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1. Experimental

1.1. Materials
Analytical grade ethanol, cobalt ( Ⅱ ) acetate tetrahydrate (Co(CH3COO)2·4H2O, 99.5%), 

manganese acetate tetrahydrate (Mn(CH3COO)2·4H2O, 99%), ethylene glycol (C2H6O2), 
polyethylene glycol and sodium hypophosphite (NaH2PO2, 99.0%) were purchased from Aladdin 
Ltd. (Shanghai, China). Deionized water from Milli-Q System (Millipore, Billerica, MA) was used 
in all experiments. All the chemicals used in this experiment were used without further purification.

1.2. Synthesis of CoMn2O4 hierarchical microspheres
  In a normal procedure, 0.5 mmol Co(CH3COO)2·4H2O (0.1245 g), 1 mmol Mn(CH3COO)2·4H2O 
(0.245 g) and 1g polyethylene glycol were dissolved in 35 ml ethylene glycol under ultrasound to 
form a clear solution at room temperature. After forming homogeneous solution by magnetic 
stirring for 10 min, the resulting solution was transferred to 50 ml Teflon-lined stainless-steel 
autoclaves and then heated at 200°C for 6 h. After cooled in air, the resulting precipitates were 
separated via centrifugation and further purified by an ethanol-water mixture for several times. The 
product was dried under vacuum at 60°C and finally calcined at 600°C for 3 h.

1.3. Synthesis of Co3O4
  In a normal procedure, 1.5 mmol Co(CH3COO)2·4H2O (0.369 g) and 1 g polyethylene glycol 
were dissolved in 35 ml ethylene glycol under ultrasound to form a clear solution at room 
temperature. After ultrasound for 10 min, the resulting homogeneous solution was transferred to 50 
ml Teflon-lined stainless-steel autoclaves and then heated at 200°C for 6 h. After cooled in air, the 
resulting precipitates were separated via centrifugation and further purified by an ethanol-water 
mixture for several times. The product was dried under vacuum at 60 °C and finally calcined at 
600 °C for 3 h.

1.4. Synthesis of Mn-CoP hierarchical microspheres
  In a normal procedure, CoMn2O4 (20 mg) and NaH2PO2 (200 mg) were placed in the porcelain 
boat, separately. The NaH2PO2 was located at the upstream. The boat was then heated at 350°C for 
2 h under nitrogen with a heating rate of 5°C min−1, and then naturally cooled to room temperature.

1.5. Synthesis of CoP
  In a normal procedure, Co3O4 (20 mg) and NaH2PO2 (200 mg) were placed in the porcelain boat, 
separately. The NaH2PO2 was located at the upstream. The boat was then heated at 350°C for 2 h 
under nitrogen with a heating rate of 5°C min−1, and then naturally cooled to room temperature.

1.6. Characterization
Powder X-ray diffraction patterns (PXRD) of samples were recorded using a Rigaku 

Miniflex-600 with a Cu Kα radiation (Cu Kα, λ = 0.15406 nm, 40 kV and 15 mA). Transmission 
electron microscopy (TEM) was carried out by a JEM-2100F equipped with energy dispersive 
spectrometer (EDS) analyses at 100 kV and the EDS elemental mapping was operated at 200 kV. 
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The scanning electron microscope (SEM) was performed on SU8020 (Hitachi) SEM. The XPS was 
collected on scanning X-ray microprobe (ESCALAB250Xi, Thermo, United States) using Al Kα 
radiation and the C1s peak at 284.6 eV was used as internal standard. Elemental analysis of Co, Mn, 
and P in the samples was detected by an Optima 7300 DV inductively coupled plasma-mass 
spectrometry (ICP-MS). Specific surface areas were computed from the results of N2 physisorption 
at 77 K (Micromeritics ASAP 2020) by using the Brunauer–Emmet–Teller (BET) and Barrett–
Joyner–Halenda (BJH) method.

