Supporting Information

Selective Separation of Methylfuran and Dimethylfuran by Nonporous Adaptive Crystals of Pillararenes

Yitao Wu,^a Jiong Zhou,^a Errui Li,^a Mengbin Wang,^a Kecheng Jie,^a Huangtianzhi Zhu*,^a and Feihe Huang*,^a,^b

^a State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China

Fax and Tel: +86-571-8795-3189; Email address: htzzhu@zju.edu.cn fhuang@zju.edu.cn

^b Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China

Table of Content (48 pages)

1.	Materials	S2
2.	Methods	S2
3.	Crystallography Data	S4
4.	Characterization of Activated Pillararene Crystals	S8
5.	Vapor-Phase Adsorption Measurements	S14
6.	Recyclability Experiments	S41
7.	Other Vapor-Phase Adsorption Cases	S45
8.	References	S48

1. Materials

All the starting materials including 2-methylfuran (MeF), 2,5-dimethylfuran (DMeF) and 2-methyltetrahydrofuran (MeTHF) were purchased and used as received. Pillar[n]arenes (EtP5, EtP6, BrP5, BrP6) were synthesized as described previously. S1-S3 Activated crystalline EtP5, EtP6, BrP5 and BrP6 were referred to as EtP5 α , EtP6 β , BrP5 α and BrP6 β respectively. EtP5 α , EtP6 β , BrP5 α and BrP6 β were prepared according to reported procedures. All the mixtures were v:v=1:1, except specifically marked mixtures.

Table S1. Physical properties of MeF and DMeF. S5

Substance	Melting point (°C)	Boiling point (°C)	Saturated Vapor Pressure at 298 K (kPa)
MeF	-91.2	63.9	23.0
DMeF	-62.8	96.0	uncertain

2. Methods

2.1. Powder X-Ray Diffraction

PXRD data were collected on a Rigaku Ultimate-IV X-Ray diffractometer operating at 40 kV/30 mA using the Cu K α line (λ = 1.5418 Å). Data were measured over the range 5–45° in 5°/min steps over 8 min.

2.2. Thermogravimetric Analysis

TGA analysis was carried out using a Q5000IR analyzer (TA Instruments) with an automated vertical overhead thermobalance. The samples were heated at 10 °C/min using N₂ as the protective gas.

2.3. Single Crystal Growth

Single crystals of guest-loaded **EtP5**, **EtP6**, **BrP5** or **BrP6** were grown by volatilization: 5.00 mg of dry **EtP5**, **EtP6**, **BrP5** or **BrP6** powder were put in a small vial where 1.00 mL of guest was added and the vial was heated until all the powder was dissolved. The light yellow crystals were got by volatilization for 2-15 days.

2.4. Single Crystal X-ray Diffraction

Single crystal X-ray diffraction data were collected on a Bruker D8 VENTURE CMOS X-ray diffractometer with graphite monochromatic Mo–K α radiation ($\lambda = 0.71073$ Å).

2.5. Solution ¹H NMR Spectroscopy

¹H NMR spectra were recorded by using a Bruker Avance DMX 400 spectrometer and a Bruker Avance DMX 600 spectrometer.

2.6. Gas Chromatography

Gas chromatographic analysis: GC measurements were carried out using an Agilent 7890B instrument configured with an FID detector and a DB-624 column (30 m × 0.53 mm × 3.0 µm). Samples were analyzed using headspace injections and were performed by incubating the sample at 100 °C for 10 min followed by sampling 1.00 mL of the headspace. The total volume of the container is 10 mL; the mass of the solid in the container is about 10 mg; the total volume of the headspace is 1mL. The following GC method was used: the oven was programmed from 60 °C, and ramped in 5 °C min⁻¹ increments to 200 °C with 5 min hold; the total run time was 25 min; the injection temperature was 250 °C; the detector temperature was 280 °C with nitrogen, air, and make-up flow-rates of 35, 350, and 35 mL min⁻¹, respectively; helium (carrier gas) flow-rate was 3.0 mL min⁻¹. The samples were injected in the split mode (30:1).

