Supporting Information

Design, Synthesis and Pharmacological

 Characterization of a Neutral, Non-prodrug

 Characterization of a Neutral, Non-prodrug}

Thrombin Inhibitor with Good Oral

Pharmacokinetics

Alexander Hillisch, * Kersten M. Gericke, Swen Allerheiligen, Susanne Roehrig, Martina Schaefer, Adrian Tersteegen, Simone Schulz, Philip Lienau, Mark Gnoth, Vera Puetter, Roman C. Hillig, Stefan Heitmeier

Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, 42103 Wuppertal, Germany

CONTENT

A. Experimental: Synthesis of compounds $\mathbf{1 0}, \mathbf{1 3 - 1 9}, \mathbf{2 0 a} / \mathbf{2 0 b}, \mathbf{2 1 - 2 6}, \mathbf{2 7 a} / \mathbf{2 7 b}, \mathbf{2 8} \mathbf{- 3 2}, \mathbf{3 3 a} / \mathbf{3 3 b}, \mathbf{3 4}-$ 36, 37a/37b, 38-41, 42a/42b, 43-50, 52; pages S2-S90
B. ${ }^{1} \mathrm{H}$ NMR data of intermediates 53-58, 60-62, 64-65, 67-69, 72-75, and BAY 1217224 (51); pages S91-S111

LC-MS data of compounds 20a, 38, 40, 41, 44, 45, 47, 50, and BAY 1217224 (51); pages S112-S120
C. Table S1-S4; pages S121-S123

A. Experimental

General Procedures: All commercial reagents and catalysts were used as provided by the commercial supplier without purification. Solvents for synthesis, extraction and chromatography were reagent grade and used as received. Moisture-sensitive reactions were carried out under an atmosphere of argon and anhydrous solvents were used as provided by the commercial supplier. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker Avance spectrometers. Chemical shifts (δ) are reported in ppm relative to TMS as an internal standard. The descriptions of the coupling patterns of ${ }^{1} \mathrm{H}$ NMR signals are based on the optical appearance of the signals and do not necessarily reflect the physically correct interpretation. In general, the chemical shift information refers to the center of the signal. LC-MS and GC-MS analysis was performed using the respective method $1 \mathrm{a}-10 \mathrm{a}, 1 \mathrm{~b}-2 \mathrm{~b}$, and 1 c , as noted. Unless otherwise indicated, all compounds have $\geq 95 \%$ purity.

Abbreviation: HATU, O-(7-Azabenzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyluronium-hexafluorphosphat; TBTU, 2-(1 H -Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate.

LC-MS and GC-MS methods:
Method 1a: Instrument: Waters ACQUITY SQD UPLC System; column: Waters Acquity UPLC HSS T3 $1.8 \mu, 50 \mathrm{~mm} \times 1 \mathrm{~mm}$; mobile phase A: 1 L of water +0.25 mL of 99% strength formic acid, mobile phase B: 1 L of acetonitrile +0.25 mL of 99% strength formic acid; gradient: $0.0 \mathrm{~min} 90 \% \mathrm{~A} \rightarrow 1.2 \mathrm{~min}$ $5 \% \mathrm{~A} \rightarrow 2.0 \mathrm{~min} 5 \% \mathrm{~A}$; oven: $50^{\circ} \mathrm{C}$; flow rate: $0.40 \mathrm{~mL} / \mathrm{min}$; UV detection: 208-400 nm.

Method 2a: Instrument: Micromass Quattro Premier with Waters UPLC Acquity; column: Thermo Hypersil GOLD $1.9 \mu, 50 \mathrm{~mm} \times 1 \mathrm{~mm}$; mobile phase A: 1 L of water +0.5 mL of 50% strength formic acid, mobile phase B: 1 L of acetonitrile +0.5 mL of 50% strength formic acid; gradient: $0.0 \mathrm{~min} 97 \%$ $\mathrm{A} \rightarrow 0.5 \mathrm{~min} 97 \% \mathrm{~A} \rightarrow 3.2 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 4.0 \mathrm{~min} 5 \% \mathrm{~A}$; oven: $50^{\circ} \mathrm{C}$; flow rate: $0.3 \mathrm{~mL} / \mathrm{min}$; UV detection: 210 nm .

Method 3a: Instrument: Waters ACQUITY SQD UPLC System; column: Waters Acquity UPLC HSS T3 $1.8 \mu, 50 \mathrm{~mm} \times 1 \mathrm{~mm}$; mobile phase A: 1 L of water +0.25 mL of 99% strength formic acid, mobile phase B: 1 L of acetonitrile +0.25 mL of 99% strength formic acid; gradient: $0.0 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 6.0 \mathrm{~min}$ $5 \% \mathrm{~A} \rightarrow 7.5 \mathrm{~min} 5 \% \mathrm{~A}$; oven: $50^{\circ} \mathrm{C}$; flow rate: $0.35 \mathrm{~mL} / \mathrm{min}$; UV detection: $210-400 \mathrm{~nm}$.

Method 4a: MS instrument: Waters (Micromass) Quattro Micro; HPLC instrument: Agilent 1100 series; column: YMC-Triart C18 $3 \mu, 50 \mathrm{~mm} \times 3 \mathrm{~mm}$; mobile phase A: 1 L of water +0.01 mol of ammonium carbonate, mobile phase B: 1 L of acetonitrile; gradient: $0.0 \mathrm{~min} 100 \% \mathrm{~A} \rightarrow 2.75 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 4.5 \mathrm{~min}$ 5% A; oven: $40^{\circ} \mathrm{C}$; flow rate: $1.25 \mathrm{~mL} / \mathrm{min}$; UV detection: 210 nm .

Method 5a: Instrument: Waters ACQUITY SQD UPLC System; column: Waters Acquity UPLC HSS T3 $1.8 \mu, 50 \mathrm{~mm} \times 1 \mathrm{~mm}$; mobile phase A: 1 L of water +0.25 mL of 99% strength formic acid, mobile
phase B: 1 L of acetonitrile +0.25 mL of 99% strength formic acid; gradient: $0.0 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 6.0 \mathrm{~min}$ $5 \% \mathrm{~A} \rightarrow 7.5 \mathrm{~min} 5 \% \mathrm{~A}$; oven: $50^{\circ} \mathrm{C}$; flow rate: $0.35 \mathrm{~mL} / \mathrm{min}$; UV detection: $210-400 \mathrm{~nm}$.

Method 6a: MS instrument: Micromass Quattro Premier; HPLC instrument: Waters UPLC Acquity; column: Thermo Hypersil GOLD $1.9 \mu, 50 \mathrm{~mm} \times 1 \mathrm{~mm}$; mobile phase A: 1 L of water $+0.5 \mathrm{~mL} 50 \%$ strength formic acid, mobile phase B: 1 L of acetonitrile $+0.5 \mathrm{~mL} 50 \%$ strength formic acid; gradient: $0.0 \mathrm{~min} 90 \% \mathrm{~A} \rightarrow 0.1 \mathrm{~min} 90 \% \mathrm{~A} \rightarrow 1.5 \mathrm{~min} 10 \% \mathrm{~A} \rightarrow 2.2 \mathrm{~min} 10 \% \mathrm{~A}$; oven: $50^{\circ} \mathrm{C}$; flow rate: $0.33 \mathrm{~mL} / \mathrm{min}$; UV detection: 210 nm .

