Supplementary Information for:

High temperature thermodynamics of Cerium Silicates, A-Ce₂Si₂O₇, and Ce_{4.67}(SiO₄)₃O

Andrew C. Strzelecki^{1,2,3}, Kyle Kriegsman^{1,2}, Paul Estevenon^{4,5}, Vitaliy Goncharov^{1,2,3}, Jianming Bai⁶, Stephanie Szenknect⁴, Adel Mesbah⁴, Di Wu^{1,2,3,7}, John S. McCloy^{1,3,8}, Nicolas Dacheux⁴, Xiaofeng Guo^{1,2,3*}

- ¹ Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- ² Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
- ³ Materials Science and Engineering, Washington State University, Pullman, Washington 99164, United States
- ⁴ ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Site de Marcoule, Bagnols sur Cèze, 30207, France
- ⁵ CEA, DES, ISEC, DMRC, Univ Montpellier, Site de Marcoule, 30207 France
- ⁶ National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
- ⁷ The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- ⁸ School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States

* e-mail: <u>x.guo@wsu.edu</u>

Figure S1: Synchrotron XRD patterns of A-Ce₂Si₂O₇ at every ~100K intervals.

Figure S2: Synchrotron XRD patterns of $Ce_{4.67}(SiO_4)_3O$. Symbol * denotes ceria (CeO₂) and ' denotes beta-quartz (SiO₂).

Figure S3: Comparison of three different heat capacities data for G-Ce₂Si₂O_{7.} Data is from experimental data reported in Bolech et al.¹ (*grey*), fifth-order polynomial fitting to expand the data reported by Bolech et al.¹ from 1000 to 1300 K (*red*), and estimation of C_p through Neumann-Kopp rule (*blue*). Data of the binary oxides (CeO₂ and SiO₂) utilized for estimation using Neumann-Kopp was taken from Robie and Hemingway².

Table S1: Thermochemical cycles used for calculations of the enthalpy of formation from binary oxides and the standard enthalpy of formation of stetindite based on the data of drop solution calorimetry in molten lead borate at 973 K.

Reaction	ΔH (kJ/mol)
(1) $\text{CeSiO}_4 \cdot 0.025\text{H}_2\text{O}_{(s, 298 \text{ K})} \rightarrow \text{CeO}_{2(\text{sln}, 973 \text{ K})} + \text{SiO}_{2(\text{cristobalite}, 973 \text{ K})} + 0.025\text{H}_2\text{O}_{(g, 973 \text{ K})}$	$\Delta H_1 = 137.17^* (1)^{\ddagger}$
$(2) \operatorname{CeO}_{2(s, 298 \mathrm{K})} \rightarrow \operatorname{CeO}_{2(\mathrm{sln}, 973 \mathrm{K})}$	$\Delta H_2 = 122.90 \pm 2.6^3$
(3) $\operatorname{SiO}_{2(\operatorname{quartz}, 298 \operatorname{K})} \rightarrow \operatorname{SiO}_{2(\operatorname{cristobalite}, 973 \operatorname{K})}$	$\Delta H_3 = 39.4 \pm 0.4^4$
(4) $Ce_{(s, 298 \text{ K})} + O_{2(g, 298 \text{ K})} \rightarrow CeO_{2(s, 298 \text{ K})}$	$\Delta H_4 = -1088.7 \pm 1.5^2$
(5) $\operatorname{Si}_{(s, 298 \text{ K})} + \operatorname{O}_{2(g, 298 \text{ K})} \longrightarrow \operatorname{SiO}_{2(quartz, 298 \text{ K})}$	$\Delta H_5 = -910.7 \pm 1.0^2$
(6) $H_2O_{(l, 298 \text{ K})} \rightarrow H_2O_{(g, 298 \text{ K})}$	$\Delta H_6 = 69.0^5$

Corrected enthalpy of drop solution value assuming H₂O behaves like liquid water, and the enthalpy of formation of stetindite from CeO₂, SiO₂ (quartz):

 $\Delta H_{\rm ds}({\rm CeSiO_4}) = \Delta H_1 - 0.025 \cdot \Delta H_6 = 133.64 \text{ kJ/mol}$

