
 

 

1 

 

Supporting Information for 
 

Genetically encoded phase contrast agents for digital 

holographic microscopy  
 
Arash Farhadi,†,‖ Manuel Bedrossian,‡,‖ Justin Lee,† Gabrielle H. Ho,¶ Mikhail G. 

Shapiro,*,¶ Jay L. Nadeau*,§ 

 
† Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA USA 

‡ Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA 

¶ Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA USA 

§ Department of Physics, Portland State University, Portland, OR USA 

‖ Contributed equally 

*Correspondence should be addressed to M.G.S. (mikhail@caltech.edu) or J.N. (nadeau@pdx.edu) 

 

 

This PDF file includes: 

 

Materials and Methods 

Supplementary text 

Figs. S1 to S3 

Table S1 

Captions for datasets S1 to S9 

References for SI reference citations 

 

Other supplementary materials for this manuscript include the following:  
Datasets S1 to S9 

 

 

 

 

 

 

 

 

 

 



 

 

2 

 

Supporting Information Text 

Materials and Methods 

Digital Holographic Microscopy 

Two instruments were used: a “high power” instrument and a “low power” instrument. 

The design of the “high power” microscope was a modified Mach-Zehnder as described 

previously,1 containing identical objective lenses in the object and reference beams. The 

objective lenses used were Mitotoyo 100x, NA 0.7 dry long working distance objectives, 

infinity-corrected to an achromatic field lens (200 mm focal length), which was used to 

form the image on a digital CCD camera (Baumer TXG50-P). The effective 

magnification of this instrument was 78x. The diffraction-limited lateral resolution was 

roughly 0.3 µm with a 405 nm illumination source. Illumination was through a single-

mode fiber coupled diode laser that was collimated before the first beamsplitter.  

 

The design of the “low power” microscope was a common path Mach-Zehnder as 

described previously.2, 3 The objectives were simple aspheric lenses (Asphericon) with 

NA = 0.3. The effective magnification was 19.6x with a diffraction limited lateral 

resolution of 0.8 µm. The wavelength used in this work for both DHM instruments was 

405 nm, supplied by a diode laser (Thorlabs S1FC405). 

 

DHM images of GV-labeled mammalian cells were acquired using the “high 

power” microscope and all other DHM data were collected using the “low power” 

microscope.  

Gas Vesicle Expression, Purification, and Clustering 

Anabaena flos-aquae (CCAP strain 1403/13F) was cultured for ~2 weeks in Gorham’s 

media supplemented with BG-11 solution (Sigma) and 10 mM NaHCO3 at 25ºC, 100 rpm 

under 1% CO2 and a 14 hours light/10 hours dark cycle.4 At confluency, the buoyant cell 

fraction was isolated by floating to the top of a separating funnel over a 48h period, after 

which the subnatant was discarded. The collected cells were then lysed using 500 mM 

sorbitol and 10% Solulyse solution (Genlantis). GVs were purified through repeated 

rounds of isolating the buoyant fraction through centrifugation and resuspension in PBS.  

 

GV clusters were prepared by first biotinylating purified GVs with 105 molar 

excess of EZ-Link Sulfo-NHS-LC-biotin (Thermo Scientific) in PBS for 4 hours. 

Afterwards, the sample underwent two rounds of overnight dialysis in PBS. The 

biotinylated GVs were then clustered by incubation with streptavidin (Geno Technology) 

for 30 minutes at room temperature at a streptavidin to GV molecular ratio of 100:1.  

 Dynamic Light Scattering (DLS) 

The hydrodynamic size of the GVs, GV clusters and alumina beads was measured in 50 

µL samples at OD500 = 0.2 using a Zeta-PALS analyzer (Brookhaven Instruments). 

Samples were mixed thoroughly and measured five times for each reported 

hydrodynamic diameter. 
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Engineered Gas Vesicles for Cell Labeling 

Genetically engineered GVs were prepared using a previously described protocol.5 In 

brief, the GvpC DNA sequence from Anabaena flos-aquae was codon-optimized for E. 

coli expression and cloned into a pET28a(+) plasmid (Novagen) with an N-terminal 

hexahistidine-tag and C-terminal GSGRRRRRRRR (R8) sequence. Plasmids were 

transformed into BL21(DE3) cells (Invitrogen), which were induced to express the 

recombinant GvpC for 6 hours at 30˚C. GvpC contained in inclusion bodies was purified 

by lysing the cells using 10% Solulyse (Genlantis) supplemented with DNaseI (10 

µg/mL) and lysozyme (400 µg/mL) at room temperature. Inclusion bodies were 

recovered by centrifugation at 27,000g for 15 min. The inclusion body pellets were 

resuspended in 20 mM Tris-HCl buffer with 500 mM sodium chloride and 6 M urea 

(pH=8.0) and incubated with Ni-NTA resin (Qiagen, Valencia, CA) for 2 hours at 4°C. 

