYM1 and HKL3000sm (Ver. 703r) ${ }^{2}$ was used for cell refinement, reduction and absorption correction. The crystal structures of LYM1 was solved by the direct method with SHELX-XT (Ver. 2014/5) ${ }^{3}$ and refined by full-matrix least-squares calculations with the SHELX-XL (Ver. 2016/4) ${ }^{4}$ program package.

Table S5. Crystal data and structure refinement for LYM1.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ ${ }^{3}{ }^{3}$
Z
$Q_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/ mm^{3}
Radiation

LYM1
$\mathrm{C}_{24.01} \mathrm{H}_{29.03} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{PS}$
515.73

100
triclinic
P-1
8.5600(17)
12.297(3)
13.486(3)
69.28(3)
77.10(3)
75.74(3)
1272.3(5)

2
1.346
0.233
540.0
2Θ range for data collection $/{ }^{\circ} 3.216$ to 55.994
Index ranges $\quad-11 \leq h \leq 11,-16 \leq k \leq 16,-18 \leq 1 \leq 17$
Reflections collected
Independent reflections $\quad 5826\left[R_{\text {int }}=0.0420, R_{\text {sigma }}=0.0825\right]$
Data/restraints/parameters 5826/0/390
Goodness-of-fit on $\mathrm{F}^{2} \quad 0.854$
Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0579, w_{2}=0.1445$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.1276, \mathrm{wR}_{2}=0.1703$
Largest diff. peak/hole / e $\AA^{-3} 0.31 /-0.43$

IV. Reactivity and Mechanistic Studies

Scheme 2a of the main paper. Reaction in the presence of BHT.

In a nitrogen-filled glovebox, diphenylphosphine oxide ($10.1 \mathrm{mg}, 0.050 \mathrm{mmol}, 1$ equiv.), (E)-2-styrylpyridine ($7.30 \mathrm{mg}, 0.050 \mathrm{mmol}, 1$ equiv.), 2,6-di-tert-butyl-4-methylphenol [128-37-0] (11.0 $\mathrm{mg}, 0.050 \mathrm{mmol})$ with $10 \% \mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}(0.005 \mathrm{mmol})$ and toluene $(1 \mathrm{M})$ were combined in a $4-\mathrm{mL}$ vial equipped with a stir bar. The resulting mixture was stirred at room temperature for 12 h . The mixture was then exposed to air, and the solvent was evaporated under reduced pressure. The yield of the product was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis with 1,1,2,2tetrachloroethane as an internal standard.
*Additional information: Reactions of other alkenes in the presence of BHT.

Scheme $\mathbf{2 b}$ of the main paper. Reaction with deuterated diphenylphosphine oxide.

In a nitrogen-filled glovebox, deuterated diphenylphosphine oxide ($0.05 \mathrm{mmol}, 1.0$ equiv.), corresponding alkene (1.1 equiv.), $20 \% \mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}(0.010 \mathrm{mmol}$) and toluene (1 M) were combined in a $4-\mathrm{mL}$ vial equipped with a stir bar. The resulting mixture was stirred at room temperature for 12 h . The mixture was then exposed to air, and the solvent was evaporated under reduced pressure. The yield of the product and deuterium incorporation was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis.
*Note: Deuterated diphenylphosphine oxide was prepared according the following procedure. To an oven dried 20-mL vial was added diphenylphosphine oxide [4559-70-0] (0.6 mmol) and a stir-bar. The solid was then dissolved in $d_{4}-\mathrm{MeOH}(1.2 \mathrm{~mL})$ to obtain a 0.5 M solution. The resulting solution was stirred at room temperature for 12 hours. The clear solution was concentrated in vacuo. ${ }^{1} \mathrm{H}$ NMR spectrum showed 92% D incorporation. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.73$ (s, $0.08 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 2 \mathrm{H})$.

Scheme 2c of the main paper. Reactivity trend of various phosphine oxides toward additions to an alkene.

