Isobaric Vapor-Liquid Equilibria for Binary Mixtures of Gamma-Valerolactone + Toluene

Munaf Al-Lami,^{1,2} Dávid Havasi¹, Katalin Koczka,¹and László T. Mika¹

¹Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

²Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University for Oil and Gas, Iraq

Corresponding Author: László T. Mika, e-mail: laszlo.t.mika@mail.bme.hu

Number of Pages: 8 Number of Tables: 2 Number of Figures: 11

Figure S1 Deviation of experimental vapor pressures (p^{o}_{meas}) from the Antoine equation fit (p^{o}_{calc}) for toluene (\bullet)

Figure S2 $\ln(p^{\circ}) - 1/T$ plot for toluene. blue \bullet : this work, red \bullet : Wiswanath et al., black $\triangleleft \square$: Eubank et al, brown \blacksquare : Willingham et al, dark purple \star : Pitzer et al, pink \blacktriangle : Holder et al, green

►: Jose et al

una p	101.5 III u: u(p)	$0.0 \mathrm{m} \mathrm{u}, \mathrm{u}(1)$	0.1 11		
Mole Tolu	e fraction of uene $(x_1/-)$	$n_{\rm D}^{20}$ / -	Mole fraction of Toluene $(x_1 / -)$	$n_{\rm D}{}^{20}$ / -	
	1.0000	1.4972	0.4297	1.4620	
	0.9737	1.4956	0.4071	1.4603	
	0.8632	1.4891	0.3517	1.4564	
	0.8273	1.4869	0.3047	1.4539	
	0.7801	1.4837	0.2463	1.4500	
	0.7110	1.4798	0.2008	1.4472	
	0.7047	1.4791	0.1299	1.4421	
	0.6166	1.4733	0.0000	1.4338	
	0.5094	1.4667			

Table S1 Refractive indices of Toluene (1) – GVL (2) binary mixtures at T = 293.15 K, and p = 101.3 kPa. u(p) = 0.5 kPa, u(T) = 0.1 K

Figure S3 Experimental Refractive Indexes of the Toluene (1) – GVL (2) System at 293.15 K

Table S2 Structural Parameters for the UNIFAC and UNIQUAC models (R –Volume Parameter, Q – Area Parameter, r – van der Waals volume parameter, q – van der Waals area parameter) for Pure Components

Parameter	Toluene	GVL ^a
R	3.9228	3.6988
Q	2.968	3.036
r	3.9228	R _{GVL}
q	2.9679	Q_{GVL}

^a GVL was divided in ChemCAD to the following subgroups for calculating R and Q parameters for the UNIFAC model: subgroups 1 (CH₃), 2 (CH₂), 3 (CH) and 23 (CH₂COO) were included. Toluene was divided to subgroups 10 (ACH – 5 units) and 12 (ACHCH₂).¹ As the r and q parameters for GVL are not available, ChemCAD applied r and q from UNIFAC model.

Figure S4 Relative volatility plot of the Toluene – GVL binary system at p = 101.3 kPa. – UNIQUAC model, --- NRTL model, --- Wilson model

Figure S5 Relative volatility plot of the Toluene – GVL binary system at p = 50.7 kPa. — UNIQUAC model, --- NRTL model, ····· Wilson model

Figure S6 Percentage errors of model K₁-values of Toluene in VLE data of Toluene-GVL binary mixture at p = 101.3 kPa. \Box : UNIQUAC model, Δ : NRTL model \circ : Wilson model

Figure S7 Percentage errors of model K₂-values of GVL in VLE data of Toluene-GVL binary mixture at p = 101.3 kPa. \Box : UNIQUAC model, Δ : NRTL model \circ : Wilson model

Figure S8 Percentage errors of model K₁-values of Toluene in VLE data of Toluene-GVL binary mixture at p = 50.05 kPa. \Box : UNIQUAC model, Δ : NRTL model \circ : Wilson model

Figure S9 Percentage errors of model K₂-values of GVL in VLE data of Toluene-GVL binary mixture at p = 50.7 kPa. \Box : UNIQUAC model, Δ : NRTL model \circ : Wilson model

Figure S10 L/W coefficients of the Wisniak test for toluene – GVL system at 101.3 kPa.

Figure S11 L/W coefficients of the Wisniak test for toluene – GVL system at 50.7 kPa.

References

 Gmehling, J.; Rasmussen, P.; Fredenslund, A. Vapor-Liquid Equilibria by UNIFAC Group Contribution. Revision and Extension. 2. *Ind. Chem. Process. Des. Dev.* 1982, 21, 118–127.