After washing, proteins were eluted using 250 mM imidazole. 

 

Next, the wild-type GvpC proteins on the surface of GVs where replaced with 

polyarginine modified-GvpC (R8-GvpC). Purified GVs were treated with 6 M urea and 

20 mM Tris-HCl (pH=8.0) to remove their wild-type GvpC. These stripped GVs were 

isolated with two rounds of centrifugally assisted buoyancy purification in urea. Purified 

R8-GvpC was then added according to the formula: 2 x optical density x 198 nM x liters 

GVs = nmol of recombinant GvpC and dialyzed in PBS for 8 hours. 105 molar excess of 

Alexa Fluor 488 NHS (Thermo Fisher) was then added to the GVs and incubated at room 

temperature for 4 hours under gentle rotation, before being quenched with 20 mM Tris-

HCl (pH = 8.0) and dialyzed in PBS to remove excess dye. 

Cell Culture and Gas Vesicle Labeling 

Chinese hamster ovary cells (CHO-K1; ATCC) were cultured in DMEM (Corning) with 

10% FBS (Thermo Fisher) and penicillin/streptomycin (Corning). Coverslips (18x18 

mm) were sterilized with 70% ethanol, washed twice in PBS and placed in 6-well plates. 

Fibronectin (Sigma) was diluted 1:20 in PBS and 200 µL were added to each well over 

the entire surface of the coverslip and incubated for 1 hour at room temperature. Excess 

solution was aspirated, and CHO-K1 cells were seeded on the coverslips and grown to 

~75% confluency.  

 

For GV labeling, the surface of a 6-well plate was covered with paraffin and UV 

sterilized. Then, 300 µL of 37˚C DMEM media and 300 µL of 114 pM (36.6 µg/mL or 

OD500 = 1) of R8-GVs was added to the bottom of the well and mixed. The cells cultured 

on coverslips were inverted onto the DMEM and GV mixture, so the cells were facing the 

bottom of the plate. The coverslips and GVs were incubated at 37˚C. Following 

incubation, the cells were washed three times with 200 µL of PBS and fixed with 1 mL of 

formaldehyde for 30 minutes. The coverslips were mounted using Diamond Antifade 

mountant (Thermo Fisher) and sealed using clear nail polish. 

Fluoresence Imaging 

Fluorescence images were taken on an Olympus IX-71 inverted microscope using Hg 

lamp illumination through a 1.4 NA oil immersion objective and using the enhanced 

green fluorescent protein filter set (Chroma). To register fluorescence images with phase 
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images, a 1-µm tip glass pipette was secured to the specimen and cells were imaged in 

the vicinity of the tip across the two instruments. 

Gas Vesicle Expression in Salmonella 

GV expression in Salmonella typhimurium (strain ELH1301) cells was performed as 

described previously.6 Briefly, the hybrid GV gene cluster, under the control of the luxI 

promoter (Addgene 106475), was transformed into S. typhimurium cells. Monoclonal 

cells from an individual plated colony were cryostocked. Cells containing the GV genes 

were grown in 5 mL of 2xYT media with 50 µg/mL kanamycin for 16 hours at 37ºC, 250 

rpm. Cultures in 50 mL 2xYT media with 50 µg/mL kanamycin were then inoculated 

with 500 µL of the starter culture and grown on the shaker at 37ºC until OD600 = 0.4 to 

0.6. These cultures were induced with 3 nM N-(β-ketocaproyl)-L-homoserine lactone 

(AHL) and then grown for 22 hours at 30ºC, 250 rpm. Cells were then harvested by 

centrifugation at 300g at 30ºC for 2 hours. The buoyant cell fraction was transferred into 

clean tubes. To collapse the GVs inside cells, GV-expressing salmonella were placed a in 

quartz cuvette (Hellma Analytics) connected to a N2 cylinder through a pressure 

controller (Alicat Scientific) set to 1.2 MPa. 

