Supporting Information

Precisely Structured Nitric-Oxide-Releasing Copolymer Brush

Defeats Broad-Spectrum Catheter-Associated Biofilm Infections In

Vivo

Zheng Hou^{1,2}, Yang Wu^{1,2}, Chen Xu^{1,2}, Sheethal Reghu^{1,2}, Zifang Shang⁵, Jingjie Chen⁵, Dicky

Pranantyo⁶, Kalisvar Marimuth^{7,8,9}, Partha Pratim De⁷, Oon Tek Ng^{4,7,9}, Kevin Pethe⁴, En-

Tang Kang⁶, Peng Li^{*5}, Mary B. Chan-Park^{*,1,2,3,4}

¹School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), 62 Nanyang Drive, Singapore 637459

²Centre for Antimicrobial Bioengineering, NTU, 62 Nanyang Drive, Singapore 637459

³School of Physical and Mathematical Sciences, 21 Nanyang Link, Singapore 637371

⁴Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921

⁵Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, China, 710072

⁶Department of Chemical & Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Kent Ridge, Singapore 117585

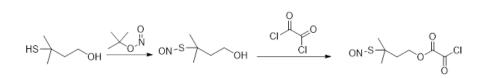
⁷Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433.

⁸Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228.

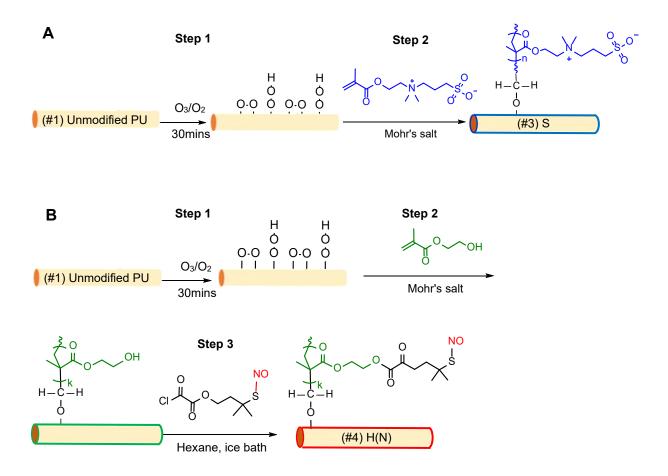
⁹National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442

*mbechan@ntu.edu.sg; *iampli@nwpu.edu.cn

Keywords: broad-spectrum antibiofilm; antithrombogenic; structured polymer; nitric oxide;


surface hydrophilicity

List of Contents


Scheme S1. Synthesis of NO release precursor (NTMB-Cl)
Figure S1. Synthesis of (A) homo poly(SBMA) coating ((#3) S) and (B) homo poly(HEMA-
NO) coating ((#4) H(N))
Figure S2. Synthesis of crosslinked coating ((#5) H-x-S and (#8) H(N)-x-S)
Figure S3. Synthesis of random copolymer coating ((#6) H-r-S and (#9) H(N)-r-S)
Figure S4. Further characterization of (#10) H(N)-b-S (A) characterization of poly(HEMA)
which is the first step in the synthesis of $(#10)$ H(N)- <i>b</i> -S: Surface morphology (i) SEM image
of catheter surface and cross section (inset) (scale bar=10 µm), (ii) AFM image of surface
morphology with measured root mean square height variation. (B) contact angle of
poly(HEMA). (C) Quantification of NO-release precursors on (#10) H(N)-b-S: (i) NO flux
profile at 55 °C, (ii) Cumulative NO released9
Figure S5. Stability test of coatings. Long-term hydrophilicity test under various conditions:
(A) PBS saline (B) Serum (C) S. aureus inoculum (D) P. aeruginosa inoculum. The contact
angles are shown in the insets ((i) (#1) unmodified PU, (ii) (#3) S, (iii) (#10) H(N)-b-S), the
dotted line in the graphs indicates 10°
Figure S6. Characterization of coating (#3) S. (A) FTIR spectra of catheter samples: (i)
unmodified control, (ii) (#3) S, characterization peaks: C=O ester at 1742 cm ⁻¹ and SO ₃ ⁻
sulfonyl peak at 1040 cm ⁻¹ . (B) (i) SEM image of catheter surface and cross section (inset)
(scale bar=10 μ m), (ii) AFM image with measured root mean square height variation, (iii)
contact angle11
Figure S7. Characterization of coating (#4) H(N). (A) FTIR spectra of catheter samples: (i)
unmodified control, (ii) NO-donor NTMB-Cl, (iii) homo poly(HEMA) coating, (iv) (#3) H(N)
coating with characterization peaks: C=O ester at 1742 cm ⁻¹ and RSNO peak at 1160 cm ⁻¹ .
(B) (i) SEM image of catheter surface and cross section (inset) (scale bar=10 μ m), (ii) AFM
image with measured root mean square height variation, (iii) contact angle12
Figure S8. Characterization of coating (#5) H-x-S. (A) FTIR spectra of catheter samples: (i)
unmodified control, (ii) (#5) H-x-S with characterization peaks: C=O ester at 1742 cm ⁻¹ , SO ₃ ⁻
sulfonyl peak at 1040 cm ⁻¹ and C-O-H peak at 1020 cm ⁻¹ . (B) (i) SEM image of catheter
surface and cross section (inset) (scale bar=10 μ m), (ii) AFM image with measured root mean
square height variation, (iii) contact angle
Figure S9. Characterization of coating (#6) H-r-S. (A) FTIR spectra of catheter samples: (i)
unmodified control, (ii) (#6) H-r-S with characterization peaks: C=O ester at 1742 cm ⁻¹ , SO ₃ ⁻
sulfonyl peak at 1040 cm ⁻¹ and C-O-H peak at 1020 cm ⁻¹ . (B) (i) SEM image of catheter