In a nitrogen-filled glovebox, secondary phosphine oxide ($10.1 \mathrm{mg}, 0.050 \mathrm{mmol}$), 2-(but-1-en-1-yl)pyridine [71532-20-2] ($E: Z=1.03 .0 ; 9.96 \mathrm{mg}, 0.055 \mathrm{mmol}$), $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}$ (0.0050 mmol) and toluene $(50 \mu \mathrm{~L})$ were combined in a $4-\mathrm{mL}$ vial equipped with a stir bar. The resulting mixture was stirred at room temperature for 2 h . The mixture was then quenched with $5 \mu \mathrm{~L}$ IPA, and the solvent was evaporated under reduced pressure. The yield of the product was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis with 1,1,2,2-tetrachloroethane as an internal standard.
*Additional information: The same reactivity trend was observed for the reaction with alkene $2 \boldsymbol{a}$.

Yield of 3: >99\%

84\%

16\%

$8 \% \quad<5 \%$

<NMR Spectroscopic studies>

1. Monitoring of the catalytic reaction between SPO 1a and alkene 2 c by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy. 30% of $B F_{3} \bullet E t_{2} \mathrm{O}$ was used to facilitate the NMR spectroscopic analysis.
1) Interaction between $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}(30 \%)$ and alkene 2 c at r.t. in toluene- d_{8}. (${ }^{1} \mathrm{H}$ NMR spectra)

2) Interaction between $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}(30 \%)$ and diphenylphosphine oxide $\mathbf{1 a}$ at r.t. in toluene- $d \delta$. (${ }^{31} \mathrm{P}$ NMR spectra)

5
$\stackrel{5}{6}$
$\stackrel{1}{6}$

S13
3) ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of the reaction between diphenylphosphine oxide $\mathbf{1 a}$ and alkene 2c in the presence of $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}(30 \%)$ at r.t. in toluene- d_{8}, after $\sim 30 \mathrm{~min}$.
(${ }^{31} \mathrm{P}$ NMR spectra of the crude mixture after 30 min)
$\stackrel{\text { U. }}{\stackrel{\rightharpoonup}{0}}$
$<5 \%$ of borane-SPO form was observed.

: Interaction between borane and alkene was observed during the catalytic reaction.
2. Monitoring of the catalytic reaction between SPOs 1a, 1d, 1 f and alkene 2 c by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathbf{P}$ NMR spectroscopy. 30% of $B\left(C_{6} F_{5}\right)_{3}$ was used to facilitate the NMR spectroscopic analysis.
*Notes: a) Due to the low solubility of SPO 1d in toluene, we performed these reactions in $\mathrm{CDCl}_{3} ;$ b) The hydrophosphinylation in CDCl_{3} proceeded smoothly to produce the corresponding products (see below); c) In CDCl_{3}, reactions with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ led to the formation of products in higher yields compared to that with $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}$.

1a

1f

1) Interaction between $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(30 \%)$, SPO 1 a , and alkene at r.t. in CDCl_{3}. (${ }^{31} \mathrm{P}$ NMR spectra)

: The ${ }^{31} \mathrm{P}$ NMR signal (B-P interaction) disappeared upon the addition of alkene.
2) ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of the reaction between SPO 1a, $\mathbf{1 d}, \mathbf{1 f}$ and alkene $\mathbf{2 c}$ in the presence of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(30 \%)$ at r.t. in CDCl_{3}, after $\sim 30 \mathrm{~min}$.
(${ }^{1} \mathrm{H}$ NMR spectra of the crude mixture)

: The higher percentage of borane-alkene species was observed when the SPO contained electron-withdrawing groups ($1 \mathrm{f}>1 \mathrm{a}>1 \mathrm{~d}$).

