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Table S1. Thermal and mechanical parameters of PLMA/CNT nanocomposites with various CNT 

loadings

samples Tg

(oC)

tensile strength (MPa) Young's modulus a

(GPa)

Young's modulus b

(GPa)

elongation

(%)

PLMA 73.8 60.02±2.03 1.46±0.15 1.97 5.3

0.1 wt% 79.5 62.82±1.06 1.50±0.20 2.07 6.8

0.2 wt% 86.8 67.65±8.28 2.08±0.20 2.26 5.5

0.3 wt% 87.3 79.80±5.27 1.83±0.25 2.39 7.8

0.4 wt% 85.8 69.80±6.96 1.84±0.18 2.38 7.9

0.5 wt% 85.6 65.90±3.82 1.79±0.15 2.42 6.8

0.8 wt% 81.8 65.67±3.91 1.82±0.20 2.18 7.3

1.0 wt% 82.3 61.25±0.43 1.80±0.12 1.95 8.3

 0.2 wt% c 75.3 63.80±3.86 1.68±0.25 - 4.6

a: obtained from tensile tests; b: from DMA tests; c: prepared by physical mixing.
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Table S2. Thermal and structural parameters of shape memory performance of PLMA and its 

nanocomposites

samples fixing temp.

(Tf) oC

recovery temp.

(Tr) oC

shape fixity ratio

(Rf) %

shape recovery ratio

(Rr) %

PLMA 30 90 93.73 99.98

0.1 wt% 30 90 92.69 99.25

0.3 wt% 30 90 94.79 99.53

0.5 wt% 30 90 96.57 99.99

0.8 wt% 30 90 93.39 99.98

Notes: the shape fixity ratio (Rf) and shape recovery ratio (Rr) are calculated according to:

,                        (1)S1 S0
f

S0, load S0

R  
 





S0, recover S0

r
S1 S0

R
 

 





where  is the primary strain,  is the strain under load,  is temporary shape in the S0 S0, load S1

strain without load, and  the strain after recovery. The nanocomposite samples possess S0, recover

Tg ranged in 79-87 oC (Table S1), which highly depend on the degree of crosslinking and 

dispersion of CNTs. The samples with 0.2-0.3 wt% CNTs have the highest Tgs because of 

synergistic effects of their good CNT dispersion and higher degrees of bulk crosslinking (Figure 

2). The recovery temperature was determined as 90 oC, and at this temperature, all samples present 

very good Rr, with the values almost to 100%, and their Rrs range in 93-96%, with no evident 

difference. This means that the shape memory behavior of the nanocomposites, especially their 

shape recovery is not highly dependent on the bulk properties such as moduli and degrees of 

crosslinking of PLMA within the experimental CNT loading ranges (0.1-1.0 wt%) at testing 

temperature 90 oC.
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Figure S1. HPLC-MS spectra of PLMA prepared by polycondensation with and without CNTs 

(left) and corresponding integrated curves calculated by the intensities of the fractions with 

various molecular weights (right)
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Figure S2. Schematics of graft reactions of CNTs

Note: The monomer l-malic acid could react with hydroxyl groups of CNTs, forming grafted 

PLMA chains during polycondensation.
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Figure S3. (a) FT-IR spectra and (b) TGA curves of blank CNTs and extracted ones after grafting 

reaction
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Figure S4. (a) XRD and (b) Raman spectra of blank CNTs and extracted ones after grafting 

reaction

Note: XRD spectra shown in (a) reveal that grafting reaction did not break the surface structure 

of CNTs down, whereas leading to the formation of defects, which is confirmed by increased ID/IG 

ratio shown in Raman spectra (b).
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Figure S5. TEM image of (a) the nanocomposite with 0.2 wt% CNTs prepared by the way of 

physical blending and (b) the nanocomposite with 0.5 wt% CNTs prepared by via in-situ 

crosslinking

Note: In the composite sample prepared via the physical blending (the pristine CNTs were added 

into reactive system in the crosslinking stage, instead of during polycondensation of L-malic acid, 

which means that there were no grafted PLMA chain on the surfaces of CNTs), CNTs were 

mainly dispersed as highly self-entangled aggregates, showing very poor dispersion and 

distribution in the cross-linked matrix.