surface and cross section (inset) (scale bar=10 µm), (ii) AFM image with measured root mean Figure S10. Characterization of coating (#7) H-b-S. (A) FTIR spectra of catheter samples: (i) unmodified control, (ii) poly(HEMA), (iii) (#7) H-b-S, with characterization peaks: C=O ester at 1742 cm⁻¹, SO₃ sulfonyl peak at 1040 cm⁻¹ and C-O-H peak at 1020 cm⁻¹. (B) (i) SEM image of catheter surface and cross section (inset) (scale bar=10 µm), (ii) AFM image with Figure S11. Characterization of coating (#8) H(N)-x-S. (A) FTIR spectra of catheter samples: (i) unmodified control, (ii) NO-donor NTMB-Cl, (iii) (#5) H-x-S, (iv) (#8) H(N)-x-S, characterization peaks: C=O ester at 1742 cm⁻¹ and RSNO peak at 1160 cm⁻¹ and SO₃⁻¹ sulfonyl peak at 1040 cm⁻¹. (B) (i) SEM image of catheter surface and cross section (inset) (scale bar=10 μ m), (ii) AFM image with measured root mean square height variation, (iii) contact angle. (C) HPLC detection of NO release precursor (NTMB-Cl) leached to different solvents (N.D refers to no detection of leaching) in 24 h and 1 week extractions using PBS, methanol (polar solvent) and hexane (non-polar solvent). (D) NO flux measured at 55 °C, (ii) Figure S12. Characterization of coating (#9) H(N)-*r*-S. (A) FTIR spectra of catheter samples: (i) unmodified control, (ii) NO-donor NTMB-Cl, (iii) (#6) H-r-S, (iv) (#9) H(N)-r-S, characterization peaks: C=O ester at 1742 cm⁻¹ and RSNO peak at 1160 cm⁻¹ and SO₃⁻¹ sulfonyl peak at 1040 cm⁻¹. (B) (i) SEM image of catheter surface and cross section (inset) (scale bar=10 µm), (ii) AFM image with measured root mean square height variation, (iii) contact angle. (C) HPLC detection of NO release precursor (NTMB-Cl) leached to different solvents (N.D. refers to no detection of leaching) in 24 h and 1 week extractions using PBS, methanol (polar solvent) and hexane (non-polar solvent). (D) NO flux measured at 55 °C, (ii) Figure S13. Acute (2 h) antimicrobial efficacy measured by contact killing with bacteria Figure S14. (A) 24 h In vitro antibiofilm efficacy of intermediate coatings (#5, #6 and #7) against some Gram-positive and Gram-negative bacteria. Student's t-test, n.s. P>0.5, (B) In vitro antibiofilm efficacy of NO-release coatings against multi-drug resistance (MDR) Gramnegative bacteria. Student's *t*-test, ****P*<0.001, ***P*<0.01. (C) Fluorescence Microscopy of catheters incubated with MRSA and P. aeruginosa (scale bar=20 µm). (D) Illustration of