Method 7a: MS instrument: Waters ACQUITY SQD UPLC System; column: Waters Acquity UPLC HSS T3 $1.8 \mu, 50 \mathrm{~mm} \times 1 \mathrm{~mm}$; mobile phase A: 1 L of water +0.25 mL of 99% strength formic acid, mobile phase B: 1 L of acetonitrile +0.25 mL of 99% strength formic acid; gradient: $0.0 \mathrm{~min} 90 \% \mathrm{~A}$ $\rightarrow 1.2 \mathrm{~min} 5 \%$ A $\rightarrow 2.0 \mathrm{~min} 5 \% \mathrm{~A}$; oven: $50^{\circ} \mathrm{C}$; flow rate: $0.40 \mathrm{~mL} / \mathrm{min}$; UV detection: $210-400 \mathrm{~nm}$. Method 8a: MS instrument: Waters SQD; HPLC instrument: Waters UPLC; column: Zorbax SB-Aq (Agilent) $1.8 \mu, 50 \mathrm{~mm} \times 2.1 \mathrm{~mm}$; mobile phase A: water $+0.025 \%$ of 99% strength formic acid, mobile phase B: acetonitrile (ULC) $+0.025 \%$ of 99% strength formic acid; gradient: $0.0 \mathrm{~min} 98 \% \mathrm{~A} \rightarrow 0.9 \mathrm{~min}$ $25 \% \mathrm{~A} \rightarrow 1.0 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 1.4 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 1.41 \mathrm{~min} 98 \% \mathrm{~A} \rightarrow 1.5 \mathrm{~min} 98 \% \mathrm{~A}$; oven: $40^{\circ} \mathrm{C}$; flow rate: $0.60 \mathrm{~mL} / \mathrm{min}$; UV detection: DAD: 210 nm .

Method 9a: MS instrument: Waters ACQUITY SQD UPLC System; column: Waters Acquity UPLC HSS T3 $1.8 \mu, 30 \mathrm{~mm} \times 2 \mathrm{~mm}$; mobile phase A: 1 L of water +0.25 mL of 99% strength formic acid, mobile phase B: 1 L of acetonitrile +0.25 mL of 99% strength formic acid; gradient: $0.0 \mathrm{~min} 90 \%$ A $\rightarrow 1.2 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 2.0 \mathrm{~min} 5 \% \mathrm{~A}$; oven: $50^{\circ} \mathrm{C}$; flow rate: $0.60 \mathrm{~mL} / \mathrm{min}$; UV detection: 208-400 nm. Method 10a: MS instrument: Micromass ZQ; HPLC instrument: Waters Alliance 2795; column: Phenomenex Synergi 2μ Hydro-RP Mercury, $20 \mathrm{~mm} \times 4 \mathrm{~mm}$; mobile phase A: 1 L of water +0.5 mL of 50% strength formic acid, mobile phase B: 1 L of acetonitrile +0.5 mL of 50% strength formic acid; gradient: $0.0 \mathrm{~min} 90 \% \mathrm{~A} \rightarrow 2.5 \mathrm{~min} 30 \% \mathrm{~A} \rightarrow 3.0 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 4.5 \mathrm{~min} 5 \% \mathrm{~A}$; flow rate: 0.0 min $1 \mathrm{~mL} / \mathrm{min}, 2.5 \mathrm{~min} / 3.0 \mathrm{~min} / 4.5 \mathrm{~min} 2 \mathrm{~mL} / \mathrm{min}$; oven: $50^{\circ} \mathrm{C}$; UV detection: 210 nm .

Method 1b: Instrument: Micromass GCT, GC6890; column: Restek RTX-35, $15 \mathrm{mx} 200 \mu \mathrm{~m} \times 0.33 \mu \mathrm{~m}$; constant helium flow rate: $0.88 \mathrm{~mL} / \mathrm{min}$; oven: $70^{\circ} \mathrm{C}$; inlet: $250^{\circ} \mathrm{C}$; gradient: $70^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C} / \mathrm{min} \rightarrow$ $310^{\circ} \mathrm{C}$ (maintain for 3 min).

Method 2b: Instrument: Thermo DFS, Trace GC Ultra; column: Restek RTX-35, $15 \mathrm{~m} \times 200 \mu \mathrm{~m} x$ $0.33 \mu \mathrm{~m}$; constant helium flow rate: $1.20 \mathrm{~mL} / \mathrm{min}$; oven: $60^{\circ} \mathrm{C}$; inlet: $220^{\circ} \mathrm{C}$; gradient: $60^{\circ} \mathrm{C}$, $30^{\circ} \mathrm{C} / \mathrm{min} \rightarrow 300^{\circ} \mathrm{C}$ (maintain for 3.33 min).

Method 1c: Instrument: Thermo Fisher-Scientific DSQ; chemical ionization; reactant gas: ammonia; source temperature: $200^{\circ} \mathrm{C}$; ionization energy 70 eV .

Synthesis of compounds 10, 13-20a/b

a) $\mathrm{BrCN}, \mathrm{DCM} / \mathrm{MeOH}, \mathrm{RT}$; b1) i) 3-chlorobenzaldehyde, DCM, RT, ii) $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}, \mathrm{RT}$, iii) $\mathrm{NaBH}_{4},-10^{\circ} \mathrm{C}$ to RT; b2) 3-chlorobenzylamine, DIEA, DMAP, DCM, $0{ }^{\circ} \mathrm{C}$ to RT; c) $\mathrm{NaOH}, 1,4-$ dioxane, RT; d) amine, TBTU, DIEA, DMSO, RT or amine, HATU, DIEA, DMF, RT or amine, (benzotriazol-1-yloxy)bisdimethyl-aminomethyliumfluoroborate, DIEA, DMSO, RT.

Methyl 2-amino-7-methoxy-1,3-benzoxazole-5-carboxylate (76).

76

Cyanic bromide solution in dichloromethane ($3.0 \mathrm{M}, 36.8 \mathrm{~mL}, 110.4 \mathrm{mmol}, 1.01$ equiv.) was added slowly within 10 min at room temperature to a solution of methyl 3-amino-4-hydroxy-5methoxybenzoate (56) ($21.5 \mathrm{~g}, 109.0 \mathrm{mmol})$ in a mixture of methanol $(216 \mathrm{~mL})$ and dichloromethane $(37 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight. Additional cyanic bromide solution in dichloromethane ($3.0 \mathrm{M}, 3.7 \mathrm{~mL}, 11.0 \mathrm{mmol}, 0.1$ equiv.) was added. The reaction mixture was stirred at room temperature until full conversion was achieved. For workup, saturated aqueous sodium hydrogen carbonate solution $(182 \mathrm{~mL})$ was added dropwise at room temperature. The reaction mixture was stirred for about 30 min before all volatiles were removed under reduced pressure. The residue was mixed with water (300 mL) and the mixture stirred thoroughly. The forming precipitate was collected by filtration, washed with small volume of water and dried under vacuum to give 76 which was used without further purification. Yield: $22.3 \mathrm{~g}(92 \%)$. LC-MS $(\operatorname{method} 6 a): \mathrm{t}_{\mathrm{R}}(\min)=0.76$; MS (ESI +): $\mathrm{m} / \mathrm{z}=223[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta[\mathrm{ppm}]=7.61(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylate (77).