1.7. Electrochemical measurements
  All the electrochemical experiments were conducted on the electrochemical workstation (CHI 
760E) in a three-electrode system in 1.0 M KOH solution at room temperature. All samples were 
tested on the glassy carbon electrode (GCE, 0.196 cm2 in area) as the working electrode, Ag/AgCl 
as the reference electrode and a Pt wire as the counter electrode. Catalysts (4 mg) were dispersed in 
960 µl ethanol and 40 µl 5% Nafion by sonication for 30 min. Then, 10 µl well-dispersed catalysts 
(0.31 mg/cm2) were covered on GCE by drying naturally for test. The OER was conducted in 
O2-saturated 1.0 M KOH solution with a scan rate of 10 mV s-1 at 1600 rpm on a rotating disk 
electrode. All potentials were referenced to a reversible hydrogen electrode (RHE) with iR 
correction. The R was referred to the ohmic resistance arising from the electrolyte/contact resistance 
of the setup, and measured by electrochemical impedance spectroscopy (EIS). EIS measurements 
were carried out from 100 kHz to 0.1 Hz with an amplitude of 5 mV at 0.6 V vs. Ag/AgCl on a 
rotation disk electrode at 1600 rpm.

The catalyst ink of RuO2 sample was prepared by mixing 4 mg in 960 µl ethanol and 40 µl 5% 
Nafion solution by sonication for 30 min. Then, 10 µl well-dispersed RuO2 (0.20 mg/cm2) was 
covered on GCE by drying naturally for test.

The turnover frequency (TOF) of catalysts was further calculated based on the following standard 
equation:1

         (S1)TOF =
𝐽 ∗ 𝐴

4 ∗ 𝐹 ∗ 𝑚

Here, J is the current density (A cm-2) at an overpotential of 0.35 V. A and m are the area of the 
electrode and the number of moles of the active materials that were deposited onto the electrode, 
respectively. F is the Faraday constant (96,485 C mol-1).

2. Supplementary Figures
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Figure S1. XRD pattern of Mn-Co-EG.

Figure S2. Energy dispersive X-ray spectroscopy (EDS) of CoMn2O4.
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Figure S3. (a) N2 adsorption/desorption isotherm (77K) curve of Mn-CoP hierarchical microsphere, (b) 
porous volume distributions of the pore size.
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Figure S4. Energy dispersive X-ray spectroscopy (EDS) of Mn-CoP. The peak of Cu in the EDS 
spectra was from Cu grid.
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Figure S5. SEM images of (a) Co-EG, (b) Co3O4 and (c) CoP. TEM images of (d) Co-EG, (e) Co3O4 
and (f) CoP.
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Figure S6. XRD patterns of CoP and Co3O4.
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Figure S7. XPS survey spectra of Mn-CoP and CoP.
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Figure S8. XPS spectra of (a) CoMn2O4, (b) Co 2p, (c) Mn 2p and (d) O 1s. 

In Co 2p region, four distinct peaks are attributed to Co3+ (780.9 and 796.6 eV) and Co2+ (785.8 
and 802.8 eV), respectively. In Mn 2p region, two peaks located at 642.5 eV and 653.6 eV correspond 
to Mn 2p3/2 and Mn 2p1/2, respectively. Moreover, the Mn 2p peaks were further deconvoluted into two 
kinds of Mn components. The peaks located at 642.5 eV and 653.6 eV are ascribed to Mn3+ while those 
located at 641.3 eV and 653.3 eV belong to Mn2+.2 The O 1s peaks could be deconvoluted into parts: 
one peak at 531.4 eV correspond to the lattice oxygen in the spinel CoMn2O4, while the other peak at 
530.2 eV is due to the typical metal–oxygen bonds.3 
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Figure S9. XPS spectra of (a) Co3O4, (b) Co 2p and (c) O 1s.