3. Crystallography Data

Table S2. Experimental single crystal X-ray data for EtP5 structures.

	(MeF) ₂ @EtP5	(DMeF) ₂ @EtP5
Crystallization Solvent	2-Methylfuran	2,5-Dimethylfuran
Collection Temperature	170 K	170 K
Formula	$C_{60}H_{76}O_{11}$	$C_{67}H_{86}O_{12}$
Mr	973.20	1083.35
Crystal Size [mm]	$0.10\times0.08\times0.06$	$0.18 \times 0.16 \times 0.15$
Crystal System	triclinic	monoclinic
Space Group	P-1	$P2_1/n$
a [Å]	13.1670(3)	13.5823(3)
<i>b</i> [Å]	14.7060(4)	22.8453(6)
c [Å]	30.3360(7)	20.4508(5)
<i>α</i> [°]	87.8340(8)	90
β [°]	86.7890(8)	100.3730(10)
γ [°]	85.7650(9)	90
V [Å ³]	5846.0(2)	6242.0(3)
Z	4	4
$D_{calcd}[{ m g~cm}^{ ext{-}3}]$	1.106	1.153
$\mu [ext{mm}^{ ext{-}1}]$	0.386	0.401
F(000)	2096	2336
Radiation	$GaK\alpha (\lambda = 1.34139)$	$GaK\alpha (\lambda = 1.34139)$
2θ range [°]	5.906-110.222	6.310-109.846
Reflections collected	21773	54766
Independent reflections, R_{int}	21773, 0.1414	11814, 0.0435
Data /restraints /parameters	21773/333/1412	11814/0/726
Final R_1 values $(I > 2\sigma(I))$	0.1337	0.0512
Final R_1 values (all data)	0.204	0.0608
Final $wR(F_2)$ values (all data)	0.3712	0.1398
Goodness-of-fit on F^2	0.788	1.022
Largest difference peak and hole [e.A ⁻³]	0.69/–0.36	0.79/-0.42
CCDC	1975509	1975512

Table S3. Experimental single crystal X-ray data for EtP6 structures.

There see Emperimen	(MeF) ₂ @EtP6	DMeF@EtP6
Crystallization Solvent	2-Methylfuran	2,5-Dimethylfuran
Collection Temperature	170 K	170 K
Formula	C ₇₆ H ₉₅ O ₁₄	$C_{78}H_{100}O_{14}$
Mr	1232.51	1261.57
Crystal Size [mm]	$0.15 \times 0.08 \times 0.06$	$0.20\times0.18\times0.16$
Crystal System	monoclinic	triclinic
Space Group	C2/c	P-1
a [Å]	26.7857(15)	12.8203(3)
<i>b</i> [Å]	12.5558(7)	12.9026(3)
c [Å]	25.1482(14)	12.9306(3)
α [°]	90	61.2780(10)
β[°]	118.9570(3)	73.3750(10)
γ [°]	90	78.5590(10)
V [Å 3]	7400.4(7)	1792.62(7)
Z	4	1
$D_{calcd}[{ m g~cm}^{-3}]$	1.106	1.169
$\mu [ext{mm}^{ ext{-}1}]$	0.387	0.406
F(000)	2652.0	680.0
Radiation	$GaK\alpha (\lambda = 1.34139)$	$GaK\alpha (\lambda = 1.34139)$
2θ range [°]	6.892–110.618	6.276–109.782
Reflections collected	35533	6612
Independent reflections, R_{int}	6964, 0.0543	6612,0.0709
Data /restraints /parameters	6964/37/408	6612/0/424
Final R_1 values $(I > 2\sigma(I))$	0.1408	0.0543
Final R_1 values (all data)	0.1509	0.0578
Final $wR(F_2)$ values (all data)	0.3525	0.1518
Goodness-of-fit on F^2	0.922	1.037
Largest difference peak and hole [e.A ⁻³]	0.90/-0.43	0.31/-0.33
CCDC	1975510	1975511

Table S4. Experimental single crystal X-ray data for BrP5 structures.