3-Chlorobenzaldehyde ($19.7 \mathrm{~mL}, 168.8 \mathrm{mmol}, 1.5$ equiv.) was added under argon atmosphere at room temperature to a mixture of methyl 2-amino-7-methoxy-1,3-benzoxazole-5-carboxylate (76) (25.0 g , $112.5 \mathrm{mmol})$ in dichloromethane (878 mL) followed by addition of titanium(IV) tetraisopropanolate $(66.4 \mathrm{~mL}, 225.0 \mathrm{mmol}, 2.0$ equiv.) within about 5 min . The reaction mixture was stirred at room temperature for 1 h and then cooled to $-10^{\circ} \mathrm{C}$. Sodium borohydride ($12.8 \mathrm{~g}, 337.5 \mathrm{mmol}, 3.0$ equiv.) was added in portions. The cooling bath was removed, and the reaction mixture stirred at room temperature overnight. For workup, water (25 mL) was added dropwise and cautiously (!), then additional water $(200 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for 1 h before all volatiles were removed under reduced pressure. The residue was mixed with ethyl acetate (1 L) and water (200 mL). The remaining solids were filtered and washed with ethyl acetate (200 mL). All filtrates were combined, the aqueous phase was separated, and the organic phase was dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was mixed with cyclohexane $(400 \mathrm{~mL})$ and stirred for 0.5 h . The solid was filtered, washed two times with cyclohexane and dried in vacuo to give 77 which was used without further purification. Yield: 35.2 g ($75 \%, 83 \%$ purity). LC-MS $(\operatorname{method} 7 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.08 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=347[\mathrm{M}+\mathrm{H}]^{+}$.

Alternative synthesis of 77: A solution of methyl 2-chloro-7-methoxy-1,3-benzoxazole-5-carboxylate (58) ($10.1 \mathrm{~g}, 41.8 \mathrm{mmol}$) in dichloromethane (100 mL) was added under argon atmosphere at $0{ }^{\circ} \mathrm{C}$ within 15 min to a solution of 3 -chlorobenzylamine ($7.7 \mathrm{~g}, 54.3 \mathrm{mmol}, 1.3$ equiv.), N, N diisopropylethylamine ($21.8 \mathrm{~mL}, 125.4 \mathrm{mmol}, 3.0$ equiv.) and 4-dimethylaminopyridine (25.5 g , $0.21 \mathrm{mmol}, 0.005$ equiv.) in dichloromethane $(100 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 23 h and quenched with aqueous hydrochloric acid solution ($0.5 \mathrm{M}, 300 \mathrm{~mL}$). After phase separation, the organic phase was washed two times with aqueous hydrochloric acid solution ($0.5 \mathrm{M}, 50 \mathrm{~mL}$), dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, eluent: toluene / ethyl acetate 100:0 to 70:30) to give 77 which was used without further purification. Yield: $10.3 \mathrm{~g}(62 \%, 87 \%$ purity $)$. LCMS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.04 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=347[\mathrm{M}+\mathrm{H}]^{+}$.

2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (78).

A solution of sodium hydroxide ($21.2 \mathrm{~g}, 529.8 \mathrm{mmol}, 6.3$ equiv.) in water (265 mL) was added at room temperature to a mixture of methyl 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5carboxylate (77) ($35.1 \mathrm{~g}, 83 \%$ purity, 84.0 mmol) in 1,4-dioxane (504 mL). The reaction mixture was stirred at room temperature for 20 h before all volatiles were removed under reduced pressure. The forming precipitate was filtered, suspended in water $(500 \mathrm{~mL})$, adjusted to pH 7 with concentrated hydrochloric acid solution $(22 \mathrm{~mL})$ and to pH 1.5 with 1 M hydrochloric acid solution. The precipitate was filtered, washed with some water and dried over sodium hydroxide in vacuo to give 78 which was used without further purification. Yield: 35.8 g (quantitative, 94% purity, might contain some sodium chloride). LC-MS (method 7a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.92 ; \mathrm{MS}(E S I+): \mathrm{m} / \mathrm{z}=333[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{DMSO}_{6}\right): \delta[\mathrm{ppm}]=12.9(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.73(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 6 \mathrm{H}), 4.55(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, 2H), 3.94 ($\mathrm{s}, 3 \mathrm{H}$).

2-[(3-Chlorobenzyl)amino]-7-methoxy- N-propyl- N-(tetrahydrofuran-3-ylmethyl)-1,3-

 benzoxazole-5-carboxamide (10) as racemate.

TBTU ($77.8 \mathrm{mg}, 0.242 \mathrm{mmol}, 1.3$ equiv.) and N, N-diisopropylethylamine ($65.0 \mu \mathrm{~L}, 0.373 \mathrm{mmol}$, 2.0 equiv.) were added to a solution of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5carboxylic acid (78) ($62.0 \mathrm{mg}, 0.186 \mathrm{mmol}$) and N-(tetrahydrofuran-3-ylmethyl)propan-1-amine $(26.7 \mathrm{mg}, 0.186 \mathrm{mmol}, 1.0$ equiv.) in dimethyl sulfoxide $(0.80 \mathrm{~mL})$ and stirred at room temperature overnight. The reaction mixture was purified without further work-up by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient $+0.01 \%$ formic acid) to give 10. Yield: 56 mg (65%). LCMS (method 10a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=2.17 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=457[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta[\mathrm{ppm}]=8.66(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-3.04(\mathrm{~m}, 14 \mathrm{H}$, partially concealed by water), 2.05-1.36(m,4H), 1.00-0.51(m, $3 \mathrm{H})$.

(2-\{[(3-Chlorophenyl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(pyrrolidin-1-

 yl)methanone (13).

HATU ($228 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($192 \mu \mathrm{~L}, 1.10 \mathrm{mmol}$, 2.2 equiv.) were added to a solution of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5carboxylic acid (78) (166 mg, 0.50 mmol$)$ in N, N-dimethylformamide (5 mL) and stirred at room temperature for 30 min before pyrrolidine ($39 \mathrm{mg}, 0.55 \mathrm{mmol}, 1.1$ equiv.) was added. The reaction mixture was stirred for 1 h and, without further work-up, purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 13 . Yield: $143 \mathrm{mg}(74 \%)$. LC-MS (method 6 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 1.14; MS (ESI+): m/z $=386[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta[\mathrm{ppm}]=8.62(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.37(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.73(\mathrm{~m}, 4 \mathrm{H})$.
(2-\{[(3-Chlorophenyl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(2,2-dimethylpyrrolidin-1yl)methanone (14).

A solution of 2-\{[(3-chlorophenyl)methyl]amino $\}-7$-methoxy-1,3-benzoxazole-5-carboxylic acid (78) ($33 \mathrm{mg}, 0.10 \mathrm{mmol}$) in dimethyl sulfoxide $(400 \mu \mathrm{~L}$), a solution of (benzotriazol-1-yloxy)bisdimethylaminomethyliumfluoroborate ($42 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.3$ equiv.) in dimethyl sulfoxide ($200 \mu \mathrm{~L}$) and $\mathrm{N}, \mathrm{N}-$ diisopropylethylamine ($26 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv.) were subsequently added to 2,2dimethylpyrrolidine hydrochloride ($16 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was stirred at room temperature overnight and, without further work-up, purified by preparative LC-MS (reversed phase, eluent: acetonitrile / water gradient) to give 14. Yield: $14 \mathrm{mg}(33 \%)$. LC-MS (method 8a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.19 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=414[\mathrm{M}+\mathrm{H}]^{+}$.