(a) (b)
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Figure S6. Schematics of crosslinking networks of PLMA/CNT nanocomposites

Note: The grafted CNTs could act as the crosslinking points (see blue arrow), participating in the 

formation of effective crosslinking network structure; or as the ineffective points (see red arrow), 

linked with the networks through esterification, forming pendulous particles-like structure. Some 

CNTs could be dispersed as inert particles, distributed well in the PLMA matrix because improved 

polymer-CNT affinity resulted from surface modification. The mole ratio of 0.5/1.0 between -OH 

and -COOH was an optimized one because in this case, higher degrees of crosslinking and better 

mechanical properties could be achieved [1].

[1] Qiu, Y. X.; Wanyan, Q. R.; Xie, W. Y.; Wang, Z. F.; Chen, M.; Wu, D. F. Green and biomass-derived materials with controllable 

shape memory transition temperatures based on cross-linked poly(L-malic acid). Polymer 2019, 180, 121733.



S12

 

Figure S7. Pictures of cross-linked PLMA (left) and nanocomposites (0.2 wt% CNTs, right) 

samples loaded with 20 Kg dumbbell
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Figure S8. Stress-strain curves for the cross-linked PLMA and its nanocomposites (0.2 wt% 

CNTs) prepared by in-situ crosslinking and physical mixing
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Figure S9. Storage moduli (E') of cross-linked PLMA and its nanocomposites with various CNT 

loadings
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Figure S10. Cyclic stress-strain traces of cross-linked PLMA and its nanocomposites with various 

CNT loadings
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Figure S11. Hysteresis loop areas against tensile cycle numbers for cross-linked PLMA and its 

nanocomposites with various CNT loadings

Note: The hysteresis loop area is indicative of the work consumed in each cyclic test, which is a 

scale of mobility/relaxation level of chain segments. At the same stress levels in the same cyclic 

test (especially at the higher levels), the nanocomposite with 0.3 wt% CNTs shows the highest 

loop area, meaning that this sample has the strongest internal friction level among all samples. It is 

indicative of a balanced network structure in this sample, with optimized degree of crosslinking 

and better dispersion of CNTs, because relaxations of chain segments are restrained more strongly. 

This is to some degree in agreement with the highest Tg of this sample.
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Figure S12. DSC traces of cross-linked PLMA and its nanocomposites with various CNT 

loadings

Note: No thermal events could be seen during heating/cooling scan, except thermal relaxations 

caused by glass transition.
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Figure S13. TGA curves for cross-linked PLMA and its nanocomposites with various CNT 

loadings

Note: Nanocomposites have almost the same 5 wt% mass loss temperature (T5wt%) with that of 

neat polymers. Therefore, the presence of CNTs within experimental loading range (0.1-1.0 wt%) 

does not affect thermal stability of cross-linked PLMA.
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Figure S14. UV-vis-NIR absorbance curves for neat polymer and its nanocomposites with various 

CNT loadings
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Figure S15. Infrared thermal images of the nanocomposite with 0.3 wt% CNTs under sunlight 

(100 mW cm-2, taken every 20 s)
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Figure S16. Surface temperature alterations with cyclic ‘on & off’ of sunlight (1000 mW cm-2) for 

the nanocomposites with various loadings of CNTs
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Figure S17. Infrared thermal images of neat polymer and the nanocomposites under 650 nm laser 

irradiation (50 mW cm-2, taken every 20 s)
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Figure S18. Surface temperature alterations with cyclic ‘on & off’ of laser irradiation (650 nm, 50 

mW cm-2) for the nanocomposites with various loadings of CNTs


