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Section S1. Characterization

2.00*
4.19

419 — —
3.99

4.07

Figure S1.

o 85 8 5
ppm

TH-NMR spectrum of [Ru'l(bpy),(dcbpy)](PFs)> (RuCsyHp4NgO4) measured in

d¢-DMSO. Two protons of two carboxyl groups were not observed.
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DRIFTS spectra of [Ru(bpy).(dcbpy)](PFs), (orange), Ru-NU-1000 (green),

NU-1000 (blue) at room temperature. The peak at 1234 cm! due to C-N stretching in Ru complex
was also observed in Ru-NU-1000.
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Figure S3. Pore diameter distribution of NU-1000 (blue) and Ru-NU-1000 (green).
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Section S2. Difference envelope density (DED) analysis

Ambient temperature powder diffraction data were collected at beamline 17-BM-B at the
Advanced Photon Source using 17.04 keV (0.72768 A) x-rays. Capillaries were loaded with
powdered samples, then placed into a sample changer cassette.  Diffraction patterns were
collected using an amorphous silicon area detector. Calibration and data reduction to
one-dimensional patterns were performed using GSAS-II. 1

Lattice parameters were extracted from powder diffraction patterns via Le Bail whole pattern
fitting.[>3] A previously published crystal structure for NU-1000 (P6/mmm) was used as a
starting model for these analyses.l¥l Hexagonal lattice and pseudo-Voigt profile parameters were
refined. Structure envelopes were generated from the extracted intensities of 24 reflections (out
to {6 -1 0}) using previously described methods.3>-71  Difference envelope densities were then
calculated via subtraction of the structure envelope of NU-1000 from that of Ru-NU-1000 to
approximate the location of electron density associated with Ru.¥]  Surfaces were drawn at >1.7¢
level to preferentially show contributions from Ru.

Section S3. Photocatalytic reaction?'!

To demonstrate the photocatalytic ability of Ru-NU-1000, an amino oxidative coupling was
performed. 3 mg of Ru-NU-1000 (the amount of Ru complex was calculated based on the ratio of
Zrs node and Ru complex in Ru-NU-1000 by ICP-OES) were dispersed in 1 ml toluene and 100
mol equivalent 4-methylbenzylamine against Ru complex were also added as a substrate. Then,
the dispersion was sealed in a microwave glass tube, and the dispersion was purged with O, for 1
minute. Then, the dispersion was irradiated with Blue LED (450 nm). After irradiation, the
dispersion was filtered to remove insoluble contents. The filtrate was dried once under reduced
pressure and re-dissolved in deuterochloroform for "TH-NMR measurement. The conversion yield
for amine oxidative coupling of 4-methylbenzylamine was calculated by comparing integration
ratio between the peak of substrate and product (Conversion yield = 2*Product / (Substrate +
2*Product)) (Fig. S4).

For the reuse experiment, once used Ru-NU-1000 was washed with acetonitrile several times and
then used for a new photocatalytic reaction. Furthermore, the structure preservation of once used
Ru-NU-1000 was confirmed PXRD measurement (Fig. S5).

As control experiments, the photocatalytic reaction was carried out with 1 mol%
[Ru(bpy),(dcbpy)](PFs), in acetonitrile and bare NU-1000 in toluene under the same condition.
The amount of NU-1000 was calculated by subtracting the amount of Ru complex from 3 mg of
Ru-NU-1000
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Figure S4. 'H-NMR spectra of each photocatalysis condition. The peaks around 3.8 ppm and 4.76
ppm were assigned to substrate and product, respectively.
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Figure S5. PXRD patterns of Ru-NU-1000 once used for photocatalysis (red) and unused
Ru-NU-1000 (green)
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Figure S6. The diffuse reflectance UV spectra (left) and steady state emission spectra of NU-1000
and Ru-NU-1000.
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