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Supporting Information 

Detailed Cohort Description:

The mother-child “Rhea” study in Crete is a prospective cohort examining a 

population sample of pregnant women and their children, at the prefecture of Heraklion (n = 

1500). The study aims are to evaluate a) nutritional, environmental, biological and 

psychosocial exposures in the prenatal period and in early childhood, b) the association of 

these exposures with the development of the foetus and the child, c) mother’s health during 

and after pregnancy, and d) genetic susceptibility and the interactions between genetic and 

environmental factors affecting child health. A set of 100 children from the RHEA-cohort is 

included in the EXPOsOMICS children studies, for which data on cord blood DNA-

methylation, metabolomics, proteomics and albumin adducts are available.

The INMA − INfancia y Medio Ambiente (Environment and Childhood) project 

follows up a population sample of around 3100 pregnant mothers and newborns. New and 

existing cohorts of pregnant women have been incorporated from seven different Spanish 

regions. Pregnant women are assessed at 12, 20 and 32 weeks of gestation to collect 

information about environmental exposures and foetal growth. Children are assessed at birth, 

at the age of 1 year and at the age of 4 years. The cohorts have been designed to evaluate the 

impact of environmental exposures and diet on children’s health. A set of 100 children from 

the INMA centre Sabadell is included in the EXPOsOMICS children studies, for which data 

on cord blood metabolomics, proteomics and albumin adducts are available.

Piccolipiù is a multicentric Italian birth cohort that recruited about 3000 new-borns 

and their mothers in 5 centres: Turin, Trieste, Florence, Viareggio and Rome 

(www.piccolipiu.it). Participants receive a follow-up interview 6, 12 and 24 months after 

delivery and a medical examination when the children turn 4 and 6. Growth trajectories and 

neurocognitive test-results are available. A set of 99 children from the Turin centre is 
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included in the EXPOsOMICS children studies, for which data on cord blood DNA 

methylation, metabolomics, proteomics and albumin adducts are available.

The ENVIRonAGE (ENVIRonmental influence ON AGEing in early life) cohort 

includes 1300 mother-infant pairs and further recruitment is ongoing. Data include mothers’ 

lifestyle and socio-economic status, gestational history, measurements including the new-

borns’ blood pressure (all healthy with gestational age 37–42 weeks), bio banked placental 

tissue and cord blood including RNA/DNA, toxic metals in cord blood and placenta, and in 

utero and early life exposure to fine particulates and NO2 using a spatial temporal 

interpolation method. A set of 200 children from the ENVIRonAGE-cohort is included in the 

EXPOsOMICS children studies, for which data on cord blood DNA methylation, 

transcriptomics, metabolomics, proteomics and albumin adducts are available.

Exposure assessment:

Following the ESCAPE protocol the residential location of the mothers annual mean 

concentrations of PM2.5 and particulate matter with an aerodynamic diameter of less than 10 

μm (PM10), of between 2.5 μm and 10 μm (PM2.5–10; coarse particulate matter), NO2, and 

NOx were estimated at the maternal home addresses with land use regression (LUR) models. 

New spatial models using LUR models for were developed to assess UFP exposure and 

oxidative potential. A detailed description of the models developed for UFP has been 

described elsewhere 1. Using six European study areas we developed LUR models for 

predicting spatial patterns in UFP to assess the agreement in LUR model structure and 

performance within and between study areas. The performance of a model was evaluated 

using UFP concentration data from six study areas combined. Together this allowed for the 

evaluation of the robustness of model predictions at external residential sites, not included in 

model development in all six areas. A detailed description of the models developed for 

oxidative potential has been described elsewhere 2. Briefly, we evaluated the spatial 
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variability of the OP of measured PM2.5 using ascorbate (AA) and (reduced) glutathione 

(GSH), and develop land use regression (LUR) models to explain this spatial variability. The 

estimated annual average values (m−3) of OPAA and OPGSH were derived. 

‘Omics assessment:

Whole blood samples were collected using venipuncture of cord vessels before the 

placenta was delivered and processed as follows in each cohort: In ENVIRONAGE, samples 

were collected into EDTA (BD, Franklin Lakes, NJ) vacutainers and within 20 min were 

centrifuged at 3200 rpm for 15 min into plasma. In Piccolipiù, samples were collected into 

BD EDTA vacutainers, stored at 4 °C for <24 h, and centrifuged for 10 min at 1300g into 

plasma. In Rhea, samples were collected into BD gel separator vacutainers and centrifuged 

within 2 h at 2500 rpm for 10 min into serum. In INMA, samples were collected into BD gel 

separator vacutainers, stored at 4 °C for <4 h, and centrifuged at 3000 rpm for 10–15 min into 

serum. Samples were immediately frozen at −20 °C (INMA) or −80 °C (all other cohorts) 

until analysis.