(${ }^{31} \mathrm{P}$ NMR spectra of the crude mixture)

SPO : coordinated $\mathrm{SPO}=1.00: \mathbf{0 . 0 6}$

Overall ratio

alkene : coordinated alkene : SPO : coordinated SPO

1	0.09	0.9	0.05

Overall ratio

alkene : coordinated alkene : SPO : coordinated SPO

$\mathrm{SPO}:$ coordinated $\mathrm{SPO}=1.00: \mathbf{0 . 1 3}$
Overall ratio
alkene : coordinated alkene : SPO : coordinated SPO
$\begin{array}{llll}1 & 0.05 & 0.9 & 0.1\end{array}$

3. (Scheme 2d)

- Monitoring the formation of the acid-base pair \mathbf{C} between a borane and product 3 kp by NMR spectroscopy: in comparison with the spectra of the quinolinium triflate of $3 \mathbf{k p}$. Note: the structure of $\mathbf{3 k p}$ •HOTf was confirmed by X-ray crystallography.
: Based on the following ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ spectra, we concluded that the major species formed by the reaction between $\mathrm{BF}_{3} \bullet E t_{2} \mathrm{O}$ and product 3 was the the $\mathrm{B}-\mathrm{N}$ acid-base pair.

1) ${ }^{31} \mathrm{P}$ NMR spectra of the mixture of $3 \mathbf{k p}$ and borane (1:1) at r.t. in CDCl_{3} (after $\sim 30 \mathrm{~min}$)

2) ${ }^{1} \mathrm{H}$ NMR spectra of the mixture of $3 \mathbf{k p}$ and borane (1:1) at r.t. in CDCl_{3} (after $\sim 30 \mathrm{~min}$)

- Monitoring the generation of alkene-borane intermediate upon the addition of alkene $2 p$ to the mixture of a borane and product 3 kp by NMR spectroscopy.
: Based on the following ${ }^{1} H$ spectra, we concluded that the major species in the mixture of alkene $2 p$, a borane, and product $3 k p$ was the activated form of alkene $2 p$.
(Note: In the presence of a borane catalyst, the E/Z mixture of alkene $2 p$ transformed into (E)alkene $2 p$.)

4. (Additional information on the mechanism)

Monitoring the interaction among $B\left(C_{6} F_{5}\right)_{3}$, alkene 2 a , and reaction product 3aa by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy.

1) Interaction among $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(30 \%)$, alkene $\mathbf{2 a}$, and product 3 aa at r.t. in CDCl_{3}. (${ }^{1} \mathrm{H} \mathrm{NMR}$ spectra)

Note: <Spectrum C> Alkene $2 a$ was added to the mixture of product 3 aa and borane (30%).
: It displayed both interactions of borane-alkene and borane-product (see also ${ }^{31} \mathrm{P}$ spectra on the next page).

2) Interaction between $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(30 \%)$ and product 3aa at r.t. in CDCl_{3}. ${ }^{31} \mathrm{P}$ NMR spectra)

3) Interaction among $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(30 \%)$, product 3aa, and alkene $\mathbf{2 a}$ at r.t. in CDCl_{3}. (${ }^{31} \mathrm{P} \mathrm{NMR}$ spectra). Addition of alkene $2 a$ (1 equiv) to the mixture of $B\left(C_{6} F_{5}\right)_{3}(30 \%)$ and product 3 aa (1 equiv)

: The interaction between product and borane considerably diminished upon adding alkene.

V. HPLC Spectra of 3 kp (eq 2)

(R)-tert-Butyl(phenyl)((R)-1-(quinolin-2-yl)butan-2-yl)phosphine oxide (eq $2,3 \mathrm{kp}$).

The ee of the product was determined by HPLC (Daicel CHIRALCEL AD-H column; solvent system: $10.0 \% i$-PrOH in hexanes; $1.0 \mathrm{~mL} / \mathrm{min}$; retention times: 6.16 min (minor), 8.49 min (major)).