Figure S15. In vitro mammalian cell compatibility of extractants from modified catheters
soaked in DMEM for (A) 24 h and (B) 72 h following ISO10993-5. (C) Hemocompatibility of
intermediate catheters (#5, #6 and #7) measured by platelet activation and amount of
thrombus formation. (D) Activation of blood immune cells. (E) Blood protein fouling on
catheters after 24 h incubation with protein or serum
Figure S16. Monitoring of pigs' parameters (Time point of 0 is the point of completion of
surgery to implant the catheter(s).). (A) Long-term observation (i.e. when the effects of
anaesthesia are gone), (i) mean arterial pressure (MAP), (ii) heart rate (HR) (N.D. not done
because infected pig was sacrificed on Day 5). (B) Transient observation after surgery and
until full wake-up from anaesthesia, (i) mean arterial pressure (MAP), (ii) heart rate (HR)24
Equation S1. Surface peroxide group density

Scheme S1. Synthesis of NO release precursor (NTMB-Cl)

Figure S1. Synthesis of **(A)** homo poly(SBMA) coating ((#3) S) and **(B)** homo poly(HEMA-NO) coating ((#4) H(N)).

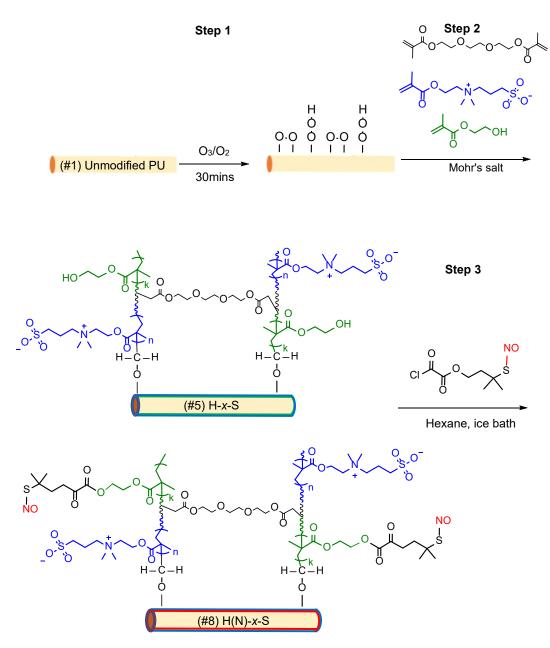
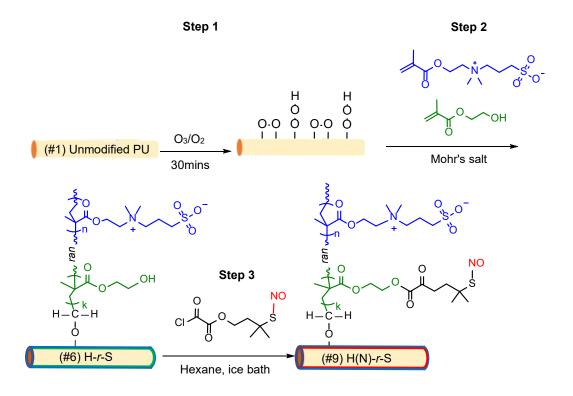
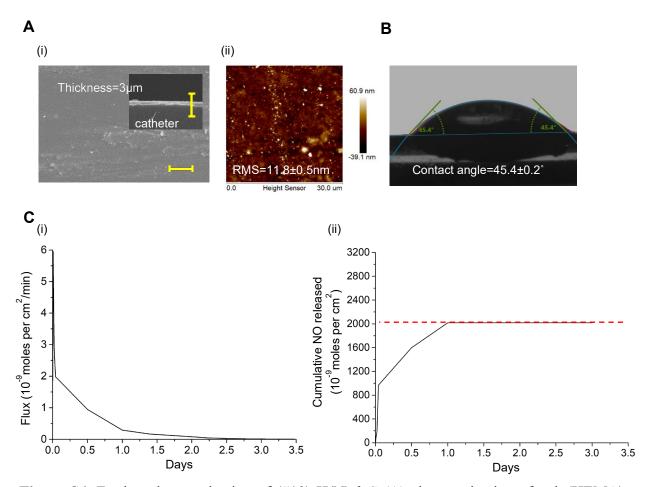
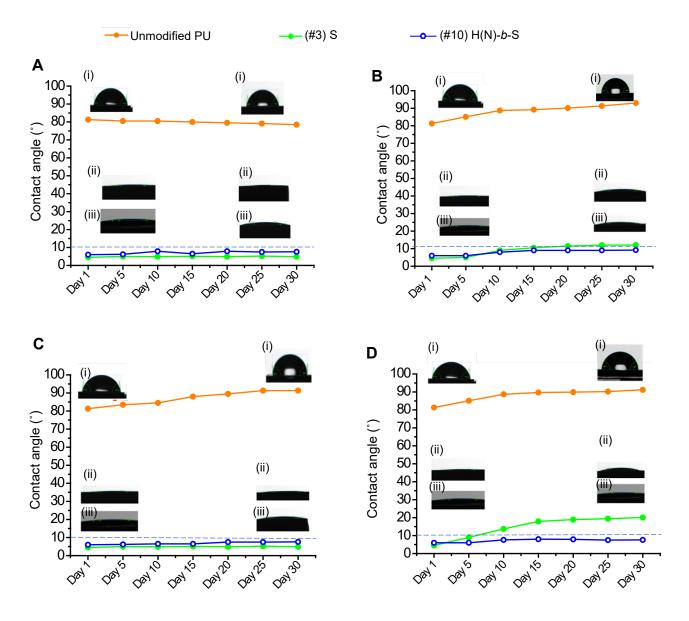
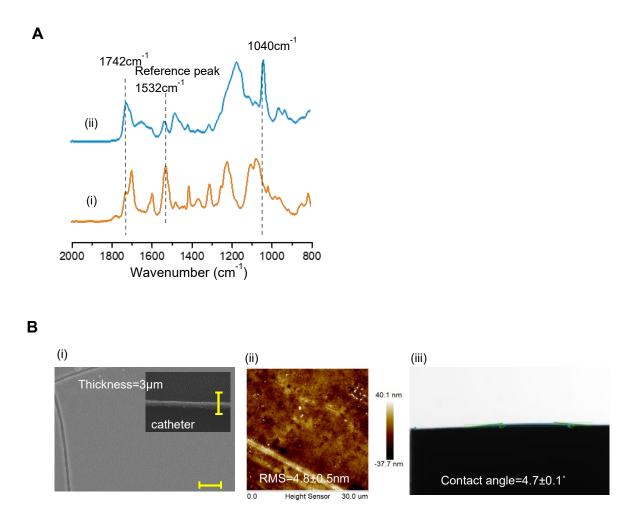
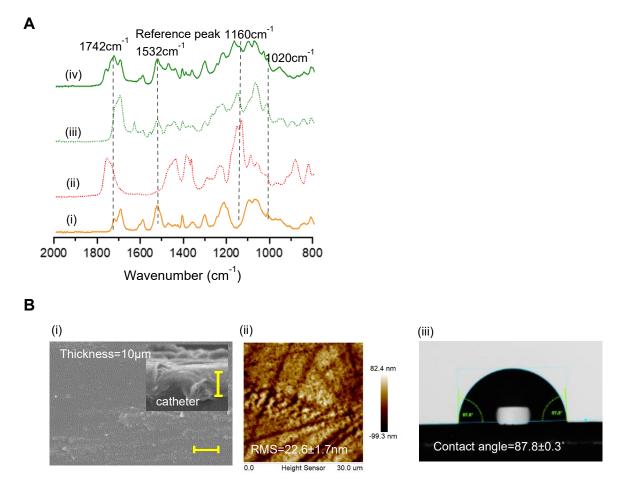
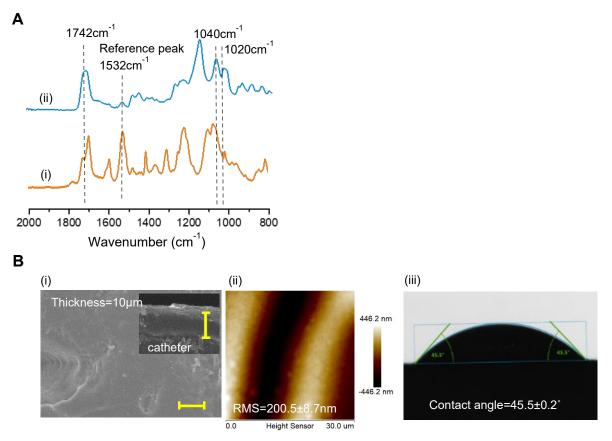