	(MeF) ₂ @BrP5	(DMeF) ₂ @BrP5
Crystallization Solvent	2-Methylfuran	2,5-Dimethylfuran
Collection Temperature	170 K	293(2) K
Formula	$C_{60}H_{66}Br_{10}O_{11} \\$	$C_{67}H_{76}Br_{10}O_{12}$
Mr	1762.22	1872.37
Crystal Size [mm]	$0.08\times0.06\times0.06$	$0.15\times0.08\times0.06$
Crystal System	orthorhombic	monoclinic
Space Group	Pbcn	C2/c
a [Å]	24.4691(9)	28.6532(17)
<i>b</i> [Å]	20.7774(8)	12.3731(8)
c [Å]	12.8545(5)	44.2420(3)
α [°]	90	90
β [°]	90	108.8360(2)
γ [°]	90	90
V [Å ³]	6535.3(4)	14845.0(17)
Z	4	8
$D_{calcd}[{ m g~cm}^{-3}]$	1.791	1.676
$\mu [ext{mm}^{ ext{-}1}]$	5.539	6.883
F(000)	3456.0	7392.0
Radiation	$GaK\alpha (\lambda = 1.34139)$	$GaK\alpha (\lambda = 1.34139)$
2θ range [°]	6.286-110.114	7.854–139.04
Reflections collected	62688	39826
Independent reflections, R _{int}	6244, 0.1197	13447, 0.0616
Data /restraints /parameters	6244/57/394	13447/207/806
Final R_1 values $(I > 2\sigma(I))$	0.0982	0.1619
Final R_1 values (all data)	0.1304	0.2183
Final $wR(F_2)$ values (all data)	0.3197	0.4225
Goodness-of-fit on F^2	1.173	1.563
Largest difference peak and hole [e.A ⁻³]	2.33/–1.76	2.26/–2.08
CCDC	1975513	1975514

Table S5. Experimental single crystal X-ray data for BrP6 structures.

-	(MeF)2@BrP6	DMeF@BrP6
Crystallization Solvent	2-Methylfuran	2,5-Dimethylfuran
Collection Temperature	170 K	170 K
Formula	$C_{71}H_{78}Br_{12}O_{13}$	$C_{78}H_{88}Br_{12}O_{14}$
Mr	2098.25	2208.40
Crystal Size [mm]	$0.18\times0.16\times0.15$	$0.06\times0.06\times0.05$
Crystal System	triclinic	orthorhombic
Space Group	P-1	Pbcn
a [Å]	14.1746(4)	13.8496(2)
<i>b</i> [Å]	16.4665(6)	23.9980(3)
c [Å]	19.6666(6)	25.2072(3)
α [°]	79.1720(2)	90
β [°]	77.5990(2)	90
γ [°]	72.4790(2)	90
V [Å ³]	4237.6(2)	8377.93(19)
Z	2	4
$D_{calcd}[ext{g cm}^{ ext{-}3}]$	1.644	1.751
$\mu [ext{mm}^{ ext{-}1}]$	4.954	5.041
F(000)	2056.0	4352.0
Radiation	$GaK\alpha (\lambda = 1.34139)$	$GaK\alpha (\lambda = 1.34139)$
2θ range [°]	5.952-109.948	6.410-109.860
Reflections collected	44643	88933
Independent reflections, R_{int}	16022, 0.0540	7963, 0.0420
Data /restraints /parameters	16022/149/957	7963/0/481
Final R_1 values $(I > 2\sigma(I))$	0.1095	0.0391
Final R_1 values (all data)	0.1333	0.0421
Final $wR(F_2)$ values (all data)	0.2756	0.1041
Goodness-of-fit on F^2	0.925	1.037
Largest difference peak and hole [e.A ⁻³]	2.67/–2.29	1.62/–1.21
CCDC	1975516	1975515

