Supporting information

Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the

Safe Operation of an Anode-free Lithium metal battery

Teklay Mezgebe Hagos ^a, Tesfaye Teka Hagos ^b, Hailemariam Kassa Bezabh ^a, Gebregziabher Brhane Berhe ^b, Ljalem Hadush Abrha ^a, Shuo-Feng Chiu ^a, Chen-Jui Huang ^a, Wei-Nien Su ^{*b}, Hongjie Dai^{*c} and Bing Joe Hwang^{*a,d}

^a Nano-electrochemistry laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

^b Nano-electrochemistry laboratory, Graduate Institute of Applied Science and Technology,

National Taiwan University of Science and Technology, Taipei 106, Taiwan

^c Department of chemistry, Stanford University, Stanford, CA, California 94305-4401, USA

^d National Synchrotron Radiation Research Center (NSRRC), Hsin-chu, 30076, Taiwan

*Corresponding Authors: <u>bjh@mail.ntust.edu.tw; wsu@mail.ntust.edu.tw</u> and <u>hdai1@stanford.edu</u>

Table S1. Laboratory prepared and commercial electrolytes were used for comparison of

 electrochemical performance

Electrolytes denoted by the volumetric ratio of solvents	Marked as
1 M LiPF ₆ in EC/DEC (1:1)	EC/DEC
1 M LiPF ₆ in FEC/TTE (3:7)	FEC/TTE
1 M LiPF ₆ in FEC/TTE/EMC (3:6:1)	FEC/TTE/EMC1
1 M LiPF ₆ in FEC/TTE/EMC (3:5:2)	FEC/TTE/EMC2
1 M LiPF ₆ in FEC/TTE/EMC (3:4:3)	FEC/TTE/EMC3
1 M LiPF ₆ in FEC/TTE/EMC (3:3:4)	FEC/TTE/EMC4

Figure S1. The electrochemical performance of using anode-free CullNMC111 configuration cells when charged/discharged at 0.5 mA/ cm² with potential window of 2.5-4.5 V.

Table S2. Interaction of solvent complex with TTE

Figure S2. Critical current density test for EC/DEC and FEC/TTE/EMC2 using MCMBINMC111 cell cycled at different current density ranging from 0.1 to 10 mA/cm² within a potential window

of 2.5 - 4.5 V. (a) Critical density test of EC/DEC. (b) Critical density test of FEC/TTE/EMC2. (c) Critical density test comparison of EC/DEC and FEC/TTE/EMC2. (d) Enlarge graph of (c).

Video S1. Screenshot of the flame test video comparisons of EC/DEC and FEC/TTE/EMC2 electrolytes. (video available from <u>https://pubs.acs.org/doi</u>... or upon kind request)

Table S3. Laboratory prepared electrolytes were used for comparison of electrochemical performance

Electrolytes denoted by the volumetric	Marked as
ratio of solvents	
1 M LiPF ₆ in FEC/TTE/EMC (4:5:1)	FEC/TTE/EMC5
1 M LiPF ₆ in FEC/TTE/EMC (3:5:2)	FEC/TTE/EMC2
1 M LiPF ₆ in FEC/TTE/EMC (2:5:3)	FEC/TTE/EMC6
1 M LiPF ₆ in FEC/TTE/EMC (1:5:4)	FEC/TTE/EMC7

Figure S3. Electrochemical performance comparison using anode-free CullNMC111 configuration cells. (a) Discharge areal capacity. (b) Coulombic efficiency when charged/discharged at 0.5 mA/ cm² with a potential window of 2.5-4.5 V.

Figure S4. LSV test of the electrolyte in Li||Cu cell with the potential window from 2.5 to 0 V versus Li/Li⁺ at a scan rate of 1 mV/s. (a-b) LSV test for reductive stability of FEC/TTE/EMC2 and EC/DEC electrolyte, respectively.

Figure S5. Photograph of the wetting behavior of EC/DEC and FEC/TTE/EMC2 electrolytes with the MCMB and separator during cell assembly.