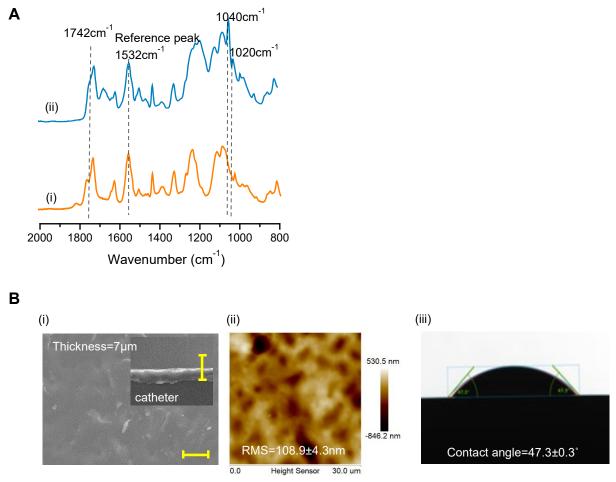
Figure S2. Synthesis of crosslinked coating ((#5) H-x-S and (#8) H(N)-x-S).

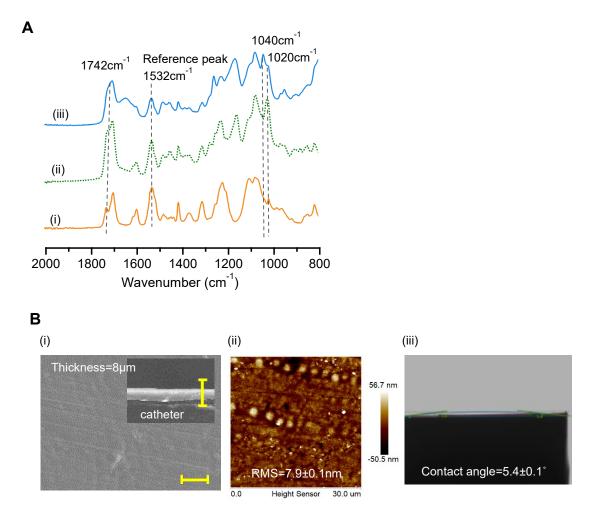




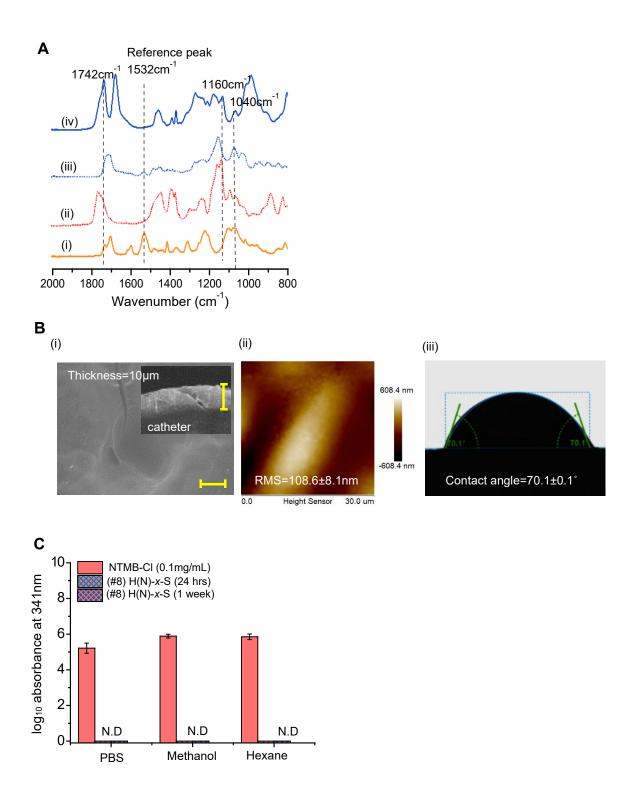

Figure S3. Synthesis of random copolymer coating ((#6) H-*r*-S and (#9) H(N)-*r*-S).


Figure S4. Further characterization of (#10) H(N)-*b*-S (**A**) characterization of poly(HEMA) which is the first step in the synthesis of (#10) H(N)-*b*-S: Surface morphology (i) SEM image of catheter surface and cross section (inset) (scale bar=10 µm), (ii) AFM image of surface morphology with measured root mean square height variation. (**B**) contact angle of poly(HEMA). (**C**) Quantification of NO-release precursors on (#10) H(N)-*b*-S: (i) NO flux profile at 55 °C, (ii) Cumulative NO released.


Figure S5. Stability test of coatings. Long-term hydrophilicity test under various conditions: **(A)** PBS saline **(B)** Serum **(C)** *S. aureus* inoculum (D) *P. aeruginosa* inoculum. The contact angles are shown in the insets ((i) (#1) unmodified PU, (ii) (#3) S, (iii) (#10) H(N)-*b*-S), the dotted line in the graphs indicates 10°.


Figure S6. Characterization of coating (#3) S. **(A)** FTIR spectra of catheter samples: (i) unmodified control, (ii) (#3) S, characterization peaks: C=O ester at 1742 cm⁻¹ and SO₃⁻ sulfonyl peak at 1040 cm⁻¹. **(B)** (i) SEM image of catheter surface and cross section (inset) (scale bar=10 μ m), (ii) AFM image with measured root mean square height variation, (iii) contact angle.