4. Characterization of Activated Pillararene Crystals

Figure S1. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of EtP5α

Figure S2. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of EtP6 β

Figure S3. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of **BrP5** α

Figure S4. 1 H NMR spectrum (600 MHz, chloroform-d, 298 K) of **BrP6** β

Figure S5. Powder X-ray diffraction pattern of EtP5 α

Figure S6. Powder X-ray diffraction pattern of EtP6 β

Figure S7. Powder X-ray diffraction pattern of $BrP5\alpha$

Figure S8. Powder X-ray diffraction pattern of $BrP6\beta$

Figure S9. Thermogravimetric analysis of desolvated EtP5 α

Figure S10. Thermogravimetric analysis of desolvated EtP6 β

Figure S11. Thermogravimetric analysis of desolvated $BrP5\alpha$

Figure S12. Thermogravimetric analysis of desolvated $BrP6\beta$

5. Vapor-Phase Adsorption Measurements

5.1. Single-Component MeF and DMeF Adsorption Experiments

Figure S13. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of **EtP5** α after adsorption of **MeF** vapor.

Figure S14. ¹H NMR spectrum (600 MHz, chloroform-*d*, 298 K) of **EtP5**α after adsorption of **DMeF** vapor.

Figure S15. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of **EtP6** β after adsorption of **MeF** vapor.

Figure S16. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of **EtP6** β after adsorption of **DMeF** vapor.

Figure S17. ¹H NMR spectrum (600 MHz, chloroform-*d*, 298 K) of **BrP5**α after adsorption of **MeF** vapor.

Figure S18. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of **BrP5** α after adsorption of **DMeF** vapor.

Figure S19. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of **BrP6** β after adsorption of **MeF** vapor.

Figure S20. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of **BrP6** β after adsorption of **DMeF** vapor.

Figure S21. ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) **MeF**; (b) **MeF** after mixing with **EtP5**; (c) **EtP5**; (d) **DMeF** after mixing with **EtP5**; (e) **DMeF**.

Figure S22. ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) **MeF**; (b) **MeF** after mixing with **EtP6**; (c) **EtP6**; (d) **DMeF** after mixing with **EtP6**; (e) **DMeF**.

Figure S23. ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) **MeF**; (b) **MeF** after mixing with **BrP5**; (c) **BrP5**; (d) **DMeF** after mixing with **BrP5**; (e) **DMeF**.

Figure S24. ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) **MeF**; (b) **MeF** after mixing with **BrP6**; (c) **BrP6**; (d) **DMeF** after mixing with **BrP6**; (e) **DMeF**.

Figure S25. Thermogravimetric analysis of desolvated EtP5 α after sorption of MeF vapor. The weight loss below 150 °C can be calculated as two MeF molecules per EtP5 molecule.

Figure S26. Thermogravimetric analysis of desolvated **EtP5**α after sorption of **DMeF** vapor. The weight loss below 150 °C can be calculated as two **DMeF** molecules per **EtP5** molecule.

Figure S27. Thermogravimetric analysis of desolvated EtP6 β after sorption of MeF vapor. The weight loss below 150 °C can be calculated as two MeF molecules per EtP6 molecule.

Figure S28. Thermogravimetric analysis of desolvated EtP6β after sorption of DMeF vapor. The weight loss below 150 °C can be calculated as one DMeF molecule per EtP6 molecule.

Figure S29. Thermogravimetric analysis of desolvated BrP5 α after sorption of MeF vapor. The weight loss below 150 °C can be calculated as two MeF molecules per BrP5 molecule.

Figure S30. Thermogravimetric analysis of desolvated **BrP5**α after sorption of **DMeF** vapor. The weight loss below 150 °C can be calculated as two **DMeF** molecules per **BrP5** molecule.