<Peak Table>

| DetectorA220nm |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Peak\# Ret. Time Area Height Conc.
 1 6.162 896029 76439 7.572
 Unit Mark Name
 2 8.490 10937012 707454 92.428

 Total 11833041 783893
 |

<HPLC trace of 85% ee of $3 \mathbf{k p}>$

<Chromatogram>

mV

<Peak Table>

Detector A 220nm
Peak\# Ret. Time Area Height Conc. Unit Mark
1

<HPLC trace of racemic 3kp>

గ N

Table 2, 3aa
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3aa
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 が $\underbrace{\infty}$

Table 2，3ab
${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

	$\begin{array}{r} \vdash \\ \infty \\ \infty \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \underset{\sim}{\top} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \Gamma \\ & \hline \\ & i \end{aligned}$	あ8か8\％ －チンシー・							$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{\mathrm{o}} \end{aligned}$								
	8.5	1	7.5	7.0	6.5	6.0	5	5.0	4	40	15	3.0	2.5	2.0	1.5	1.0	0.5	． 0	
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{aligned} & 4.0 \\ & \mathrm{f} 1 \\ & \text { (ppm) } \end{aligned}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	－0．5

®
 ず

Table 2, 3ab
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ab
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ac
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ac
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ac
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ad
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ad
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ad
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ae
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

产下：

Table 2，3ae
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

Table 2, 3ae
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	1	1	1	1	5	1	1	1	1	1	1	1	1	
100	95	90	85	80	75	70	65	60	55	$\begin{gathered} 50 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	45	40	35	30	25	20	15	10	5

Table 2, 3af
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 2, 3af
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	\square
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
										f1 (ppm)										

Table 2, 3af
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ag
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ag
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ag
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{10}{6}$

Table 2, 3ah
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 గ్ గ్ర
mos

Table 2, 3ah
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ah
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ai
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

 べ

Table 2, 3ai
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ai
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	1		1	1	,	1	1	1	1	1	1	1	1		
100	95	90	85	80	75	70	65	60	55	$\begin{aligned} & 50 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	45	40	35	30	25	20	15	10	5	

Table 2, 3aj
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

ing 号等 ヘั～～～～

Table 2，3aj
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

Table 2, 3aj
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3ak
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

- 3

Table 2, 3ak
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 2, 3ak
${ }^{31} \mathrm{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3al
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3al
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 2, 3al
${ }^{31} \mathrm{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2，3am
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 2, 3am
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 2, 3am
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3an
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 2, 3an
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 2, 3an
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

eq 1, 3ao
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

eq 1, 3ao
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

		1	1	1	1	1	1	1	1	1 1-	1	70	1	1	1		1	10		
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	$-1 \mathrm{C}$

eq 1,3ao
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3bb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3，3bb
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

Table 3, 3bb
${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 3, 3bi
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

은

Table 3, 3bi
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3bi
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3cb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3cb
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3cb
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 ற ற ற ற ற ற

Table 3, 3ci
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	$\begin{aligned} & \text { T1 } \\ & 8 \\ & \hline \end{aligned}$									$\begin{aligned} & 9 \\ & \hline 8 \\ & \hline \end{aligned}$									
	1	${ }^{1}$	1	7	1	1	5	1.	1	1	1	1	1	1.5	1.	0.	1	1	
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1.

Table 3, 3ci
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3ci
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	T	T	T	1	1	1	1	1	T	1	1	1	1	1	1	1
100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5

Table 3, 3db
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

G 영ㅇㅇㅇN N. ~눈운운

```
N~N
```


Table 3, 3db
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3db
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3dp
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N
$\stackrel{\circ}{\circ} \stackrel{\circ}{\circ}$

Table 3，3dp
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

Table 3, 3dp
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3ea
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

\leadsto

ฟ~~

Table 3, 3ea
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3ea ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	T	T	T	1	1	1	1	1	T	1	1	1	1	1	1	1
100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5

Table 3, 3eb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3eb
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	T	1	1	1	1	1	1	1		1	1	1	1	1		
190	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f1}(\mathrm{pom}) \end{gathered}$	80	70	60	50	40	30	20	10	0	-10

Table 3, 3eb
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3fc
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3，3fc
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