Figure S7. Characterization of coating (#4) H(N). **(A)** FTIR spectra of catheter samples: (i) unmodified control, (ii) NO-donor NTMB-Cl, (iii) homo poly(HEMA) coating, (iv) (#3) H(N) coating with characterization peaks: C=O ester at 1742 cm⁻¹ and RSNO peak at 1160 cm⁻¹. **(B)** (i) SEM image of catheter surface and cross section (inset) (scale bar=10 μ m), (ii) AFM image with measured root mean square height variation, (iii) contact angle.


Figure S8. Characterization of coating (#5) H-x-S. (A) FTIR spectra of catheter samples: (i) unmodified control, (ii) (#5) H-x-S with characterization peaks: C=O ester at 1742 cm⁻¹, SO₃⁻ sulfonyl peak at 1040 cm⁻¹ and C-O-H peak at 1020 cm⁻¹. (B) (i) SEM image of catheter surface and cross section (inset) (scale bar=10 μ m), (ii) AFM image with measured root mean square height variation, (iii) contact angle.

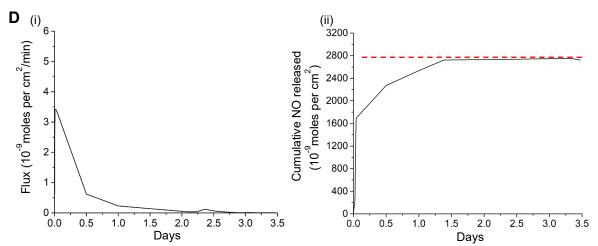
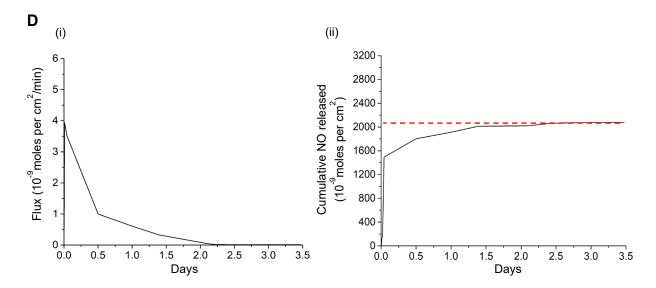


Figure S9. Characterization of coating (#6) H-*r*-S. (A) FTIR spectra of catheter samples: (i) unmodified control, (ii) (#6) H-*r*-S with characterization peaks: C=O ester at 1742 cm⁻¹, SO₃⁻ sulfonyl peak at 1040 cm⁻¹ and C-O-H peak at 1020 cm⁻¹. (B) (i) SEM image of catheter surface and cross section (inset) (scale bar=10 μ m), (ii) AFM image with measured root mean square height variation, (iii) contact angle.


Figure S10. Characterization of coating (#7) H-*b*-S. **(A)** FTIR spectra of catheter samples: (i) unmodified control, (ii) poly(HEMA), (iii) (#7) H-*b*-S, with characterization peaks: C=O ester at 1742 cm⁻¹, SO₃⁻ sulfonyl peak at 1040 cm⁻¹ and C-O-H peak at 1020 cm⁻¹. **(B)** (i) SEM image of catheter surface and cross section (inset) (scale bar=10 μ m), (ii) AFM image with measured root mean square height variation, (iii) contact angle.

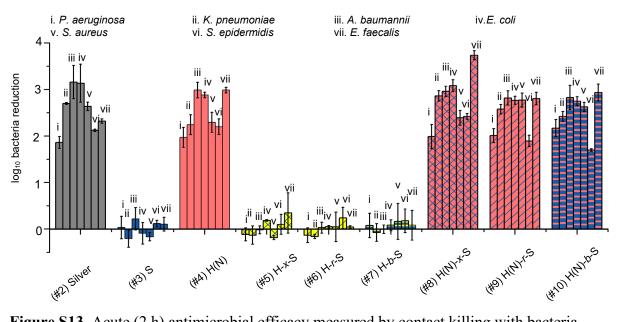
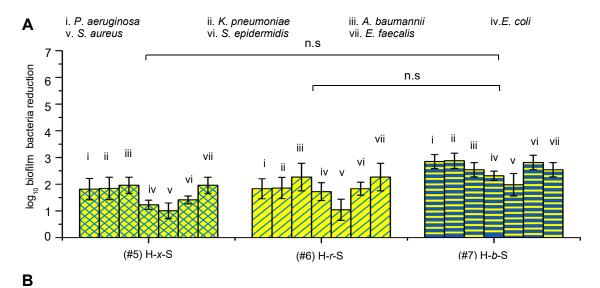
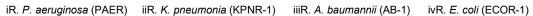
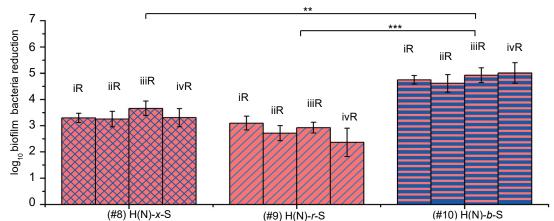
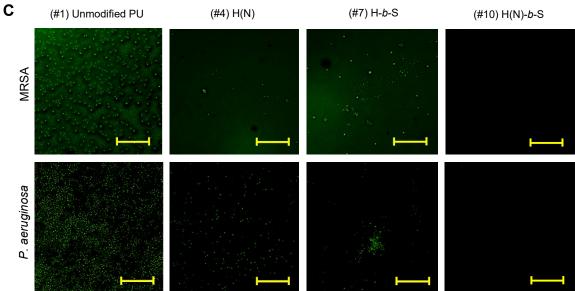