Figure S31. Thermogravimetric analysis of desolvated $BrP6\beta$ after sorption of MeF vapor. The weight loss below 150 °C can be calculated as two MeF molecules per BrP6 molecule.

Figure S32. Thermogravimetric analysis of desolvated $BrP6\beta$ after sorption of DMeF vapor. The weight loss below 150 °C can be calculated as one DMeF molecule per BrP6 molecule.

Figure S33. Powder X-ray diffraction patterns of **EtP5**: (I) original **EtP5**α; (II) after adsorption of **MeF** vapor; (III) after adsorption of **DMeF** vapor.

Figure S34. Powder X-ray diffraction patterns of **EtP6**: (I) original **EtP6\beta**; (II) after adsorption of **MeF** vapor; (III) after adsorption of **DMeF** vapor.

Figure S35. Powder X-ray diffraction patterns of **BrP5**: (I) original **BrP5**α; (II) after adsorption of **MeF** vapor; (III) after adsorption of **DMeF** vapor.

Figure S36. Powder X-ray diffraction patterns of **BrP6**: (I) original **BrP6** β ; (II) after adsorption of **MeF** vapor (disorder); (III) after adsorption of **DMeF** vapor.

5.2. Structural Analyses after Single-Component Vapor Sorption

Figure S37. Single crystal structure of (MeF)₂@EtP5. H···O distance (Å) and C–H···O angle (deg) of hydrogen bond: 2.611, 145.48; C–H···π distances (Å): 2.703, 2.799.

Figure S38. Powder X-ray diffraction patterns of EtP5: (I) original EtP5α; (II) after adsorption of MeF vapor; (III) simulated from single crystal structure of (MeF)₂@EtP5.

Figure S39. Single crystal structure of **(DMeF)**₂@**EtP5**. H···O distance (Å) and C–H···O angle (deg) of hydrogen bond: 2.715, 159.70; C–H···π distances (Å): 2.704, 2.982.

Figure S40. Powder X-ray diffraction patterns of **EtP5**: (I) original **EtP5**α; (II) after adsorption of **DMeF** vapor; (III) simulated from single crystal structure of **(DMeF)**₂@**EtP5**.

Figure S41. Single crystal structure of **(MeF)**₂@**EtP6**. H···O distances (Å) and C–H···O angles (deg) of hydrogen bonds: 1.854, 150.46; 2.744, 134.85.

Figure S42. Powder X-ray diffraction patterns of EtP6: (I) original EtP6β; (II) after adsorption of MeF vapor; (III) simulated from single crystal structure of (MeF)₂@EtP6.

Figure S43. Single crystal structure of DMeF@EtP6. C–H···π distance (Å): 2.605.

Figure S44. Powder X-ray diffraction patterns of EtP6: (I) original EtP6 β ; (II) after adsorption of DMeF vapor; (III) simulated from single crystal structure of DMeF@EtP6.

Figure S45. Single crystal structure of (MeF)₂@BrP5. C-H··· π distances (Å): 1.559, 1.559.

Figure S46. Powder X-ray diffraction patterns of BrP5: (I) original BrP5α; (II) after adsorption of MeF vapor; (III) simulated from single crystal structure of (MeF)₂@BrP5.

Figure S47. Single crystal structure of **(DMeF)**₂@**BrP5**. H···Br distance (Å) and C–H···Br angle (deg) of hydrogen bond: 2.973, 128.65; C–H···π distances (Å): 2.741, 2.749, 2.816, 2.898.

Figure S48. Powder X-ray diffraction patterns of BrP5: (I) original BrP5α; (II) after adsorption of DMeF vapor; (III) simulated from single crystal structure of (DMeF)₂@BrP5.