(2-\{[(3-Chlorophenyl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(3,3-dimethylpyrrolidin-1-

 yl)methanone (15).
N, N-Diisopropylethylamine ($105 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 3.0$ equiv.) was added at room temperature to a solution of 2-\{[(3-chlorophenyl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (78) ($67 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HATU ($91 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv.) in N, N-dimethylformamide (5 mL) and stirred at room temperature for 15 min before 3,3-dimethylpyrrolidine ($79 \mathrm{mg}, 30 \%$ purity, 0.24 mmol , 1.2 equiv.) was added. The reaction mixture was stirred at room temperature overnight and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give $\mathbf{1 5}$. Yield: $25 \mathrm{mg}(29 \%)$. LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.11$; MS (ESI+): $\mathrm{m} / \mathrm{z}=414[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta[\mathrm{ppm}]=8.63(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-$ $7.30(\mathrm{~m}, 4 \mathrm{H}), 7.02 / 6.96$ ($2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}$), $6.81 / 6.83$ ($2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}$), 4.53 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.44$ (m, 2H), 3.22 / 3.16 ($2 \mathrm{x} \mathrm{s}, 2 \mathrm{H}$), 1.71-1.58 (m, 2H), 1.10 (s, 3H), 0.96 ($\mathrm{s}, 3 \mathrm{H})$.

(2-\{[(3-Chlorophenyl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(morpholin-4-

 yl)methanone (16).

HATU ($91 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($77 \mu \mathrm{~L}, 0.44 \mathrm{mmol}, 2.2$ equiv.) were added to a solution of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (78) $(67 \mathrm{mg}, 0.20 \mathrm{mmol})$ in N, N-dimethylformamide (2 mL) and stirred at room temperature for 20 min before morpholine ($21 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2$ equiv.) was added. The reaction mixture was stirred at room temperature overnight and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 16. Yield: 60 mg (75\%). LC-MS $(\operatorname{method} 7 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.93$; MS $(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=402[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, 3.68-3.38 (m, 8H).

(2-\{[(3-Chlorophenyl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(2,2-dimethylmorpholin-4-

 yl)methanone (17).

HATU ($68 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($84 \mu \mathrm{~L}, 0.48 \mathrm{mmol}, 3.2$ equiv.) were added to a solution of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (78) $(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in N, N-dimethylformamide $(1.5 \mathrm{~mL})$ and stirred at room temperature for 30 min before 2,2-dimethylmorpholine hydrochloride ($25 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.1$ equiv.) was added. The reaction mixture was stirred at room temperature for 1 h and, without further work-up, purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 17. Yield: $48 \mathrm{mg}(74 \%)$. LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.01 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=430[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta[\mathrm{ppm}]=8.66(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.08(\mathrm{~m}, 6 \mathrm{H}$, partially concealed by DMSO), $1.12(\mathrm{br} \mathrm{s}, 6 \mathrm{H})$.
(2-\{[(3-Chlorophenyl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(4-hydroxypiperidin-1yl)methanone (18).

HATU ($91 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($77 \mu \mathrm{~L}, 0.44 \mathrm{mmol}, 2.2$ equiv.) were added to a solution of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (78) ($67 \mathrm{mg}, 0.20 \mathrm{mmol}$) in N, N-dimethylformamide (4 mL) and stirred at room temperature for 30 min before piperidin-4-ol ($24 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv.) was added. The reaction mixture was stirred at room temperature for 2 h and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 18. Yield: $76 \mathrm{mg}(91 \%)$. LC-MS (method 7a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.84 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=416[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta[\mathrm{ppm}]=8.64(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}$, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-3.33(\mathrm{~m}, 1 \mathrm{H}$, partially concealed), $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.78-$ $3.66(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.22(\mathrm{~m}, 2 \mathrm{H})$.

(2-\{[(3-Chlorophenyl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[(4R)-4-hydroxy-3,3-

 dimethylpiperidin-1-yl]methanone (19) as racemate.

HATU ($78 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($96 \mu \mathrm{~L}, 0.55 \mathrm{mmol}, 3.2$ equiv.) were added to a solution of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (78) ($57 \mathrm{mg}, 0.17 \mathrm{mmol}$) in N, N-dimethylformamide (3 mL) and stirred at room temperature for 30 min before 3,3-dimethylpiperidin-4-ol trifluoroacetate ($46 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.1$ equiv.) was added. The reaction mixture was stirred at room temperature for 1.5 h and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 19. Yield: $48 \mathrm{mg}(74 \%)$. LC-MS (method 6a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.07 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=444[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta[\mathrm{ppm}]=8.64(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H})$, $4.71(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-3.96 / 3.83-3.68 / 3.62-3.42 / 3.23-3.06 / 2.98-$ $2.82(5 \mathrm{x} \mathrm{m}, 5 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.59(\mathrm{~m}, 6 \mathrm{H})$.
\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[(3R,4R)-4-hydroxy-3-methyl-piperidin-1-yl]methanone (20a) and \{2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[(3S,4S)-4-hydroxy-3-methylpiperidin-1-yl]methanone (20b).

20a

20b

HATU (495 mg, $1.30 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($416 \mu \mathrm{~L}, 2.39 \mathrm{mmol}$, 2.2 equiv.) were added to a solution of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5carboxylic acid (78) (361 mg, 1.09 mmol$)$ in N, N-dimethylformamide (10 mL) and stirred at room temperature for 30 min before 3-methylpiperidin-4-ol ($150 \mathrm{mg}, 1.30 \mathrm{mmol}, 1.2$ equiv.) was added. The reaction mixture was stirred at room temperature for 1.5 h and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, eluent: dichloromethane / methanol 100:2 to $100: 4$) to give 20a and 20b as a racemic mixture of diastereomers. Yield: $424 \mathrm{mg}(84 \%)$.

This mixture (424 mg) was submitted for stereoisomer separation (preparative method: HPLC: column: Daicel Chiralpak AD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$; eluent: 50% iso-hexane / 50% ethanol; temperature: $40^{\circ} \mathrm{C}$; flow rate: $15 \mathrm{~mL} / \mathrm{min}$; UV detection: 220 nm) and gave four stereoisomers (analytical method: HPLC: column: Daicel Chiralpak AD-H $5 \mu \mathrm{~m}$, 250 mm x 4.6 mm ; eluent: 50% iso-hexane / 50%
ethanol; temperature: $40{ }^{\circ} \mathrm{C}$; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; UV detection: 220 nm) to give diastereomer 1 : $109 \mathrm{mg}(26 \%)$, HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.62,>99 \%$ ee; ent-diastereomer $1: 134 \mathrm{mg}(32 \%), \mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ $7.58,>98 \%$ ee; diastereomer 2: $53 \mathrm{mg}(13 \%), H P L C: \mathrm{t}_{\mathrm{R}}(\mathrm{min})=6.16,>99 \%$ ee; ent-diastereomer 2 : $54 \mathrm{mg}(13 \%)$, HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=6.90,>99 \%$ ee.
ent-Diastereomer 1 (HPLC: $\left.\mathrm{t}_{\mathrm{R}}(\mathrm{min})=7.58,>98 \% \mathrm{ee}\right)$ corresponds to the desired stereoisomer 20a. LCMS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.84$; MS $(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=430[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$: $\delta[\mathrm{ppm}]=8.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.40-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.11-2.82$ $(\mathrm{m}, 1 \mathrm{H}), 1.92-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.06-0.70(\mathrm{~m}, 3 \mathrm{H})$.

Diastereomer $1\left(\mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.62,>99 \%\right.$ ee) corresponds to the stereoisomer 20b. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $)_{6}$: $\delta[\mathrm{ppm}]=8.64(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.67-$ $3.44(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.10-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.68$ (m, 3H).
(2-\{[(4-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-methylpiperidin-1-yl]methanone (21) as mixture of rac-trans stereoisomers.

a) i) 4-chloropyridine-2-carbaldehyde, $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}, \mathrm{DCM}, \mathrm{RT}$, ii) $\mathrm{NaCNBH}_{3}, \mathrm{RT}$; b) $\mathrm{LiOH}, \mathrm{THF} /$ water, RT; c) rac-trans-3-methylpiperidin-4-ol hydrochloride, HATU, DIEA, DMF, RT.