 $CeO_{2(s, 298 \text{ K})} + SiO_{2(quartz, 298 \text{ K})} \rightarrow CeSiO_{4(s, 298 \text{ K})}$

 $\Delta H_{\rm f,ox}({\rm CeSiO_4}) = -\Delta H_{\rm ds}({\rm CeSiO_4}) + \Delta H_2 + \Delta H_3 = 28.7 \pm 2.6 \text{ kJ/mol}$

Standard enthalpy of formation of stetindite:

 $Ce_{(s, 298 K)} + Si_{(s, 298 K)} + 2O_{2(g, 298 K)} \rightarrow CeSiO_{4(s, 298 K)}$

 $\Delta H^{\circ}_{f}(\text{CeSiO}_{4}) = \Delta H_{f,\text{ox}}(\text{CeSiO}_{4}) + \Delta H_{4} + \Delta H_{5} = -1970.7 \pm 3.2 \text{ kJ/mol}$

* Average. [†] Two standard deviations of the average value. [‡] Number of measurements.

(1) $Ce_2Si_2O_{7(s, 298 K)}$	$S^{\circ}_{1} = 186.2 \pm 5.6 \text{ J/mol} \cdot \text{K}^{\circ}$
(2) $\text{CeSiO}_{4(s, 298 \text{ K})}$	$S_{2}^{\circ} = 97.4 \pm 2.9 \text{ J/mol} \cdot \text{K}^{\circ}$
(3) $Ce_{(s, 298 K)}$	$S_{3}^{\circ} = 72.0 \pm 4.0 \text{ J/mol} \cdot \text{K}^{2}$
(4) $Si_{(s, 298 K)}$	$S_4^{\circ} = 41.5 \pm 0.1 \text{ J/mol} \cdot \text{K}^2$
(5) O _{2(g, 298 K)}	$S_{5}^{\circ} = 205.2 \pm 0.02 \text{ J/mol} \cdot \text{K}^{2}$
(6) $Ce_2Si_2O_{7(s)}$	$\Delta C_{\rm P1300-298} = 33.3 \rm J/mol \cdot K^{a}$
(7) $\text{CeSiO}_{4(s)}$	$\Delta C_{P 1300-298} = 47.2 \text{ J/mol} \cdot \text{K}^{\text{b}}$
(8) $CeO_{2(s)}$	$\Delta C_{P \ 1300-298} = 19.8 \text{ J/mol} \cdot \text{K}^2$
(9) $SiO_{2(s)}$	$\Delta C_{P 1300-298} = 27.4 \text{ J/mol} \cdot \text{K}^2$
(10) H ₂ O (g)	$\Delta C_{P 1300-298} = 9.7 \text{ J/mol} \cdot \text{K}^5$
(11) O _{2(g)}	$\Delta C_{P 1300-298} = 6.6 \text{J/mol} \cdot \text{K}^5$
(12) H _{2 (g)}	$\Delta C_{P 1300-298} = 2.0 \text{ J/mol} \cdot \text{K}^5$
(13) $Ce_2Si_2O_{7(s, 298 \text{ K})} + ((\Delta C_P \times (1300 - 298.15))/1000)^a \rightarrow Ce_2Si_2O_{7(s, 1300 \text{ K})}$	$\Delta H_1 = -3694.3 \pm 6.0 \text{ kJ/mol}$
(14) $\text{CeSiO}_{4(s, 298 \text{ K})} + ((\Delta C_P \times (1300 - 298.15))/1000)^b \rightarrow \text{CeSiO}_{4(s, 1300 \text{ K})}$	$\Delta H_2 = -1924.6 \pm 3.6 \text{ kJ/mol}^6$
(15) $\operatorname{CeO}_{2(s, 298 \text{ K})} + ((\Delta C_P \times (1300 - 298.15))/1000) \rightarrow \operatorname{CeO}_{2(s, 1300 \text{ K})}$	$\Delta H_3 = -1068.8 \pm 1.3 \text{ kJ/mol}^2$
(16) $\operatorname{SiO}_{2(\operatorname{quartz}, 298 \text{ K})} + ((\Delta C_P \times (1300 - 298.15))/1000) \rightarrow \operatorname{SiO}_{2(\operatorname{cristobalite}, 1300 \text{ K})}$	$\Delta H_4 = -844.4 \pm 2.1 \text{ kJ/mol}^2$
(17) $H_2O_{(g, 298 \text{ K})} + ((\Delta C_P \times (1300 - 298.15))/1000) \rightarrow H_2O_{(g, 1300 \text{ K})}$	$\Delta H_5 = -202.9 \pm 0.04 \text{ kJ/mol}^5$
(18) $O_{2(g, 298 \text{ K})} + ((\Delta C_P \times (1300 - 298.15))/1000) \rightarrow O_{2(g, 1300 \text{ K})}$	$\Delta H_6 = 33.3 \pm 0.02 \text{ kJ/mol}^5$
(19) $H_{2(g, 298 \text{ K})} + ((\Delta C_P \times (1300 - 298.15))/1000) \rightarrow H_{2(g, 1300 \text{ K})}$	$\Delta H_7 = 29.9 \text{ kJ/mol}^5$
(20) $Ce_2Si_2O_{7(s, 298 K)}$	$\Delta G_I = -3599.0 \pm 10.0 \text{ kJ/mol}^d$
(21) CeSiO _{4(s, 298 K)}	$\Delta G_2 = -1844.8 \pm 6.1 \text{ kJ/mol}^d$
(22) $Ce_2Si_2O_{7(s, 1300 \text{ K})}$	$\Delta G_3 = -2707.9 \pm 10.0 \text{ kJ/mol}^d$
(23) CeSiO _{4(s, 1300 K)}	$\Delta G_4 = -1370.2 \pm 6.1 \text{ kJ/mol}^d$
(24) CeO _{2(s, 1300 K)}	$\Delta G_5 = -815.2 \pm 1.9 \text{ kJ/mol}^2$
(25) SiO _{2(cristobalite, 1300 K)}	$\Delta G_6 = -679.7 \pm 2.1 \text{ kJ/mol}^2$
(26) H ₂ O _(g, 1300 K)	$\Delta G_7 = -175.7 \pm 0.1 \text{ kJ/mol}^2$
(27) O _{2(g, 1300 K)}	$\Delta G_8 = -117.1 \pm 0.0 \text{ kJ/mol}^2$
(28) H _{2(g, 1300 K)}	$\Delta G_9 = -198.5 \pm 0.0 \text{ kJ/mol}^2$

