Supporting Information for

Oxidation, Stability, and Magnetic Ground States of Two-Dimensional Layered Electrides

Wei Li,^{1,2} Yizhou You,^{1,2} and Jin-Ho Choi^{1,2,*}

¹College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China

²Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China

*Corresponding author: jhchoi@suda.edu.cn

Contents:

1. The configurations of O coverage on Ca_2N and Y_2C	S2
2. The projected density of states (PDOS) of Ca_2N and Y_2C	S 3
3. The integrated magnetic moments of the O-adsorbed electrides	S4
4. The spin density of the O monomer case in Ca_2N and Y_2C	S 5
5. The spin density of the vacancy case in Ca_2N and Y_2C	S6
6. The differential charge density and spin density of bilayer and trilayer Ca_2N	S7
7. The partial density of states of bilayer and trilayer Ca ₂ N	S8
8. The data of oxygen monomers with different distance	S9

1. The configurations of O coverage on Ca₂N and Y₂C

Figure S1. Side (upper) and top (lower) views of the O-terminated Ca₂N monolayer in (a) 3/9 ML, (b) 4/9 ML, (c) 1 ML; O-terminated Y₂C monolayer in (d) 4/9 ML, (e) 6/9 ML, (f) 1 ML. In (b),(e), the changes in the bond lengths and angles are 0.34 Å and 15.5° for Ca₂N and 0.16 Å and 6.1° for Y₂C.

2. The projected density of states (PDOS) of Ca₂N and Y₂C

Figure S2. The projected density of states (PDOS) of (a) Ca_2N and (b) Y_2C . The "AE" indicate the surface anionic electrons. The zero energy references represent the Fermi level of each system.

3. The integrated magnetic moments of the O-adsorbed electrides

Figure S3. The side view of the spin density (left) and the integrated magnetic moments of the O-adsorbed (a) Ca₂N and (b) Y₂C. The dashed lines in the graphs indicate the positions of the atomic layers. The spin densities were drawn with an isosurface of 0.0008 e/bohr³ for Ca₂N and Y₂C.

4. The spin density of the O monomer case in Ca_2N and Y_2C

Figure S4. The spin density of O monomer adsorption on (a) h1 and (b) h2 sites for Ca₂N and (c) h1 and (d) h2 sites for Y₂C. The isosurfaces were taken at 0.0008 e/bohr³.

Figure S5. The spin density of (a, b) Ca vacancy in Ca₂N, (c, d) Y vacancy and (e,f) C vacancy in Y_2C for $4\times4\times1$ and $5\times5\times1$ supercell. The spin densities were drawn with an isosurface of 0.0008 *e*/bohr³ for Ca₂N and 0.0015 *e*/bohr³ for Y₂C.

Figure S6. The differential charge density and spin density of (a,c) bilayer Ca₂N and (b,d) trilayer Ca₂N. The isosurfaces were taken at a charge density $0.001 \ e/bohr^3$ for differential charge density and $0.0003 \ e/bohr^3$ for spin density.

7. The partial density of states of bilayer and trilayer Ca₂N

Figure S7. The projected density of states (PDOS) of (a) bilayer Ca_2N and (b) trilayer Ca_2N . The red line of AE stand for surface anionic electrons. The zero energy references represent the Fermi level of each system.

8. The data of oxygen monomers with different distance

Table S1. The adsorption energy, magnetic moment and charge transfer of oxygen monomers with different distance (Å) in Ca₂N and Y₂C. The units are eV, μ B and e, respectively.

Ca ₂ N	Distance [Å]	Adsorption E [eV]	Magnetic M [µB]	Transfer Charge [e]
	3.591	-4.842	0.14	1.43
	6.220	-4.906	0.10	1.42
	12.440	-4.925	0.13	1.43
	17.955	-4.951	0.10	1.44
Y ₂ C	Distance	Adsorption E	Magnetic M	Transfer Charge
	3.520	-5.625	0.13	1.37
	6.099	-5.602	0.12	1.38
	12.198	-5.580	0.07	1.38
	17.600	-5.591	0.04	1.38