Figure S49. Single crystal structure of **(MeF)**₂@**BrP6** (disorder). H···O distances (Å) and C–H···O angles (deg) of hydrogen bonds: 2.623, 132.93; 2.666, 142.14.

Figure S50. Powder X-ray diffraction patterns of BrP6: (I) original BrP6β; (II) after adsorption of MeF vapor; (III) simulated from single crystal structure of (MeF)₂@BrP6.

Figure S51. Single crystal structure of **(DMeF)**₂@**BrP6**. H···O distance (Å) and C–H···O angle (deg) of hydrogen bond: 2.676, 172.77; C–H··· π distances (Å): 2.868, 2.923, 2.956.

Figure S52. Powder X-ray diffraction patterns of **BrP6**: (I) original **BrP6** β ; (II) after adsorption of **DMeF** vapor; (III) simulated from single crystal structure of **DMeF**@**BrP6**.

5.3. Uptake from MeF and DMeF in EtP5a

For each vapor-phase mixture experiment, an open 5.00 mL vial containing 20.00 mg of guest-free $EtP5\alpha$ adsorbent was placed in a sealed 20.00 mL vial containing 1.00 mL of a 50:50 v/v MeF and DMeF mixture. The relative uptake of MeF or DMeF by $EtP5\alpha$ was measured by heating the crystals to release the adsorbed vapor using gas chromatography. Before measurements, the crystals were heated at 60 °C to remove the surface-physically adsorbed vapor.

Figure S53. Relative uptake of the MeF/DMeF mixture (v:v = 50:50) adsorbed in EtP5 α after 24 hours using gas chromatography.

Figure S54. Powder X-ray diffraction patterns of **EtP5**: (I) original **EtP5**α; (II) after adsorption of **MeF** vapor; (III) after adsorption of **DMeF** vapor; (IV) after adsorption of a 50:50 *v/v* **MeF** and **DMeF** mixture vapor; (V) simulated from single crystal structure of (**MeF**)₂@**EtP5**; (VI) simulated from single crystal structure of (**DMeF**)₂@**EtP5**.

Figure S55. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of **EtP5** α after adsorption of a 50:50 v/v **MeF** and **DMeF** mixture vapor.

5.4. Uptake from **MeF** and **DMeF** in **EtP6**β

For each vapor-phase mixture experiment, an open 5.00 mL vial containing 20.00 mg of guest-free **EtP6** β adsorbent was placed in a sealed 20.00 mL vial containing 1.00 mL of a 50:50 v/v **MeF** and **DMeF** mixture. The relative uptake of **MeF** or **DMeF** by **EtP6** β was measured by heating the crystals to release the adsorbed vapor using gas chromatography. Before measurements, the crystals were heated at 60 °C to remove the surface-physically adsorbed vapor.

Figure S56. Relative uptake of the MeF/DMeF mixture (v:v = 50:50) adsorbed in EtP6 β after 24 hours using gas chromatography.

Figure S57. Powder X-ray diffraction patterns of EtP6: (I) original EtP6 β ; (II) after adsorption of MeF vapor; (III) after adsorption of DMeF vapor; (IV) after adsorption of a 50:50 v/v MeF and DMeF mixture vapor; (V) simulated from single crystal structure of (MeF)₂@EtP6; (VI) simulated from single crystal structure of DMeF@EtP6.

Figure S58. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of **EtP6** β after adsorption of a 50:50 v/v **MeF** and **DMeF** mixture vapor.

5.5. Uptake from MeF and DMeF in BrP5a

For each vapor-phase mixture experiment, an open 5.00 mL vial containing 20.00 mg of guest-free $BrP5\alpha$ adsorbent was placed in a sealed 20.00 mL vial containing 1.00 mL of a 50:50 v/v MeF and DMeF mixture. The relative uptake of MeF or DMeF by $BrP5\alpha$ was measured by heating the crystals to release the adsorbed vapor using gas chromatography. Before measurements, the crystals were heated at 60 °C to remove the surface-physically adsorbed vapor.

