
 S1

Supporting Information

mzMLb: a future-proof raw mass spectrometry data format based on

standards-compliant mzML and optimized for speed and storage requirements

Ranjeet S. Bhamber1, Andris Jankevics,2, Eric W Deutsch3, Andrew R Jones4, Andrew W Dowsey1*

1. Department of Population Health Sciences and Bristol Veterinary School, University of Bristol, Bristol

BS8 2BN, United Kingdom

2. School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham B15

2TT, United Kingdom

3. Institute for Systems Biology, Seattle, Washington 98109, United States

4. Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom

* Corresponding Author; andrew.dowsey@bristol.ac.uk; +44 (0) 117 3319193

Contents
Table S1. List of raw vendor MS data files used.
Table S2. Truncation optimisation table.
Figure S1. File size and write times for all data formats and vendor files.
Figure S2. Ion mobility mzML and mzMLb compression comparison.

 S2

Table S1. The raw MS data files used in the validation, together with MS instrument and
method information.

Table S2. mzMLb optimized values of the mantissa for both m/z and intensities for the data
files listed in Table S1. The associated errors and files sizes for mzML with Numpress and
mzMLb are also shown. Both formats used zlib compression with a compression strength of
4. For all results we show the maximum error across the whole dataset.

 S3

Figure S1. Summary data showing write times and file sizes for all datasets using the 3
formats; mzML, mz5 and mzMLb with 5 different compression combinations spanning both
lossless and lossy configurations. The original vendor file sizes are represented by the vertical
dashed line.

k) Thermo Orbitrap XL, MS full, centroid, 40MB l) Agilent 6560, IMS, 49.9MB

I) Agilent QTOF, MS full, profile, 700.9MB j) Thermo Orbitrap Exactive,MS full, profile,, 503.2MB

g) Waters Synapt G2, DDA, profile, 4348.5MB h) Thermo Q−Exactive, DDA, profile, 1639.3MB

e) Agilent QTOF, DDA, profile, 4197.5MB f) ABI Sciex Triple TOF, SWATH DIA, profile, 2729.4MB

c) Thermo Orbitrap XL, DDA, peak picked, 201.2MB d) Thermo Orbitrap XL, DDA, profile, 496.7MB

a) Thermo TSQ Vantage, SRM, low, 13.2MB b) Thermo LCQ, DDA, low, 16.2MB

32 64 128 64 128 256 512

512 1024 2048 4096 128 256 512

2048 4096 8192 16384 1024 2048 4096

4096 8192 16384 32768 4096 8192 16384 32768

64 128 256 512 1024 2048

0.5 1.0 2.0 4.0 8.0 8 16 32 64
3.5

4.0

4.5

5.0

5.5

6.0

110

120

130

2100

2200

2300

2400

2500

380

400

420

440

460

39

42

45

48

51

35.0

37.5

40.0

42.5

45.0

47.5

0.20

0.25

0.30

0.35

0.40

15

17

19

1400

1500

1600

1700

1800

1900

2500

3000

3500

4000

4500

150

200

250

300

350

400

7

8

9

10

File size, MB

W
ri

te
 t

im
e
,
s

Format ● ● ●mz5 mzML mzMLb Compression mzlinear+trunc+zlib No compression Nump Nump+zlib zlib

 S4

Figure S2. Bruker diaPASEF ion mobility dataset converted to both mzML and mzMLb with
zlib compression enabled for both cases. Results are shown with and without the
ProteoWizard switch “combineIonMobilitySpectra”, which is designed to allow more efficient
storage of ion mobility data in mzML as per a forthcoming PSI recommendation. Note that for
this data type, the vendor format is considerably more efficient than either open format.

 S5

The mzMLb format

An mzMLb dataset is a HDF5 file which must include in its root a HDF5 dataset mzML with
fixed length string attribute version. The currently supported version string is: “mzMLb 1.0”.
The mzML XML document is stored in the mzML dataset, which is a 1D character array, with
two modifications:

(1) HDF5 binary indexes replace the <indexedmzML> wrapper schema. Here:

• HDF5 datasets mzML_spectrumIndex and mzML_chromatogramIndex replace
the respective <indexedmzML> <index> blocks. Each is a 1D array of 64bit integers
replicating the set of <offset> file pointer offsets - except note that there is an extra
offset at the end of each array representing one past the end position of the last
spectrum/chromatogram.