TEM Sample Preparation and Imaging 

Electron microscopy was performed at the Beckman Institute Resource Center for 

Transmission Electron Microscopy at Caltech. Purified GVs were diluted to OD500 = 0.2 

in 10 mM HEPES buffer and Salmonella cells were diluted to OD600 ~ 0.2 in 10 mM 

HEPES buffer or PBS. Samples were then spotted on Formvar/Carbon 200 mesh grids 

(Ted Pella), which were rendered hydrophilic by glow discharging (Emitek K100X). 

Purified GV samples were stained with 2% uranyl acetate, while cells were imaged 

unstained. Image acquisition was performed using a Tecnai T12 Lab6 120 kV 

transmission electron microscope equipped with a Gatan Ultrascan 2k x 2k CCD camera. 

Simulations 

Holograms were simulated with MATLAB (R2017b) using a custom hologram 

simulation routine. First, a two-dimensional projection image was created using a series 

of Radon Transforms, modeling a typical GV-expressing Salmonella cell as a cylinder, 

with a diameter of 1 µm and a length of 5 µm, with bands of lower refractive index 

corresponding to areas dense in GVs as seen in TEM images. This projection is then 

downsampled, via bicubic interpolation, in order to accommodate and emulate the 

diffraction limited resolution of the low-power DHM instrument. Within this projection, 

GVs were simulated using index of refraction values of 1.00. Other intracellular areas 

were simulated using an index of refraction of 1.37. The index of refraction used to 

simulate the cell’s surrounding medium is 1.33. 

The wavefront perturbations as a result of a collimated plane wave passing 

through the simulated cell is then propagated using the angular spectrum method.7 The 

resulting diffracted wavefront is numerically propagated and recombined with a reference 

(undisturbed) plane wave in order to simulate an off-axis hologram. Code for the 

simulator is provided in the Supplemental Material. The simulated holograms were 

reconstructed into phase images using the commercially available software KOALA 

(LynceeTec). No image noise was added to the simulation besides quantization noise 
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when the holograms were saved as unsigned 8-bit image files whereas in reality there are 

numerous sources of noise including, but not limited to: shot noise, temporal and spatial 

noise due to changes in the coherence of the illumination laser, as well as various sources 

of noise introduced by the digital CCD used to record the holograms.8 

Tracking 

Tracking of GVs and alumina beads was performed using the Manual Tracking plug-in in 

the open source image analysis tool FIJI.9 

Phase Quantification of Salmonella Cells 

Data recorded using the DHM system was reconstructed into phase images using the 

commercially available software Koala (LynceeTec). Raw 8-bit phase images were 

reconstructed with quantitative phase bounds of -π to π corresponding to pixel values of 0 

and 255, respectively (described in supplementary text). After reconstruction cell 

boundaries were identified with the freehand selection tool of the open source image 

analysis software FIJI by team members blinded to the identity of the sample. The cell 

boundaries were used to isolate the interior pixel values within the cell by creating a 

binary mask about the cell boundary. These interior pixel values were converted from 

their 8-bit values to quantitative phase values and analyzed using MATLAB (2017b). 

Image Processing and Handling 

In the analysis of off-axis holograms, image reconstruction and post-processing steps are 

necessary in order to interpret the electric field intensity recorded in a hologram into a 

useful three-dimensional data set. Furthermore, post-processing methods are used to de-

noise the resulting reconstructed images. 

 

This supplemental document outlines the methods and work flows associated with the 

processing and handling of off-axis holographic images. This includes the reconstruction 

process from hologram to phase images, and all de-noising steps used to reach the final 

images that are presented in the main document. 

 

Image Reconstruction 

An off-axis hologram is recorded as a single image that contains interference patterns (or 

fringes) that contain the 3D information of the sample being imaged. The spatial 

frequency of the fringes act as the carrier frequency of this information. To reconstruct 

this information into a useable form, the high spatial frequency information in the 

hologram must be isolated. Figure S1A shows an example hologram, its Fourier 

Transform plotted on a logarithmic scale (note the high frequency ‘lobes’ which contain 

the 3D information of the sample (Figure S1B), the same Fourier transform that has been 

multiplied by a binary mask to isolate one of the high frequency lobes (Figure S1C), and 

that isolated lobe that has been shifted to the center of the Fourier Transform (Figure 

S1D). 