Figure S59. Relative uptake of the MeF/DMeF mixture (v:v = 50:50) adsorbed in BrP5 α after 24 hours using gas chromatography.

Figure S60. Powder X-ray diffraction patterns of BrP5: (I) original BrP5α; (II) after adsorption of MeF vapor; (III) after adsorption of DMeF vapor; (IV) after adsorption of a 50:50 *v/v* MeF and DMeF mixture vapor; (V) simulated from single crystal structure of (MeF)₂@BrP5; (VI) simulated from single crystal structure of (DMeF)₂@BrP5.

Figure S61. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of **BrP5** α after adsorption of a 50:50 v/v **MeF** and **DMeF** mixture vapor.

5.6. Uptake from MeF and DMeF in BrP6\beta

For each vapor-phase mixture experiment, an open 5.00 mL vial containing 20.00 mg of guest-free $BrP6\beta$ adsorbent was placed in a sealed 20.00 mL vial containing 1.00 mL of a 50:50 v/v MeF and DMeF mixture. The relative uptake of MeF or DMeF by $BrP6\beta$ was measured by heating the crystals to release the adsorbed vapor using gas chromatography. Before measurements, the crystals were heated at 60 °C to remove the surface-physically adsorbed vapor.

Figure S62. Relative uptake of the MeF/DMeF mixture (v:v = 50:50) adsorbed in BrP6 β after 24 hours using gas chromatography.

Figure S63. Powder X-ray diffraction patterns of **BrP6**: (I) original **BrP6**β; (II) after adsorption of **MeF** vapor; (III) after adsorption of **DMeF** vapor; (IV) after adsorption of a 50:50 *v/v* **MeF** and **DMeF** mixture vapor; (V) simulated from single crystal structure of **(MeF)**₂@**BrP6**; (VI) simulated from single crystal structure of **DMeF**@**BrP6**.

Figure S64. ¹H NMR spectrum (600 MHz, chloroform-d, 298 K) of **BrP6** β after adsorption of a 50:50 v/v **MeF** and **DMeF** mixture vapor.

Figure S65. Relative uptake of the MeF/DMeF mixture vapor (v/v = 50.50) adsorbed in crystals of four pillararenes after 24 hours by GC.

6. Recyclability of experiments

6.1. Recyclability of **EtP6**β crystals

An open 5.00 mL vial containing 20.00 mg of (MeF)₂@EtP6 was desolvated under vacuum at 60 °C overnight. The resultant crystals were characterized by TGA, PXRD and ¹H NMR.

Figure S66. Thermogravimetric analysis of desolvated (MeF)₂@EtP6 upon removal of MeF.

Figure S67. Powder X-ray diffraction patterns of EtP6: (I) EtP6 β ; (II) desolvated (MeF)₂@EtP6. This means that upon removal of MeF, (MeF)₂@EtP6 transforms back to EtP6 β .

Figure S68. ¹H NMR spectra (400 MHz, chloroform-d, 298 K): (a) original EtP6β; (b) EtP6β after adsorption of EtP6 vapor; (c) (MeF)₂@EtP6 after removal of MeF; (d) desolvated (MeF)₂@EtP6 after adsorption of MeF vapor.

6.2. Recyclability of **BrP5** \alpha crystals

An open 5.00 mL vial containing 20.00 mg of (MeF)₂@BrP5 was desolvated under vacuum at 60 °C overnight. The resultant crystals were characterized by TGA, PXRD and ¹H NMR.

Figure S69. Thermogravimetric analysis of desolvated (MeF)₂@BrP5 upon removal of MeF.

Figure S70. Powder X-ray diffraction patterns of BrP5: (I) BrP5 α ; (II) desolvated (MeF)₂@BrP5. This means that upon removal of MeF, (MeF)₂@BrP5 transforms back to BrP5 α .