Methyl 2-\{[(4-chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (79).

Titanium(IV) tetrapropanolate ($664 \mu \mathrm{~L}, 2.25 \mathrm{mmol}, 2.0$ equiv.) was added under argon atmosphere at room temperature to a mixture of methyl 2-amino-7-methoxy-1,3-benzoxazole-5-carboxylate (76) ($250 \mathrm{mg}, 1.13 \mathrm{mmol}$) and 4-chloropyridine-2-carbaldehyde ($478 \mathrm{mg}, 3.38 \mathrm{mmol}, 3.0$ equiv.) in
dichloromethane (8.5 mL). The reaction mixture was stirred at room temperature overnight, followed by addition of sodium cyanoborohydride ($283 \mathrm{mg}, 4.50 \mathrm{mmol}, 4.0$ equiv.) at room temperature. The reaction mixture was stirred for another 3 h , mixed with some water and evaporated under reduced pressure. The residue was suspended in a mixture of ethyl acetate and water. The solid was filtered, washed with ethyl acetate and dried in vacuo. Yield: $156 \mathrm{mg}(13 \%, 32 \%$ purity $)$. The combined filtrates were evaporated under reduced pressure and suspended in a mixture of methanol and water. The solid was filtered and dried in vacuo to give $\mathbf{7 9}$ which was used without further purification. Yield: 128 mg ($21 \%, 64 \%$ purity).

2-\{[(4-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (80).

Lithium hydroxide ($17 \mathrm{mg}, 0.71 \mathrm{mmol}, 3.0$ equiv.) was added at room temperature to methyl 2 -\{[(4-chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (79) ($128 \mathrm{mg}, 64 \%$ purity, 0.24 mmol) in a mixture of tetrahydrofuran and water ($3: 1,3.5 \mathrm{~mL}$). The reaction mixture was stirred at room temperature overnight before additional lithium hydroxide ($6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv.) was added. After stirring for another 3 h , aqueous hydrochloric acid solution (1 N) was added. The forming precipitate was filtered and dried in vacuo. Yield: 39 mg (29%, 59% purity). The filtrate was evaporated under reduced pressure and the residue purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 80. Yield: $52 \mathrm{mg}(67 \%)$. LC-MS (method 1 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 0.72; MS (ESI +): m/z = $334[\mathrm{M}+\mathrm{H}]^{+}$.
(2-\{[(4-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-methylpiperidin-1-yl]methanone (21) as mixture of rac-trans stereoisomers.

rac-trans-21
HATU ($72 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($87 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 3.2$ equiv.) were added to a solution of 2-\{[(4-chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5carboxylic acid (80) ($52 \mathrm{mg}, 0.16 \mathrm{mmol})$ in N, N-dimethylformamide $(1.5 \mathrm{~mL})$ and stirred at room temperature for 20 min before rac-trans-3-methylpiperidin-4-ol hydrochloride ($29 \mathrm{mg}, 0.19 \mathrm{mmol}$, 1.2 equiv.) was added. The reaction mixture was stirred at room temperature overnight and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent:
acetonitrile / water gradient) to give $\mathbf{2 1}$ as mixture of rac-trans stereoisomers. Yield: $16 \mathrm{mg}(24 \%)$. LCMS (method 7a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.75$; MS (ESI+): m/z $=431[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.69(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=5.4$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.41-4.06(\mathrm{~m}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.10-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.47-$ $1.21(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.70(\mathrm{~m}, 3 \mathrm{H})$.
(2-\{[(5-Chloropyridin-3-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-methylpiperidin-1-yl]methanone (22) as mixture of rac-trans stereoisomers.

a) i) 5-chloropyridine-3-carbaldehyde, $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}, \mathrm{DCM}, \mathrm{RT}$, ii) $\mathrm{NaCNBH}_{3}, \mathrm{RT}$; b) $\mathrm{LiOH}, \mathrm{THF} /$ water, RT; c) rac-trans-3-methylpiperidin-4-ol hydrochloride, HATU, DIEA, DMF, RT.

Methyl 2-\{[(5-chloropyridin-3-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (81).

Titanium(IV) tetrapropanolate ($411 \mu \mathrm{~L}, 1.39 \mathrm{mmol}, 2.0$ equiv.) was added under argon atmosphere at room temperature to a mixture of methyl 2 -amino-7-methoxy-1,3-benzoxazole-5-carboxylate (76) ($155 \mathrm{mg}, 0.70 \mathrm{mmol}$) and 5 -chloropyridine-3-carbaldehyde ($148 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.5$ equiv.) in dichloromethane (5.5 mL). The reaction mixture was stirred at room temperature overnight, followed by addition of sodium cyanoborohydride ($66 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.5$ equiv.) at room temperature. The reaction mixture was stirred for another 3 h and evaporated under reduced pressure. The residue was suspended in a mixture of ethyl acetate and water and the solid filtered off. After phase separation, the aqueous phase was extracted two times with ethyl acetate. The combined organic phases were dried over sodium sulfate, filtered, evaporated under reduced pressure and dried in vacuo to give $\mathbf{8 1}$ which was used without further purification. Yield: 193 mg (35%, 44% purity). LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.86 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=348[\mathrm{M}+\mathrm{H}]^{+}$.

2-\{[(5-Chloropyridin-3-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (82).

Lithium hydroxide ($18 \mathrm{mg}, 0.73 \mathrm{mmol}, 3.0$ equiv.) was added at room temperature to methyl $2-\{[(5-$ chloropyridin-3-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (81) (193 mg, 44% purity, 0.25 mmol) in a mixture of tetrahydrofuran and water ($3: 1,3.0 \mathrm{~mL}$). The reaction mixture was stirred at room temperature overnight before additional lithium hydroxide $(18 \mathrm{mg}, 0.73 \mathrm{mmol}$, 3.0 equiv.) was added. After stirring at $35^{\circ} \mathrm{C}$ (water bath) overnight, aqueous hydrochloric acid solution $(1 \mathrm{~N})$ was added. The mixture was evaporated under reduced pressure to give $\mathbf{8 2}$ which was used without further purification. Yield: $253 \mathrm{mg}(>100 \%, 67 \%$ purity $)$. LC-MS (method 1 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.71$; MS (ESI+): m/z = $334[\mathrm{M}+\mathrm{H}]^{+}$.
(2-\{[(5-Chloropyridin-3-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-methylpiperidin-1-yl]methanone (22) as mixture of rac-trans stereoisomers.

HATU ($91 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($111 \mu \mathrm{~L}, 0.64 \mathrm{mmol}, 3.2$ equiv.) were added to a solution of 2 - \{[(5-chloropyridin-3-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5carboxylic acid (82) ($100 \mathrm{mg}, 67 \%$ purity, 0.20 mmol) in N, N-dimethylformamide (2.0 mL) and stirred at room temperature for 20 min before rac-trans-3-methylpiperidin-4-ol hydrochloride (33 mg , $0.22 \mathrm{mmol}, 1.1$ equiv.) was added. The reaction mixture was stirred at room temperature overnight and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give $\mathbf{2 2}$ as mixture of rac-trans stereoisomers. Yield: 17 mg (20%). LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.69$; MS $(E S I+): m / z=431[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d d_{6}): $\delta[\mathrm{ppm}]=8.65(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (s, 1H), $6.84(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-$ $4.11(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.11-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.55(\mathrm{~m}, 1 \mathrm{H}$, partially concealed), 1.89-1.67 (m, 1H), 1.46-1.21 (m, 1H), 1.04-0.70 (m, 3H).
(2-\{[(2-Chloropyridin-4-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(4-hydroxy-3-methylpiperidin-1-yl)methanone (23) as mixture of rac-trans stereoisomers.

a) i) 2-chloropyridine-4-carbaldehyde, $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}, \mathrm{DCM}, \mathrm{RT}$, ii) $\mathrm{NaBH}_{4}, \mathrm{RT}$; b) $\mathrm{LiOH}, \mathrm{THF} /$ water, RT;
c) rac-trans-3-methylpiperidin-4-ol, HATU, DIEA, DMF, RT.