Table S2: Table of thermodynamic variables needed to calculated ΔG_{rxn} at 1300 K to assess the external stability of A-Ce₂Si₂O₇.

Standard Entropy of Formation of Ce₂Si₂O₇:

 $\Delta S_{f} = S^{\circ}(1) - (2 \times S^{\circ}_{2}) - (2 \times S^{\circ}_{3}) - (3.5 \times S^{\circ}_{4}) = -758.8 \pm 8.0 \text{ J/mol} \cdot \text{K}$

Standard Entropy of Formation of CeSiO₄:

 $\Delta S_{f} = S^{\circ}(2) - S^{\circ}_{2} - S^{\circ}_{3}) - (2 \times S^{\circ}_{4}) = -426.4 \pm 5.0 \text{ J/mol} \cdot \text{K}$

Reaction (1): A-Ce₂Si₂O₇ reacting with oxygen at 1300 K and forming CeSiO₄

 $Ce_2Si_2O_{7(s, 1300 \text{ K})} + 0.5O_{2(g, 1300 \text{ K})} \rightarrow 2CeSiO_{4(s, 1300 \text{ K})}$

 $\Delta G_{\rm rxn} = 2\Delta G_4 - \Delta G_3 - 0.5\Delta G_8 = 66.7 \pm 13.2 \text{ kJ/mol}$

Reaction (2): A-Ce₂Si₂O₇ reacting with oxygen at 1300 K and forming CeO₂ and SiO₂