Figure S71. ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) original **BrP5**α; (b) **BrP5**α after adsorption of **MeF** vapor; (c) (**MeF**)₂@**BrP5** after removal of **MeF**; (d) desolvated (**MeF**)₂@**BrP5** after adsorption of **MeF** vapor.

7. Other Vapor-Phase Adsorption cases

7.1 Adsorption of 90:10 v/v MeF and DMeF mixture vapor

For each vapor-phase mixture experiment, an open 5.00 mL vial containing 20.00 mg of guest-free **EtP6** β or **BrP5** α adsorbent was placed in a sealed 20.00 mL vial containing 1.00 mL of a 90:10 v/v **MeF** and **DMeF** mixture. The relative uptake of **MeF** or **DMeF** by **EtP6** β or **BrP5** α was measured by heating the crystals to release the adsorbed vapor using gas chromatography. Before measurements, the crystals were heated at 60 °C to remove the surface-physically adsorbed vapor.

Figure S72. Relative uptake of the MeF/DMeF mixture (v:v = 90:10) adsorbed in EtP6 β after 24 hours using gas chromatography.

Figure S73. Relative uptake of the MeF/DMeF mixture (v:v = 90:10) adsorbed in BrP5 α after 24 hours using gas chromatography.

7.2 Adsorption of three component equimolar MeF, DMeF and MeTHF mixture vapor

For each vapor-phase mixture experiment, an open 5.00 mL vial containing 20.00 mg of guest-free **EtP6** β or **BrP5** α adsorbent was placed in a sealed 20.00 mL vial containing 1.00 mL of a 1:1:1 v/v/v **MeF**, **DMeF** and **MeTHF** mixture. The relative uptake of **MeF**, **DMeF** or **MeTHF** by **EtP6** β or **BrP5** α was measured by heating the crystals to release the adsorbed vapor using gas chromatography. Before measurements, the crystals were heated at 60 °C to remove the surface-physically adsorbed vapor.

Figure S74. GC spectrum of MeTHF. This spectrum was obtained to show the position of the MeTHF peak.

Figure S75. Relative uptake of the MeF/DMeF/MeTHF mixture (v:v:v=1:1:1) adsorbed in EtP6 β after 24 hours using gas chromatography.

Figure S76. Relative uptake of the MeF/DMeF/MeTHF mixture (v:v:v = 1:1:1) adsorbed in BrP5 α after 24 hours using gas chromatography.

8. References

- [S1] Hu, X.-B.; Chen, Z.; Chen, L.; Zhang, L.; Hou, J.-L.; Li, Z.-T.; Pillar[n]arenes (n = 8–10) with Two Cavities: Synthesis, Structures, and Complexing Properties. *Chem. Commun.* **2012**, *48*, 10999–11001.
- [S2] Yao, Y.; Xue, M.; Chi, X.; Ma, Y.; He, J.; Ablizb, Z.; Huang, F. A New Water-Soluble Pillar[5]arene: Synthesis and Application in The Preparation of Gold Nanoparticles. *Chem. Commun.* **2012**, *48*, 6505–6507;
- [S3] Yao, Y.; Li, J.; Dai, J.; Chi, X.; Xue, M. A Water-Soluble Pillar[6]arene: Synthesis, Host-Guest Chemistry, Controllable Self-Assembly, and Application in Controlled Release. *RSC Adv.* **2014**, *4*, 9039–9043;
- [S4] Jie, K.; Liu, M.; Zhou, Y.; Little, M. A.; Pulido, A.; Chong, S. Y.; Stephenson, A.; Hughes, A. R.; Sakakibara, F.; Ogoshi, T.; Blanc, F.; Day, G. M.; Huang, F.; A. I. Cooper, Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[n]arene Crystals. *J. Am. Chem. Soc.* **2018**, *140*, 6921–6930;
- [S5] Lide, D. R. CRC Handbook of Chemistry and Physics, Boca Raton, FL, 2005, pp. 203–365.