 

In the formation of an off-axis hologram, two collimated beams of light are 

recombined at the digital detector at an angle (off-axis of each other). This off-axis 

recombination causes interference between the two beams. The spatial frequency of these 
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fringes is proportional to the wavelength of light used as well as the recombination angle. 

If the two beams of light are named the ‘specimen’ and ‘reference’ beam where the 

‘specimen’ beam interacts with the sample being imaged, and the ‘reference’ beam 

remains undisturbed, then the resulting hologram can be represented mathematically as 

the superposition of the two beams at the detector (Equation 1). 

 

 𝑆(𝑥, 𝑦) = 𝐴𝑆 exp 𝑖(𝜙𝑆(𝑥, 𝑦) − 𝜔𝑡), 1a 
 𝑅(𝑥, 𝑦) = 𝐴𝑅 exp 𝑖(𝜙𝑅(𝑥, 𝑦) − 𝜔𝑡), 1b 
 Ψ(𝑥, 𝑦) = 𝑆(𝑥, 𝑦) + 𝑅(𝑥, 𝑦), 1c 
 ℎ = ∫ΨΨ∗d𝑡 = (𝐼𝑆 + 𝐼𝑅) + 𝑆𝑅∗ + 𝑆∗𝑅, 1d 

 

where 𝐴𝑆 and 𝐴𝑅 are the amplitudes of the Specimen and Reference beam, 𝜙𝑆 and 𝜙𝑅 are 

the phase differences between the specimen and reference beams, Ψ is the resulting wave 

from the superposition of the specimen and reference beams, and ℎ is the hologram. 

In Supplementary Figure 1B there are three discrete lobes present. The center most lobe 

corresponds to the summation of intensities of the specimen and reference beams (𝐼𝑆 +
𝐼𝑅) from Equation 1d, while the two higher spatial frequency lobes correspond to 𝑆𝑅∗ 

and 𝑆∗𝑅 from Equation 1d. These two lobes are complex conjugates of each other, but for 

the purposes of this work, the lobe corresponding to 𝑆𝑅∗ is the chosen lobe to be isolated 

in Figure S1C & S1D. 

 

With the 3D information encoded in the hologram isolated, it is then convolved 

with the transfer function of free space (𝐺), according to Rayleigh-Sommerfeld 

diffraction, as described by Schnars, et al.7 The reconstructed complex wavefront Γ is 

 

 Γ(𝑥, 𝑦, 𝑧, 𝑡) = 𝔉−1[𝔉(ℎ(𝑥, 𝑦, 𝑡)) ∗ 𝐺(𝑓𝑥, 𝑓𝑦, 𝑧)], 2a 

 𝐺(𝑓𝑥, 𝑓𝑦 , 𝑧) = exp {
−2𝜋𝑖𝑧

𝜆
√1 − 𝜆2𝑓𝑥2 − 𝜆2𝑓𝑦2}, 2b 

 𝐼(𝑥, 𝑦, 𝑧, 𝑡) = |Γ(𝑥, 𝑦, 𝑧, 𝑡)|2, 2c 
 𝜙(𝑥, 𝑦, 𝑧, 𝑡) = arctan (

ℑ(Γ(x,y,z,t))

ℜ(Γ(x,y,z,t))
), 2d 

 

where 𝔉 is the Fourier Transform operator, the intensity image (𝐼) is calculated as the 

square of the magnitude of the complex wavefront Γ, and the quantitative phase image 

(𝜙) is defined as the inverse tangent of the imaginary parts of Γ divided by the real parts 

of Γ. The function 𝐺 is a pure phase object that describes the propagation of an electric 

field through the focal plane (𝑧) and can be modulated to calculate the reconstructed 

wavefront throughout an entire volume. For a more in-depth derivation of this function, 

see Schnars, et al.7 

 

Post-Processing 

With the reconstructed intensity 𝐼(𝑥, 𝑦, 𝑧, 𝑡), and phase images 𝜙(𝑥, 𝑦, 𝑧, 𝑡), post-

processing is necessary to eliminate noise from various sources including, but not limited 

to, photon/shot noise, speckle noise, digitization noise, as well as detector noise. In 

addition, low spatial frequency artifacts are also common in phase reconstructions due to 

tilt in the sample chamber relative to the optical axis as well as objective lens curvature. 
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To remove as much noise from the reconstructed images as possible, temporally 

averaged images are calculated and subtracted from each phase image, as well as 

conducting spatial frequency band-pass filtering. 