• HDF5 datasets mzML_spectrumIndex_idRef and
mzML_chromatogramIndex_idRef, 1D character arrays, then replicate the idRef
attributes of <offset> as null-terminated strings concatenated together.

• Similarly and optionally, spotID attributes can be stored in HDF5 1D character array
datasets mzML_spectrumIndex_spotID and mzML_chromatogramIndex_spotID,
while scanTime attributes can be stored in HDF5 1D floating point array
dataset mzML_spectrumIndex_scanTime.

• (2) The mzML base64 encoded binary data is removed from the <mzML> and moved
into one or more native binary HDF5 datasets. Floating point binary data (i.e. all non-
Numpress compressed <BinaryDataArray>) is stored as one or more HDF5 1D
floating point arrays, while Numpress data can be stored as a non-base64 encoded
bytestream with HDF5 data type OPAQUE.

As in imzML, the mzML is modified slightly to specify this linkage to external data; the resulting
XML is still valid mzML. Here, any <binary> blocks within the <binaryDataArray> blocks are
removed, and the encodedLength attribute is set to "0". To link to the native HDF5 binary data,
within the <binaryDataArray> three <cvParam> tags need to be given, specifying the external
dataset name, offset to the start of the relevant data within the dataset, and the length of the
relevant data. These three tags enable flexibility over the nature and number of HDF5 datasets
used to store the binary data (e.g. separate datasets can be used to store different datatypes;
multiple spectra can be stored in the same dataset for improved chunking and compression).

ProteoWizard mzMLb msconvert arguments

In order to convert input data into the mzMLb format using msconvert; the following new
arguments have been introduced that allow you to alter the default parameters of converting
files to mzMLb when using “--mzMLb” switch.

--mzTruncation=[0-] --intenTruncation=[0-]

Perform lossy compression by removing the last n bits of mantissa from floating point data
before storage. The default is 0 (no removal). Set to -1 to truncate to integers.

--mzDelta --intenDelta --mzLinear --intenLinear

Store mz/rt or intensity values after delta or linear prediction. Predictive encoding of mz/rt
values may lead to moderate improvements in gzip compression, or further improvements
after floating point precision loss.

--mzMLbChunkSize=[4096-]

Defines the chunk size to use for the mzML and all binary HDF5 datasets, in bytes. A smaller
amount improves random access speed at the detriment of compression efficiency.

 S6

--mzMLbCompressionLevel=[0-9]

Define to use either no compression (0) or GZIP compression strength 1 to 9. Compression is
applied to the mzML and all binary HDF5 datasets. Specifying --zlib or -z instead will use the
default compression strength of 4. If no compression is specified, the default chunk size is
1024 KB. If compression is specified, the defaults are chunk size 1024 KB, mzLinear on,
mzTruncation 19 and intenTruncation 7 (as described in the main manuscript).

Data and implementation availability

The mass spectrometry datasets used during the analysis of mzMLb in this study have been
deposited at Zenodo.org.

https://doi.org/10.5281/zenodo.3951164

All the results in this paper were created using v0.6 of our reference ProteoWizard mzMLb
implementation available at https://github.com/biospi/pwiz/releases/tag/v0.6

Examples:

Below is an example of converting a vendor raw (or any file that ProteoWizard can read) into
mzMLb with mzLinear, mz truncation = 19, intensity truncation = 13 and a compressed
chunking size of 1MB.

msconvert <Input file> –mzMLb --mzMLbCompressionLevel=4 --mzLinear --
mzTruncation=19 --intenTruncation=13 --mzMLbChunkSize=10485760 --outfile <Name of
Converted file>

Converting a vendor file using the Numpress scheme would entail the following.

msconvert <Input file> --mzML --zlib --mz64 --inten32 -n --outfile <Name of
Converted file>

Converting a vendor file using the Numpress scheme with mzMLb.

msconvert <Input file> –mzMLb -n --outfile <Name of Converted file>

Converting a vendor file to lossless mzMLb with zLib:

msconvert <Input file> –mzMLb -z --outfile <Name of Converted file>

https://github.com/biospi/pwiz/releases/tag/v0.6