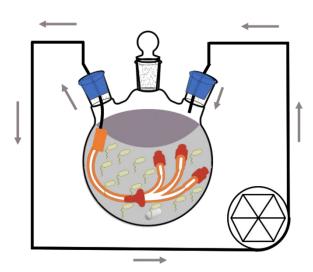
Figure S11. Characterization of coating (#8) H(N)-*x*-S. (A) FTIR spectra of catheter samples: (i) unmodified control, (ii) NO-donor NTMB-Cl, (iii) (#5) H-*x*-S, (iv) (#8) H(N)-*x*-S, characterization peaks: C=O ester at 1742 cm⁻¹ and RSNO peak at 1160 cm⁻¹ and SO₃⁻ sulfonyl peak at 1040 cm⁻¹. (B) (i) SEM image of catheter surface and cross section (inset) (scale bar=10 μ m), (ii) AFM image with measured root mean square height variation, (iii) contact angle. (C) HPLC detection of NO release precursor (NTMB-Cl) leached to different solvents (N.D refers to no detection of leaching) in 24 h and 1 week extractions using PBS, methanol (polar solvent) and hexane (non-polar solvent). (D) NO flux measured at 55 °C, (ii) Cumulative NO released.

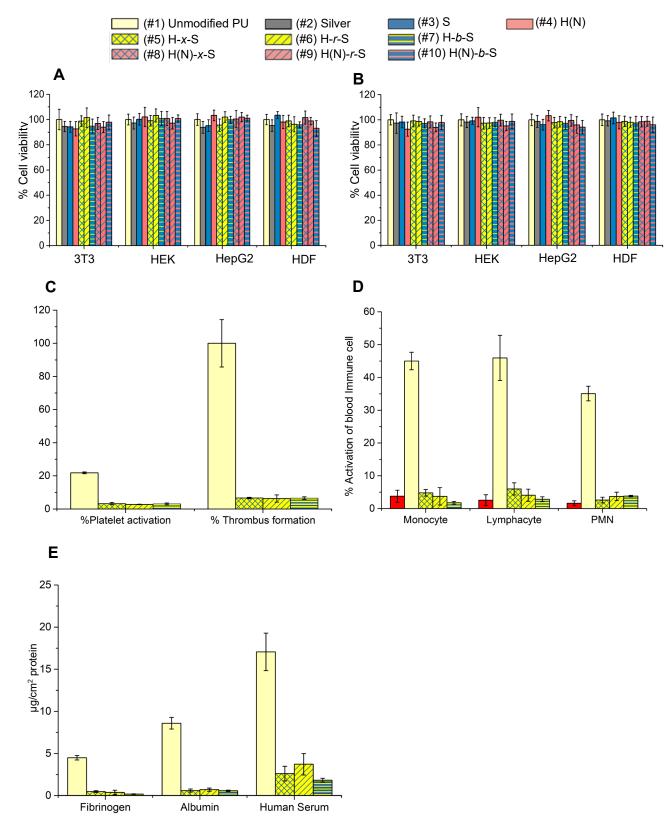


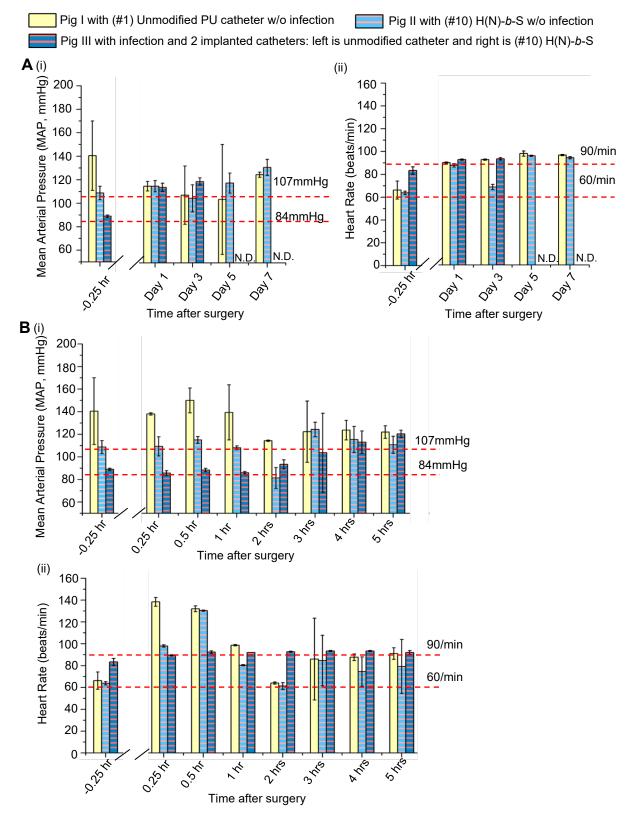



Figure S12. Characterization of coating (#9) H(N)-*r*-S. (A) FTIR spectra of catheter samples: (i) unmodified control, (ii) NO-donor NTMB-Cl, (iii) (#6) H-*r*-S, (iv) (#9) H(N)-*r*-S, characterization peaks: C=O ester at 1742 cm⁻¹ and RSNO peak at 1160 cm⁻¹ and SO₃⁻ sulfonyl peak at 1040 cm⁻¹. (B) (i) SEM image of catheter surface and cross section (inset) (scale bar=10 μ m), (ii) AFM image with measured root mean square height variation, (iii) contact angle. (C) HPLC detection of NO release precursor (NTMB-Cl) leached to different solvents (N.D. refers to no detection of leaching) in 24 h and 1 week extractions using PBS, methanol (polar solvent) and hexane (non-polar solvent). (D) NO flux measured at 55 °C, (ii) Cumulative NO released.


Figure S13. Acute (2 h) antimicrobial efficacy measured by contact killing with bacteria loaded on surface.




(#9) H(N)-*r*-S



D