 

In the subtraction of temporally averaged phase (referred to as ‘mean 

subtraction’), the mean of each pixel is calculated through time. This mean image is then 

subtracted from the image used to calculate that mean. This effectively removes any 

stationary artifacts from the image highlighting any transient particle in the image. 

 

After this mean subtraction, band-pass filtering is done to remove any low and 

high spatial frequency noise from the images. Low spatial frequency noise can be caused 

by tilt in the sample chamber relative to the optical axis, as well as by the curvature of the 

lenses used in the DHM instrument. Because the DHM is an instrument that is capable of 

achieving diffraction limited resolution, there is a physical limit of the spatial frequencies 

that can be recorded. This presents a clear upper limit to the spatial frequencies that carry 

useful information in the image. Any higher frequency artifacts in the image are by 

definition pure noise and are filtered out. 

 

Because the phase images obtained using off-axis DHM are of a quantitative 

nature, this is the extent of the post-processing performed in order to preserve the 

quantitative information contained in the image. Other methods are more useful in 

enhancing contrast and suppressing noise but were not performed in this work. 

Hologram Simulator 

The optical theory used in the MATLAB code discussed in this document are well 

reviewed by Ulf Schnars, et al.7. The main function (‘OAhologramSimulator.m’) expects 

as an input, two variables. The first is called ‘waveFront’. This is a complex matrix of the 

size of the final image. This matrix describes the normalized amplitude and phase of the 

electric field of the sample we wish to simulate. For the purposes of this manuscript, the 

variable ‘waveFront’ is provided in the file ‘waveFront.mat’. The second input variable is 

‘desiredFileName’, which is the desired file path and name of the output. The output is 

the final 8-bit TIFF hologram. 

 

The variable ‘waveFront’ is generated by creating two three dimensional matrices 

of the electric field attenuation and the index of refraction of light that passes through a 

cylindrical simulated ‘salmonella cell’ with the morphology as shown in the main 

manuscript. 

 

With the two 3D matrices, a series of radon transforms are used to project a 

collimated beam of light through the object. These projections are then used to calculate 

the resultant wave front as a result of the projected electric field attenuation and phase 

delay (introduced by the index of refraction matrix). The hologram simulation code can 

be separated and described in eight sections. 
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1 DHM Parameters 

This section establishes the optical performance parameters of the DHM instrument that 

is to be simulated. In this implementation, the off-axis holograms that are being simulated 

are of the ‘low-power’ instrument and have the appropriate performance parameters for 

that instrument. 

 

Note that the numerical aperture of the objective lenses is not necessary because 

the geometric properties of the objective lens is inputted as ‘fl’ and ‘DiaLens’ (lens focal 

length and lens diameter, respectively). 

 

2 Create the undisturbed reference beam 

This section creates the reference wave. The reference wave by definition is undisturbed 

and un-attenuated and thus the reference wave is a simple matrix of ones. 

 

3 Propagate target and ref to lens object focal plane 

This section takes the input variable ‘waveFront’ and the newly created reference wave 

front ‘U2ref’ and propagates the two waves to the focal plane of the objective lens. The 

propagation of the two waves is conducted using the Angular Spectrum Method (ASM) 

as described in Schnars, et al. The propagation is done by calling an external function 

‘ang_spec_prop.m’. The output of this section are the variables ‘U3’ and ‘U3ref’, 

corresponding to the propagated wave front of the sample (U3) and reference (U3ref). 

 

4 Propagate to the lens 

This section takes the output from the previous section and propagates the two wave 

fronts to the objective lens. This section uses the same external function as the previous 

section. The outputs are ‘U4’ and ‘U4ref’. 

 

5 Simulate the phase delay introduced by the lens 

This section models an ideal objective lens that introduces a phase delay into light as it 

travels through the lens. This simulates an ideal lens because it introduces no wave front 

aberrations or electric field attenuation. 

 

In addition to simulating the phase delay caused by the objective lens, it applies 

this phase delay to ‘U4’ and U4ref’. The output of this section is ‘Alens’ and ‘Alensref’. 

 

6 Propagate to focal plane 

This section takes the output of the previous section and propagates the two wave fronts 

to the back focal plane of the objective lens. The outputs of this section are the variables 

‘U5’ and ‘U5ref’. 