Table 3, 3fc
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3ff
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3ff
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 3, 3ff
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\underbrace{\text { ®ér }}$

Table 3, 3gc
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

คi fo
尔
か N M
べ心㇒゙
군 $\stackrel{\text { N N N }}{\text { N }}$

Table 3，3gc
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

Table 3, 3gc
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\underbrace{\infty}$

Table 3, 3gd
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

えテ ming nio స్ల

Table 3, 3gd
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3gd
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3ha
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\sim}{\sim}$ へ్ల 융

Table 3, 3ha
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3ha
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3hb
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

© is $\stackrel{\text { N }}{\stackrel{\text { Na }}{+}}$

Table 3, 3hb
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3hb
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3i
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3i
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 3, 3i
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 4, 3jp (major) ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 4, 3jp (minor)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

														$\stackrel{\Gamma}{\infty} \stackrel{\square}{\square}$		$\begin{aligned} & \text { T' } \\ & \stackrel{-}{\circ} \\ & \dot{m} \end{aligned}$				
9	85	1	7.5	7.0	6.5	6.0	5.5	5.0	4.5	40		3.	5	2	1.5	1.0				
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{aligned} & 4.0 \\ & (\mathrm{ppm}) \end{aligned}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1. 1

Table 4, 3jp
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	$-1 \mathrm{C}$

Table 4, 3jp
${ }^{31} \mathrm{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 4, 3jq (major)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 4, 3jq (minor)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{9}{5}$每

Table 4, 3jq
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 4, 3jq (major)
${ }^{31} \mathrm{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
\qquad

	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1		
100	95	90	85	80	75	70	65	60	55	$\stackrel{50}{\mathrm{f} 1} \text { (ppm) }$	45	40	35	30	25	20	15	10	5	

Table 4, 3jq (minor)
${ }^{31} \mathrm{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Table 4, 3kp
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 4, 3kp
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	T	1	1	1	1	1	1	1		1	1	1	1	1		
190	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f1}(\mathrm{pom}) \end{gathered}$	80	70	60	50	40	30	20	10	0	-10

Table 4, 3kp
${ }^{31} \mathrm{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	1		1	1	,	1	1	1	1	1	1	1	1		
100	95	90	85	80	75	70	65	60	55	$\begin{aligned} & 50 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	45	40	35	30	25	20	15	10	5	

Table 4, 3kq
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Table 4, 3kq
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

		170	16	15	140	1	12	1	10	0	1	10	1	1	1	1	1		1	
190	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0	-10

Table 4, 3kq
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

eq 3，4aa
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

eq 3, 4aa
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

eq 3, 4aa
${ }^{31} \mathrm{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	1	1	1	1	1	1	1	1	
50	45	40	35	30	25	20	$\begin{gathered} 15 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	10	5	0	-5	-10	-15	-2C

eq 3 , 4 gd
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

eq $3,4 \mathrm{gd}$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1	1		,	1	1	1			1	1	1	
45	40	35	30	25	20	$\begin{aligned} & 15 \\ & (\mathrm{ppm}) \end{aligned}$	10	5	0	-5	-10	-15	-2C

VII. References

(1) Arvai, A. J.; Nielsen, C. ADSC Quantum-210 ADX Program, Area Detector System Corporation: Poway, CA, USA, 1983.
(2) Otwinowski, Z.; Minor, W. Methods in Enzymology; Carter Jr., C. W. Jr.; Sweet, R. M., Eds.; Academic Press: New York, 1997, vol. 276, part A, pp. 307-326.
(3) Sheldrick, G. M. SHELXT - Integrated space-group and crystal structure determination. Acta Cryst. 2015, A71, 38.
(4) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta. Cryst. 2015, C71, 3-8.
(5) Nie, S.-Z.; Davison, R. T.; Dong, V. M. Enantioselective Coupling of Dienes and Phosphine Oxides. J. Am. Chem. Soc. 2018, 140, 16450-16454.