For the proteomics, those inflammatory markers measured on Luminex panel A 

included, TNF-α, IL-8, EGF, MIP1, GRO, IL-6, IL-17, and those measured on Luminex 

panel B included, MPO, IP-10, VEGF, IL-17, Periostin, MCP-1, IL-1rA, G_CSF, CRP was 

measured using ELSIA. Imputation was applied for inflammatory markers that had at least 

40% detectable samples measurement per study group, based on maximum likelihood 

estimation procedure3. Samples with <40% detectable samples per study group were not 

imputed. To allow for plate to plate variation we imputed based on each plate-specific limit 

of quantification and included plate as predictor variable in the imputation model.

Sample analysis and pre-processing has been previously described 4 and is reiterated 

here. Samples were randomized and prepared by mixing a 30 μL aliquot with 200 μL of 

acetonitrile and filtering the precipitate with 0.2 μm Captiva ND plates (Agilent 
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Technologies). The filtrate was collected into a polypropylene well plate that was sealed and 

kept refrigerated until analysis. A quality control (QC) sample was prepared by mixing small 

aliquots of 91 randomly selected study samples. Aliquots (30 μL) of the QC sample were 

then processed along with the study samples, with each 96-well plate containing four 

individually extracted QCs. Samples were analyzed as a single uninterrupted batch with a 

UHPLC–MS system consisting of a 1290 Binary LC system, a Jet Stream electrospray 

ionization (ESI) source, and a 6550 QTOF mass spectrometer (Agilent Technologies). The 

autosampler tray was kept refrigerated, and 2 μL of the sample solution was injected on an 

ACQUITY UPLC HSS T3 column (2.1 × 100 mm, 1.8 μm; Waters). Column temperature 

was 45 °C and mobile phase flow rate was 0.4 mL/min, consisting of ultrapure water and 

LC–MS-grade methanol, both containing 0.05% (v/v) of formic acid. The gradient profile 

was as follows: 0–6 min: 5% → 100% methanol, 6–10.5 min: 100% methanol, 10.5–13 min: 

5% methanol. The mass spectrometer was operated in positive polarity using the following 

conditions: drying gas (nitrogen) temperature 175 °C and flow 12 L/min, sheath gas 

temperature 350 °C and flow 11 L/min, nebulizer pressure 45 psi, capillary voltage 3500 V, 

nozzle voltage 300 V, and fragmentor voltage 175 V. Data were acquired in centroid format 

using an extended dynamic range mode, with a scan rate of 1.67 Hz and a mass range from 

50 to 1000. For MS/MS analyses the isolation width was 1.3 Da and collision energies were 

10, 20, and 40 V. Continuous mass axis calibration was performed using two reference ions 

(m/z 121.050873 and m/z 922.009798). The analytical run was initiated with priming 

injections of in-house human plasma extract to achieve a stable response, followed by the 

study samples and one QC sample after every 12 injections. Data were acquired using 

MassHunter Acquisition B.05.01 software.

Pre-processing of the acquired metabolomics data was performed using Qualitative 

Analysis B.06.00 SP1, DA Reprocessor, and Mass Profiler Professional 12.1 software 
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(Agilent Technologies). The initial processing was performed with Molecular Feature 

Extraction (MFE) algorithm for small molecules using a mass range of 50–1000. Thresholds 

for the mass and chromatographic peak heights were 1500 and 10 000 counts, respectively. 

Quality score threshold was 80. Only singly charged proton adducts ([M+H]+) were 

included. Spacing tolerance for isotope peaks was 0.0025 m/z plus 7 ppm. The isotope model 

for common organic molecules was used, and features with indeterminate neutral mass were 

excluded. Feature alignment was performed with retention time and mass windows of 0.075 

min and 15 ppm +2 mDa. A target list for a recursive extraction was created from features 

present in at least 2% of the samples. Find by Formula (FBF) algorithm was then employed 

with match tolerance for the mass and retention time ±10 ppm and ±0.04 min, respectively. 

Ion species was limited to [M+H]+, and a threshold for chromatographic peak height was 

2000 counts. The resulting features were aligned in Agilent Mass Profiler Professional using 

the same parameters as described above. For statistical analysis, metabolic features present in 

<60% of the samples were removed, data were log-transformed, and missing values were 

imputed using the impute. QRILC function within the impute LCMD R package.(24)

Cross-omics Analysis:

Calibration of the sPLS models was done using fivefold cross-validation which was 

independently repeated 1000 times. Cross-validation procedure for the SPLS models were 

repeated for possible values of (i) the number of components to select and, (ii) the number of 

non-zero loadings coefficients (ie, the number of original variables contributing to the 

component). The number of components to be considered was determined using the average 

Q2 statistic calculated across all folds and repeats and was defined as the maximal the 

number of components such that adding an additional component would yield a substantive 

drop in the Q2 value. An example of a calibration plot is displayed in Figure S4. Sparsity of 
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the SPLS models was controlled by setting the number of variables included to the one 

minimising the cross-validated prediction error.
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Table S1. Average level of exposure of each pollutant the year before birth, and posterior 
inclusion probability from the Bayesian Machine Kernal Regression models.