 

7 Combine wavefront with reference wave 

This section acts as the relay lens of the ‘low-power’ instrument by recombining the 

object wave front (U5) with the reference wave front (U5ref) as well as introducing a tilt 

angle between them so that they create interference patterns at the ‘detector’. The output 

of this section becomes a single complex wave front ‘Uccd’. 
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8 Generate and save the hologram 

Because optical detectors such as CCD’s only image electric field intensities, the 

intensity of ‘Uccd’ is calculated and saved as an 8-bit TIFF image with the file path and 

location inputted at the very beginning of this routine. 

3D Pseudo-Colored Rendering 

The 3D rendering was generated using the commercially available software ARIVIS 

Vision4D. This software allows the import of a multidimensional image that is to be 

visualized in a variety of ways. The 2D images that comprise the 3D image stack used in 

ARIVIS were first processed using the methods described in the Image Processing & 

Handling section of this document. These processed images were then thresholded using 

a user defined threshold. Next the magnitude of the image gradient was calculated and 

stored as a separate stack of 2D images. The two 3D image stacks were then imported to 

ARIVIS Vision4D. The pixel values were plotted using a pseudo-colored lookup table. 

The opacity of each pixel was plotted as a weighted function of the magnitude of the 

image gradient at that pixel. This was done to highlight areas of large changes in phase 

signal within the cell. 

Author Contributions 

AF, MB, MGS, and JN conceived and planned the research. AF, JL and GH prepared the 

biological samples. MB and JN conducted the DHM data collection and reconstruction 

with help from AF. MB carried out the generation and analysis of the salmonella 

hologram simulations as well as the analysis particle and salmonella image reconstruction 

and data analysis. MB performed the processing and rendering of the 3D pseudo-colored 

phase image of CHO cells. AF, MB, MGS, JL, GH and JN analyzed the results. AF, MB, 

MGS and JN wrote the manuscript with input from all authors. MGS and JN supervised 

the research.  
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Figure S1. The workflow for the initial processing of holographic data. (A) A raw hologram. 

(B) The Fourier Transform of the raw hologram, plotted on a logarithmic scale. (C) The Fourier 

Transform of the hologram multiplied by a mask to isolate one of the high spatial frequency 

lobes. (D) The isolated lobe from (c) that has been linearly shifted to the center. 
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Figure S2. Representative dynamic light scattering of the hydrodynamic diameter of 

pristine gas vesicles, clustered gas vesicles and alumina beads. 

 

 

 

 

 

 

 

 

Figure S3. Representative DHM phase and intensity images of clustered GVs collapsed 

using 1.2 MPa of hydrostatic pressure. Scale bar represents 25 µm. 
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Figure S4. Intensity images of the two particles from Figure 2K. Scale bars represent 5μm. 

 

 

 

 

 

Table S1. Physical Properties of GV clusters, alumina beads, and water   

Property GV Cluster (air) Alumina Water 

Density (kg/m3) 1.2 2700 1000 

Viscosity (N s/m2) - - 8.9×10-4 
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Additional data sets 

The data for each supplement are in browsable directories at: Index of 

ftp://131.215.99.205/Public/GVDHM_Data/ 

 

In addition to the browseable directories, there are pre-zipped packages of each of the 

supplements.  The zipped packages can be unzipped with any software that will unzip 7z 

compressed files. 

 

Connect as Guest (no password) 

 

Additional data set S1 (separate file) 

Raw holograms of GV clusters imaged with a coherent 405 nm laser 

Additional data set S2 (separate file) 

Raw holograms of alumina beads imaged with a coherent 405 nm laser 

Additional data set S3 (separate file) 

Raw holograms of GV clusters imaged in solution with a coherent 405 nm laser 

Additional data set S4 (separate file) 

Raw holograms of alumina beads imaged in solution with a coherent 405 nm laser 

Additional data set S5 (separate file) 

Raw holograms of GV clusters and alumina beads imaged in solution with a coherent 405 nm 

laser 

Additional data set S6 (separate file) 

Raw holograms of CHO cells with GV imaged with a coherent 405 nm laser 

Additional data set S7 (separate file) 

Raw holograms of GV expressing salmonella cells imaged with a coherent 405 nm laser 

Additional data set S8 (separate file) 

Raw holograms of GV expressing salmonella cells after GVs were hydrostatically collapsed. 

Imaged with a coherent 405 nm laser 

Additional data set S9 (separate file) 

MATLAB code of hologram simulation suite 

  

ftp://131.215.99.205/Public/GVDHM_Data/
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