 $Ce_{2}Si_{2}O_{7(s,\ 1300\ K)} + 0.5O_{2(g,\ 1300\ K)} \rightarrow 2CeO_{2(s,\ 1300\ K)} + 2SiO_{2(cristobalite,\ 1300\ K)}$

 $\Delta G_{\rm rxn} = 2\Delta G_5 + 2\Delta G_6 - \Delta G_3 - 0.5\Delta G_8 = -182.7 \pm 10.7 \text{ kJ/mol}$

Reaction (3): A-Ce₂Si₂O₇ reacting with steam at 1300 K and forming CeSiO₄ and H₂

 $Ce_2Si_2O_{7(s, 1300 \text{ K})} + H_2O_{(g, 1300 \text{ K})} \rightarrow 2CeSiO_{4(s, 1300 \text{ K})} + H_{2(g, 1300 \text{ K})}$

 $\Delta G_{\rm rxn} = 2\Delta G_4 + \Delta G_9 - \Delta G_3 - \Delta G_7 = 26.1 \pm 13.2 \text{ kJ/mol}$

Reaction (4): A-Ce₂Si₂O₇ reacting with steam at 1300 K and forming CeO₂, SiO₂, and H₂

 $Ce_{2}Si_{2}O_{7(s,\ 1300\ K)} + H_{2}O_{(g,\ 1300\ K)} \rightarrow 2CeO_{2(s,\ 1300\ K)} + 2SiO_{2(cristobalite,\ 1300\ K)} + H_{2(g,\ 1300\ K)}$

 $\Delta G_{\rm rxn} = 2\Delta G_5 + 2\Delta G_6 + \Delta G_9 - \Delta G_3 - \Delta G_7 = -223.3 \pm 10.7 \text{ kJ/mol}$

^a Expanded heat capacity equation of Bolech *et al.* (1996)¹; ^b Heat capacity derived through NKR of CeO_2^2 and SiO_2^2 ; ^c S° estimated through use of the empirical relationship developed for silicate minerals by Jenkins and Glasser (2003)⁷; ^d $\Delta G_T = \Delta H_T$ - TS

References:

- Bolech, M.; Cordfunke, E. H. P.; van Genderen, A. C. G.; Van Der Laan, R. R.; Janssen, F. J. J. G.; van Miltenburg, J. C. The Heat Capacity and Derived Thermodynamic Functions of La₂Si₂O₇ and Ce₂Si₂O₇ from 4 to 1000 K. *Thermochim. Acta* **1996**, 284 (96), 253–261.
- (2) Robie, Richard A.;Hemingway, B. S. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. U.S. Geol. Surv. Bull. 1995, 2131.
- Putnam, R. L.; Navrotsky, A.; Cordfunke, E. H. P.; Huntelaar, M. E. Thermodynamics of Formation of Two Cerium Aluminum Oxides, CeAlO_{3(s)} and CeAl₁₂O_{19.918(s)}, and Cerium Sesquioxide, Ce₂O_{3(s)} At T= 298.15 K. J. Chem. Thermodyn. 2000, 32 (7), 911–921. https://doi.org/10.1006/jcht.2000.0665.
- Navrotsky, A. Progress and New Directions in Calorimetry: A 2014 Perspective. J. Am. Ceram.
 Soc. 2014, 97 (11), 3349–3359. https://doi.org/10.1111/jace.13278.
- (5) Chase, M. W. NIST-JANAF Thermochemical Tables 2 Volume-Set, 4th ed.; American Institute of Physics, 1998.
- (6) Strzelecki, A. C.; Bourgeois, C.; Kriegsman, K. W.; Zhao, X.; Estevenon, P.; Wei, N.; Szenknect, S.; Mesbah, A.; Wu, D.; Ewing, R. C.; et al. Thermodynamics of CeSiO4: Implications for Actinide Orthosilciates. *Inorg. Chem.* 2020. https://doi.org/Unpublished.
- Jenkins, H. D. B.; Glasser, L. Standard Absolute Entropy, S2980, Values from Volume or Density. *Inorg. Chem.* 2003, 42 (26), 8702–8708. https://doi.org/10.1021/ic030219p.