3 pollutant 
modela

5 pollutant 
modelb

5 pollutant 
modelc

Sensitivity 
model 1d

Sensitivity 
model 2e

Sensitivity 
model 3f

Air 
pollutant

Mean
(Range)

Posterior inclusion probability 

PM2.5 
(ug/m3)

19
(9- 45)

0.5368 0.5882 0.5898 - - -

PM10 
(ug/m3)

35
(10- 45)

0.5906 0.5590 0.5486 - - -

NO2 
(ug/m3)

30
(8- 98)

0.7748 0.6824 0.7620 0.9880 - 0.8436

NOx 
(ug/m3)

73
(12- 236)

- 0.6474 - - 0.7986 -

OPAA 
(OP/m3)

62
(-18- 131)

- - 0.5044 - - 0.5518

OPGSH 
(OP/m3)

5
(0.6- 14)

- - 0.4964 - - 0.4910

UFP (n/m3) 13393.2
(1465- 
30644)

- 0.5468 - - 0.4366 -

PMcoarse
(ug/m3)

- - - 0.6182 0.4644 0.5560

Exposure levels represent the average level for each pollutant for the year before birth.
aPM2.5, PM10, NO2 (N=498) 
b3 pollutant + NOx, UFP (N=299)
c3 pollutant + OPAA, OPGSH (N=398) 
dPMcoarse, NO2 (N=498) 
ePMcoarse, NOx, UFP (N=299)
fPMcoarse, NO2, OPAA, OPGSH (N=398)
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Table S2. Loadings coefficients for proteins identified from the SPLSX models

Proteins SPLSX

Comp 1
(n=4)

Comp 2
(n=3)

Comp 3
(n=6)

TNF 0 0 0
IL8 0 0 0
EGF 0.075 -0.098 0.083
MIPI 0 0 0.026
GRO 0 0 0
IL6 0 0 -0.029
VEGF 0.53 0 -0.042
IL17 0.53 0 0
MCP1 0 0 0
GCSF 0 0 0
CRP 0 0 0.93
MPO 0.85 0 0
IP10 0 0 0.34
MDC 0 -0.63 0
Perios -0.046 -0.78 0
ILRA 0 0 0
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Table S3. Pathways and number of metabolites represented in each pathway identified from 
the 665 metabolites selected from the cross-omics assessments.

Pathway Number of metabolites p-value
Aspartate and asparagine metabolism 16 0.001
Arginine and Proline Metabolism 12 0.001
Tyrosine metabolism 11 0.001
Urea cycle/amino group metabolism 10 0.001
Glycerophospholipid metabolism 10 0.001
Fatty acid activation 9 0.001
Tryptophan metabolism 8 0.001
Arachidonic acid metabolism 8 0.001
Vitamin A (retinol) metabolism 8 0.001
Prostaglandin formation from arachidonate 8 0.001
Pyrimidine metabolism 7 0.001
Methionine and cysteine metabolism 6 0.001
Vitamin E metabolism 6 0.001
Linoleate metabolism 6 0.001
Purine metabolism 6 0.001
Glycine, serine, alanine and threonine 
metabolism

5 0.001

Glutathione Metabolism 5 0.001
Glutamate metabolism 5 0.001
Vitamin B3 (nicotinate and nicotinamide) 
metabolism

5 0.001

Alanine and Aspartate Metabolism 4 0.001
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Figure S1. Directed Acyclic Graph to determine the set of potential confounders.
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Figure S2. Levels of air pollutant by cohort (red lines represent ENVIRONAGE, green lines 
represent INMA, blue lines represent Piccolipiù, and purple lines represent Rhea).
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Figure S3. Correlation of air pollutants to one another, assessed using Pearsons correlation 
coefficient (r2)
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Figure S4. Cross-sectional univariate relationships between each air pollutant and birthweight 
z-scores, where other exposures are fixed to their median value. Panel A represents the three-
pollutant model of PM2.5, PM10, and NO2. Panel B represents the five-pollutant of PM2.5, PM10, 
and NO2, NOx, and UFP. Panel C represents the five-pollutant of PM2.5, PM10, NO2, OPGSH, and 
OPAA.

A B

C

B
irt

hw
ei

gh
t z

-s
co

re
s

Logged air pollutants



S15

 

Figure S5. Calibration plot for the SPLSXY model for A) metabolomic features B) proteins
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Figure S6. Loading coefficients for the SPLSXY model
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Sensitivity Analyses:

Figure S7. Sensitivity results of cross-sectional univariate relationships between each air 
pollutant and birthweight z-scores, where other exposures are fixed to their median value. Panel 
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A represents a two-pollutant model of PMcoarse and NO2. Panel B represents a three-pollutant 
model of PMcoarse, NOx, and UFP. Panel C represents a four-pollutant model of PMcoarse, NO2, 
OPAA, and OPGSH



S19

Figure S8. Results from the sensitivity analyses of the overall effects of mixtures of air 
pollutants on infant birthweight z-score. Estimates represent the predicted birthweight z-
scores based on the overall effect of the mixture (estimates and 95% confidence intervals), 



S20

comparing birthweight z-scores when all exposures are at a particular quantile compared to 
the median value. Models adjusted for season of conception, sex, parity, maternal age, 
education of the mother and father, active and passive smoking during pregnancy, and 
maternal and paternal BMI and cohort.
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