In Co 2p region, six distinct peaks can be assigned to Co3+ (778.8 and 793.7 eV), Co2+ (782.5 and 
798.7 eV) and satellite peaks (786.8 and 803.6 eV).4 In O 1s region, the peaks at 530.2 eV and 531.4 eV 
belong to surface lattice oxygen and adsorbed oxygen species.5 
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Figure S10. CV curves of (a) Mn-CoP, (b) CoMn2O4, (c) CoP, (d) Co3O4 and (e) RuO2 measured in 1.0 
M KOH solution at scan rates of 2 to 10 mV s-1. (f) The plot of the current density at 1.285 V versus the 
scan rate.
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Figure S11. The electrochemical surface area (ECSA) of Mn-CoP, CoP, CoMn2O4, Co3O4 and RuO2.
The electrochemical active surface area (ECSA) of the catalyst was estimated from the double-layer 

capacitance (Cdl).6 Therefore, the electrochemical capacitance was evaluated via cyclic voltammetry in 
the potential range of 1.25-1.29 V versus RHE. Each CV segment was swept three times at each scan 
rate (2, 4, 6, 8 and 10 mV s-1) before recording the CV curves shown in Figure S10). The capacitive 
currents were then analyzed at the potential of 1.285 V versus RHE, and plotted as a function of the 
scan rate (Figure S10f). The slope of the linear fit yields the specific capacitance of ∼37.9, 2.4, 35.4, 3.9 
and 16.6 mF cm-2 for Mn-CoP, CoP, CoMn2O4, Co3O4 and RuO2.

By considering the specific capacitance of an atomically smooth planar surface with a real surface 
area of 1.0 cm2 and specific capacitance (Cs) generally within 20-60 F cm-2 range alkaline media, the 
specific capacitance can be translated into the ECSA by calculation from the following equation. Herein, 
by using the midpoint specific capacitance of 40 F cm-2, the ECSA of Mn-CoP is determined as:

ECSA=Cdl/Cs=37.9 mF cm-2/40 F cm-2 per cm2
ECSA=947.5 cm2         (S2)
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Figure S12. The turnover frequency (TOF) of Mn-CoP, CoP, CoMn2O4, Co3O4 and RuO2 at an 
overpotential of 0.35 V.
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Figure S13. XRD patterns of Mn-CoP before and after OER durability test.
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Figure S14. (a) TEM and (b) SEM images of Mn-CoP after OER durability test.
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3. Supplementary Tables

Table S1. ICP-MS analysis results of the element content of Mn, Co for Mn-Co-EG

Mn (at. %) Co (at.%) [Mn]/[Co] [Mn]/[Mn+Co] [Co]/[Mn+Co]

65.76 34.24 1.92 65.76 34.24
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Table S2. ICP-MS analysis results of the element content of Mn, Co for CoMn2O4

Mn (at. %) Co (at. %) [Mn]/[Co] [Mn]/[Mn+Co] [Co]/[Mn+Co]
63.89 36.11 1.77 63.89 36.11
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Table S3. ICP-MS analysis results of the element content of Mn, Co, and P for Mn-CoP

Mn (at. %) Co (at. %) P (at. %) [Mn]/[Co] [Mn]/[Mn+Co] [Mn+Co]/[P]
28.81 23.29 47.90 1.24 0.55 1.09
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Table S4. Comparison of the overpotentials at 10 mA cm-2 compared to previously reported catalysts in 
1.0 M KOH electrolyte

Electrocatalysts Electrolyte Overpotential (10 mA cm-2) Reference
Mn-CoP 1 M KOH 285 mV This work

RuO2 1 M KOH 330 mV This work
Co3O4 1 M KOH 307 mV 4

β-Ni(OH)2 NPs-H2 1 M KOH 340 mV 7

Fe-CoO/C 1 M KOH 362 mV 8

CoMoO4 1 M KOH 312 mV 9

Co-CN SS 1 M KOH 290 mV 10

Fe1Co1-ONS 1 M KOH 308 mV 11

NiCoP / C 1 M KOH 330 mV 12

Mn-Cooxyphosphide 1 M KOH 370 mV 13

SnCoFe-Aron Ni foam 1 M KOH 270 mV 14

CoFeP 1 M KOH 340 mV 15

CoS2 1 M KOH 308 mV 16

CoOx-4h 1 M KOH 306 mV 17

CoP–TiOx 1 M KOH 337 mV 18

CoP NFs 1 M KOH 323 mV 19

CoP / NCS-400 1 M KOH 313 mV 20

CoP / VGNHs 1 M KOH 300 mV 21

CoP/CN@MoS2 1 M KOH 289 mV 22

O-CoP 1 M KOH 310 mV 23

CoP@NPC 1 M KOH 300 mV 24
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