Methyl 2-\{[(2-chloropyridin-4-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (83).

Titanium(IV) tetrapropanolate ($19.6 \mathrm{~mL}, 68.1 \mathrm{mmol}, 2.0$ equiv.) was added under argon atmosphere at room temperature to a mixture of methyl 2-amino-7-methoxy-1,3-benzoxazole-5-carboxylate (76) $(7.56 \mathrm{~g}, 34.0 \mathrm{mmol})$ and 2-chloropyridine-4-carbaldehyde ($5.30 \mathrm{~g}, 37.4 \mathrm{mmol}, 1.1$ equiv.) in dichloromethane $(500 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 4 h , followed by addition of sodium borohydride ($2.58 \mathrm{~g}, 68.1 \mathrm{mmol}, 2.0$ equiv.) at room temperature. The reaction mixture was stirred overnight and then water was added. The reaction mixture was filtered over Celite ${ }^{\circledR}$ and the filter cake was washed with dichloromethane. After phase separation, the aqueous phase was extracted with dichloromethane. The combined organic phases were dried over sodium sulfate, filtered and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 83. Yield: $660 \mathrm{mg}(6 \%)$. LC-MS $(\operatorname{method} 9 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 0.89; MS (ESI+): m/z = $348[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta[\mathrm{ppm}]=8.84(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.37(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 4.60$ (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$.

2-\{[(2-Chloropyridin-4-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (84).

Lithium hydroxide ($114 \mathrm{mg}, 4.7 \mathrm{mmol}, 2.5$ equiv.) was added at room temperature to methyl $2-\{[(2-$ chloropyridin-4-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (83) (660 mg, $1.90 \mathrm{mmol})$ in a mixture of tetrahydrofuran and water $(2: 1,37.5 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight before the reaction mixture was neutralized with aqueous hydrochloric acid solution $(1 \mathrm{~N})$. After extraction with ethyl acetate, the organic phase was washed with brine and dried over sodium sulfate. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 84. Yield: $420 \mathrm{mg}(66 \%)$. LC-MS (method 7 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.76$; MS (ESI+): m/z = $334[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=12.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.80(\mathrm{br}$ $\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{br} \mathrm{d}, J=$ $5.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.95 (s, 3H), 3.34 (br s, 3H).

(2-\{[(2-Chloropyridin-4-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-

 methylpiperidin-1-yl]methanone (23) as mixture of rac-trans stereoisomers.

HATU ($205 \mathrm{mg}, 0.54 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($172 \mu \mathrm{~L}, 0.99 \mathrm{mmol}$, 2.2 equiv.) were added to a solution of 2-\{[(2-chloropyridin-4-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (84) ($150 \mathrm{mg}, 0.45 \mathrm{mmol}$) in N, N-dimethylformamide (3.7 mL) and stirred at room temperature for 30 min before rac-trans-3-methylpiperidin-4-ol ($57 \mathrm{mg}, 0.49 \mathrm{mmol}$, 1.1 equiv.) was added. The reaction mixture was stirred at room temperature for 1 h and then poured into water. After extraction with dichloromethane, the organic phase was dried over magnesium sulfate and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give $\mathbf{2 3}$ as mixture of rac-trans stereoisomers. Yield: 100 mg (51\%). LC-MS (method 7a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.74$; MS (ESI+): $\mathrm{m} / \mathrm{z}=431[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $\delta[\mathrm{ppm}]=8.73(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.40(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.67$ (br m, 3H, partially concealed), 3.18 (dt, $J=4.0,9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80-3.08 (br m, 1H), 1.63-1.92 (br m, $1 \mathrm{H}), 1.17-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.65-1.07(\mathrm{~m}, 3 \mathrm{H})$.

(2-\{[(6-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(4-hydroxy-3-

 methylpiperidin-1-yl)methanone (24) as mixture of rac-trans stereoisomers.
a) i) 6-chloropyridine-2-carbaldehyde, $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}, \mathrm{DCM}, \mathrm{RT}$, ii) $\mathrm{NaCNBH}_{3}, \mathrm{RT}$; b) LiOH , THF/water, RT; c) rac-trans-3-methylpiperidin-4-ol, HATU, DIEA, DMF, RT.

Methyl 2-\{[(6-chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (85).

Titanium(IV) tetrapropanolate ($3.36 \mathrm{~mL}, 11.7 \mathrm{mmol}, 2.0$ equiv.) was added under argon atmosphere at room temperature to a mixture of methyl 2-amino-7-methoxy-1,3-benzoxazole-5-carboxylate (76) ($1.30 \mathrm{~g}, 5.84 \mathrm{mmol}$) and 6-chloropyridine-2-carbaldehyde ($910 \mathrm{mg}, 6.43 \mathrm{mmol}, 1.1$ equiv.) in dichloromethane $(150 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 4 h , followed by addition of sodium cyanoborohydride ($735 \mathrm{mg}, 11.7 \mathrm{mmol}, 2.0$ equiv.) at room temperature. The reaction mixture was stirred overnight and then water was added. The reaction mixture was filtered over Celite ${ }^{\circledR}$ and the filter cake was washed with dichloromethane. After phase separation, the aqueous phase was extracted with dichloromethane. The combined organic phases were dried over sodium sulfate, filtered and evaporated under reduced pressure. The residue was triturated with acetonitrile, filtered under reduced pressure and the solid was dried under high vacuum to give 85. Yield: $560 \mathrm{mg}(25 \%$, 89% purity). The mother liquor was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give another amount of $\mathbf{8 5}$. Yield: 180 mg ($9 \%, 94 \%$ purity). LC-MS (method 7a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.95 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=348[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta[\mathrm{ppm}]=8.88(\mathrm{t}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$.

2-\{[(6-Chloropyridin-4-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (86).

Lithium hydroxide ($120 \mathrm{mg}, 5.0 \mathrm{mmol}, 2.5$ equiv.) was added at room temperature to methyl 2-\{[(6-chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (85) (695 mg, 2.00 mmol) in a mixture of tetrahydrofuran and water $(2: 1,39.6 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight before the reaction mixture was neutralized with aqueous hydrochloric acid solution $(1 \mathrm{~N})$. After extraction with ethyl acetate, the organic phase was washed with brine and dried over sodium sulfate. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 86. Yield: $375 \mathrm{mg}(55 \%) . \mathrm{LC}-\mathrm{MS}(\operatorname{method} 6 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.77$; MS (ESI+): m/z = $334[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta[\mathrm{ppm}]=12.9(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.84(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=0.98 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 4 \mathrm{H})$.
(2-\{[(6-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-methylpiperidin-1-yl]methanone (24) as mixture of rac-trans stereoisomers.