Figure S14. (A) 24 h *In vitro* antibiofilm efficacy of intermediate coatings (#5, #6 and #7) against some Gram-positive and Gram-negative bacteria. Student's *t*-test, n.s. *P*>0.5, (**B**) *In vitro* antibiofilm efficacy of NO-release coatings against multi-drug resistance (MDR) Gram-negative bacteria. Student's *t*-test, ****P*<0.001, ***P*<0.01. (**C**) Fluorescence Microscopy of catheters incubated with MRSA and *P. aeruginosa* (scale bar=20 µm). (**D**) Illustration of intraluminal circulation setup for antibiofilm test.

Figure S15. *In vitro* mammalian cell compatibility of extractants from modified catheters soaked in DMEM for (A) 24 h and (B) 72 h following ISO10993-5. (C) Hemocompatibility of intermediate catheters (#5, #6 and #7) measured by platelet activation and amount of thrombus formation. (D) Activation of blood immune cells. (E) Blood protein fouling on catheters after 24 h incubation with protein or serum.

Figure S16. Monitoring of pigs' parameters (Time point of 0 is the point of completion of surgery to implant the catheter(s).). **(A)** Long-term observation (*i.e.* when the effects of anaesthesia are gone), (i) mean arterial pressure (MAP), (ii) heart rate (HR) (N.D. not done because infected pig was sacrificed on Day 5). **(B)** Transient observation after surgery and until full wake-up from anaesthesia, (i) mean arterial pressure (MAP), (ii) heart rate (HR).

Equation S1. Surface peroxide group density

Volume of Sodium thiosulfate solution (0.01 mM) used: 3.30 mL

Moles of peroxide equals moles of thiosulfate titrated, calculated as below:

 $0.01 \times 10^{-3} \times 3.30 \times 10^{-3} = 3.3 \times 10^{-8}$ mole of peroxide per 5 mm of catheter Calculation of peroxide group density (σ):

$$\sigma = \frac{No. of \ peroxide \ group \ on \ 5 \ mm \ of \ catheter}{Surface \ area \ of \ 5 \ mm \ catheter}$$

$$\sigma = \frac{3.3 \times 10^{-8} \times 6.023 \times 10^{23}}{0.25 \times 0.5 \times \pi + 0.4 \times 0.5 \times \pi + 2 \times ((0.5 \times 0.4)^2 - (0.5 \times 0.25)^2) \times \pi}$$

$$\sigma = \frac{1.98 \times 10^{16}}{1.17 \ cm^2}$$

$$\sigma = 1.69 \times 10^{16} \ / cm^2$$

$$\sigma = 169 \ / nm^2$$