HATU ($124 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($190 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 4.0$ equiv.) were added to a solution of 2-\{[(6-chloropyridin-2-yl)methyl]amino $\}$-7-methoxy-1,3-benzoxazole-5carboxylic acid (86) (100 mg, $0.30 \mathrm{mmol}, 1.1$ equiv.) in N, N-dimethylformamide (1.5 mL) and stirred at room temperature for 30 min before rac-trans-3-methylpiperidin-4-ol ($31 \mathrm{mg}, 0.27 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature overnight. The reaction mixture was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 24 as mixture of rac-trans stereoisomers. Yield: $68 \mathrm{mg}(52 \%)$. LC-MS (method 6 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.73$; MS (ESI+): $\mathrm{m} / \mathrm{z}=431[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) : $\delta[\mathrm{ppm}]=8.77(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{br} \mathrm{d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.12-4.37(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.62(\mathrm{br} \mathrm{m}, 3 \mathrm{H}), 3.18(\mathrm{dt}, J=4.3,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-3.09(\mathrm{br}$ $\mathrm{m}, 1 \mathrm{H}), 1.67-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.48(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 0.70-1.02(\mathrm{br} \mathrm{m}, 3 \mathrm{H})$.

\{2-[(5-Chloro-2-fluorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[4-hydroxy-3-

 methylpiperidin-1-yl]methanone (25) as mixture of rac-trans stereoisomers.
a) i) 5-chloro-2-fluorobenzaldehyde, $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}, \mathrm{DCM}, \mathrm{RT}$, ii) $\mathrm{NaCNBH}_{3}, \mathrm{RT}$; b) $\mathrm{LiOH}, \mathrm{THF} /$ water, RT; c) rac-trans-3-methylpiperidin-4-ol hydrochloride, HATU, DIEA, DMF, RT.

Methyl 2-[(5-chloro-2-fluorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylate (87).

Titanium(IV) tetrapropanolate ($717 \mu \mathrm{~L}, 2.43 \mathrm{mmol}, 2.0$ equiv.) was added under argon atmosphere at room temperature to a mixture of methyl 2 -amino-7-methoxy-1,3-benzoxazole-5-carboxylate (76) ($270 \mathrm{mg}, 1.22 \mathrm{mmol}$) and 5-chloro-2-fluorobenzaldehyde ($289 \mathrm{mg}, 1.82 \mathrm{mmol}, 1.5$ equiv.) in dichloromethane $(10 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight, followed by addition of sodium cyanoborohydride ($115 \mathrm{mg}, 1.82 \mathrm{mmol}, 1.5$ equiv.) at room temperature. The reaction mixture was stirred for another 3 h and evaporated under reduced pressure. The residue was suspended in a mixture of ethyl acetate and water and the solid filtered off. After phase separation, the aqueous phase was extracted two times with ethyl acetate. The combined organic phases were dried over sodium sulfate, filtered, evaporated under reduced pressure and dried in vacuo to give $\mathbf{8 7}$ which was used without further purification. Yield: 463 mg ($59 \%, 56 \%$ purity).

2-[(5-Chloro-2-fluorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (88).

Lithium hydroxide ($68 \mathrm{mg}, 2.84 \mathrm{mmol}, 4.0$ equiv.) was added at room temperature to methyl 2-[(5-chloro-2-fluorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylate (87) (463 mg, 56\% purity, $0.71 \mathrm{mmol})$ in a mixture of tetrahydrofuran and water $(3: 1,9 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight before additional lithium hydroxide ($17 \mathrm{mg}, 0.71 \mathrm{mmol}, 1.0$ equiv.) was added. After stirring at $40^{\circ} \mathrm{C}$ (water bath) for 4 h , aqueous hydrochloric acid solution (1 N) was added. The mixture was evaporated under reduced pressure to give $\mathbf{8 8}$ which was used without further purification. Yield: $569 \mathrm{mg}(>100 \%, 25 \%$ purity $)$. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.88 ; \mathrm{MS}(\mathrm{ESI}+)$: $\mathrm{m} / \mathrm{z}=351[\mathrm{M}+\mathrm{H}]^{+}$.

\{2-[(5-Chloro-2-fluorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[4-hydroxy-3-

 methylpiperidin-1-yl]methanone (25) as mixture of rac-trans stereoisomers.

HATU ($91 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($111 \mu \mathrm{~L}, 0.64 \mathrm{mmol}, 3.2$ equiv.) were added to a solution of 2-[(5-chloro-2-fluorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5carboxylic acid (88) ($281 \mathrm{mg}, 25 \%$ purity, 0.20 mmol) in N, N-dimethylformamide (2.0 mL) and stirred at room temperature for 20 min before rac-trans-3-methylpiperidin-4-ol hydrochloride $(33 \mathrm{mg}$, $0.22 \mathrm{mmol}, 1.1$ equiv.) was added. The reaction mixture was stirred at room temperature overnight and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give $\mathbf{2 5}$ as mixture of rac-trans stereoisomers. Yield: 25 mg (25\%). LC-MS (method 7a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.89 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=448[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{DMSO}_{6}\right): \delta[\mathrm{ppm}]=8.63(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-$ $4.14(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.09-2.85(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.66(\mathrm{~m}, 1 \mathrm{H})$, 1.47-1.22 (m, 2H), 1.04-0.70 (m, 3H), 1 proton concealed (DMSO).

\{2-[(5-Chloro-2-hydroxybenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[4-hydroxy-3-

 methylpiperidin-1-yl]methanone (26) as mixture of rac-trans stereoisomers.
a) i) 5-chloro-2-hydroxybenzaldehyde, $\mathrm{Ti}(\mathrm{Oi} \text { - } \mathrm{Pr})_{4}, \mathrm{DCM}, \mathrm{RT}$, ii) $\mathrm{NaCNBH}_{3}, \mathrm{RT}$; b) $\mathrm{LiOH}, \mathrm{THF} /$ water, RT; c) rac-trans-3-methylpiperidin-4-ol, HATU, DIEA, DMF, RT.

Methyl 2-[(5-chloro-2-hydroxybenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylate (89).

Titanium(IV) tetrapropanolate ($7.54 \mathrm{~mL}, 25.55 \mathrm{mmol}, 2.0$ equiv.) was added under argon atmosphere at room temperature to a mixture of methyl 2-amino-7-methoxy-1,3-benzoxazole-5-carboxylate (76) ($3.69 \mathrm{~g}, 12.77 \mathrm{mmol}$) and 5 -chloro-2-hydroxybenzaldehyde ($2.00 \mathrm{~g}, 12.77 \mathrm{mmol}, 1.0$ equiv.) in dichloromethane $(100 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight, followed by addition of sodium cyanoborohydride ($2.41 \mathrm{mg}, 38.32 \mathrm{mmol}, 3.0$ equiv.) at room temperature. The reaction mixture was stirred at room temperature overnight, diluted with dichloromethane, filtered through diatomaceous earth and mixed with water. After phase separation, the aqueous phase was extracted with dichloromethane. The combined organic phases were dried over magnesium sulfate, filtered, evaporated under reduced pressure and dried in vacuo to give $\mathbf{8 9}$ which was used without further purification. Yield: 8.18 g .

2-[(5-Chloro-2-hydroxybenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (90).

Lithium hydroxide $(1.07 \mathrm{~g})$ and water $(50 \mathrm{~mL})$ were added at room temperature to methyl 2-[(5-chloro-2-hydroxybenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylate (89) (8.10 g) in tetrahydrofuran and water $(140 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight and then acidified with aqueous hydrochloric acid solution $(1 \mathrm{M})$. The solid was filtered, washed with water and dried in vacuo at $45^{\circ} \mathrm{C}$ overnight to give 90 . Yield: $4.21 \mathrm{~g}(43 \%, 80 \%$ purity $)$. LC-MS $(\operatorname{method} 2 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 1.92; $\mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=349[\mathrm{M}+\mathrm{H}]^{+}$.
\{2-[(5-Chloro-2-hydroxybenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[4-hydroxy-3-methylpiperidin-1-yl]methanone (26) as mixture of rac-trans stereoisomers.

rac-trans-26

A mixture of 2-[(5-chloro-2-hydroxybenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (90) ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$), rac-trans-3-methylpiperidin-4-ol ($36 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.1$ equiv.), HATU ($131 \mathrm{mg}, 0.34$ mmol, 1.2 equiv.) and N, N-diisopropylethylamine ($120 \mu \mathrm{~L}, 0.69 \mathrm{mmol}, 2.4$ equiv.) in N, N-dimethylformamide (2.0 mL) was stirred at room temperature overnight and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient $+0.01 \%$ formic acid) to give 26 as mixture of rac-trans stereoisomers. Yield: $3 \mathrm{mg}(3 \%$, 90% purity $)$. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.84$; MS $(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=446[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.87-5.79 (m, 1H), 4.62-4.45 (m, 1H), 4.51 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.86-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.48-$ $3.38(\mathrm{~m}, 1 \mathrm{H}), 3.15-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.6(\mathrm{~m}, 1 \mathrm{H}$, partially concealed), 2.11-1.85 $(\mathrm{m}, 1 \mathrm{H}), 1.18-0.80$ $(\mathrm{m}, 3 \mathrm{H}), 4$ protons are concealed.
(2-\{[(1S)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(4-hydroxy-3-methylpiperidin-1-yl)methanone (27a) mixture of rac-trans stereoisomers.

a) triethyl orthoformate, RF; b) (1S)-1-(3-chlorophenyl)ethanamine, benzoic acid, $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{ACN}$, $60^{\circ} \mathrm{C}$; c) $\mathrm{LiOH}, \mathrm{THF} /$ water, RT; d) rac-trans-3-methylpiperidin-4-ol, HATU, DIEA, RT.

Methyl 7-methoxy-1,3-benzoxazole-5-carboxylate (91).

Methyl 3-amino-4-hydroxy-5-methoxybenzoate $56(30.0 \mathrm{~g}, 152 \mathrm{mmol})$ in triethyl orthoformate $(350 \mathrm{~mL}, 2.10 \mathrm{~mol})$ was stirred under reflux for 4 h . The hot reaction mixture was filtered and then concentrated under reduced pressure to yield 91 which was used without further purification within the next steps. Yield: $31.0 \mathrm{~g}(98 \%)$. LC-MS (method 9a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.79$; MS (ESI +): $\mathrm{m} / \mathrm{z}=208[\mathrm{M}+\mathrm{H}]^{+}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.87(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.90$ (s, 3H).

Methyl 2-\{[(1S)-1-(3-chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (92).

A mixture of methyl 7-methoxy-1,3-benzoxazole-5-carboxylate (91) ($2.50 \mathrm{~g}, 12.1 \mathrm{mmol}, 1.2$ equiv.), (1S)-1-(3-chlorophenyl)ethanamine ($1.57 \mathrm{~g}, 10.1 \mathrm{mmol}$), benzoic acid ($2.46 \mathrm{~g}, 20.1 \mathrm{mmol}, 2.0$ equiv.) and silver carbonate ($3.33 \mathrm{~g}, 12.1 \mathrm{mmol}, 1.2$ equiv.) in acetonitrile (45 mL) was stirred at $60{ }^{\circ} \mathrm{C}$ overnight. A further amount of ((1S)-1-(3-chlorophenyl) ethanamine ($785 \mathrm{mg}, 5.50 \mathrm{mmol}, 0.5$ equiv.)
was added and stirring at $60^{\circ} \mathrm{C}$ was continued overnight. The reaction mixture was filtered over Celite ${ }^{\circledR}$, the residue was washed with acteonitrile and the filtrate was concetrated under reduced pressure. The crude material was purified by column chromatography (silica gel, eluent: cyclohexane / ethyl acetate 4:1) to give 92. Yield: 2.75 g ($47 \%, 74 \%$ purity). 200 mg of this material were purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient $+0.01 \%$ formic acid) to give 92 (160 mg) with 100% purity. LC-MS (method 6 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.31$; MS (ESI+): $\mathrm{m} / \mathrm{z}=361[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta[\mathrm{ppm}]=8.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 2 \mathrm{H}), 4.95$ (quin, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

2-\{[(1S)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (93).

93

Lithium hydroxide ($415 \mathrm{mg}, 17.3 \mathrm{mmol}, 2.5$ equiv.) was added at room temperature to methyl $2-\{[(1 S)$ -1-(3-chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (92) ($2.50 \mathrm{~g}, 6.93 \mathrm{mmol}$) in a mixture of tetrahydrofuran and water $(2: 1,138 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight before the reaction mixture was neutralized with aqueous hydrochloric acid solution (1 N). After extraction with ethyl acetate, the organic phase was washed with brine and dried over sodium sulfate. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile $/$ water gradient $+0.01 \%$ formic acid) to give 93 . Yield: $1.20 \mathrm{~g}(50 \%)$. LC-MS (method 1 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 0.92; MS (ESI+): m/z=347[M+H] ${ }^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=12.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.75$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (s, 1H), 7.44-7.36 (m, 3H), 7.34-7.26 (m, 2H), 4.95 (quin, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (s, 3H), 1.49 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
(2-\{[(1S)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-methylpiperidin-1-yl]methanone as mixture of rac-trans stereoisomers (27a).

HATU (197 mg, $0.52 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($166 \mu \mathrm{~L}, 0.95 \mathrm{mmol}$, 2.2 equiv.) were added to a solution of $2-\{[(1 S)-1-(3$-chlorophenyl)ethyl]amino $\}-7$-methoxy-1,3-benzoxazole-5-carboxylic acid (93) ($150 \mathrm{mg}, 0.43 \mathrm{mmol}$) in N, N-dimethylformamide (3.6 mL) and stirred at room temperature for 30 min before rac-trans-3-methylpiperidin-4-ol ($55 \mathrm{mg}, 0.48 \mathrm{mmol}$,
1.1 equiv.) was added. The reaction mixture was stirred at room temperature overnight and the reaction mixture was purified without any further work up by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient $+0.01 \%$ formic acid) to give 27 a as mixture of rac-trans stereoisomers. Yield: $127 \mathrm{mg}(66 \%)$. LC-MS (method 7a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.94$; MS (ESI +): $\mathrm{m} / \mathrm{z}=444[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta[\mathrm{ppm}]=8.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.34$ $(\mathrm{m}, 1 \mathrm{H}), 4.94(q u i n, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.42-$ $3.62(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dt}, J=9.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-3.07(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.19-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.69-1.00(\mathrm{~m}, 3 \mathrm{H}), 2$ protons are concealed.
(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(4-hydroxy-3-methylpiperidin-1-yl)methanone (27b) mixture of rac-trans stereoisomers.

a) (1R)-1-(3-chlorophenyl)ethanamine, DIEA, THF, RT; b) LiOH, THF/water, RT; c) rac-trans-3-methylpiperidin-4-ol, HATU, DIEA, DMF, RT.

Methyl 2-\{[(1R)-1-(3-chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (94).

N, N-Diisopropylethylamine ($32.35 \mathrm{~mL}, 185.7 \mathrm{mmol}, 3.0$ equiv.) was added to a solution of methyl 2-chloro-7-methoxy-1,3-benzoxazole-5-carboxylate (58) (18.24 g, 82\% purity, 61.90 mmol) and ($1 R$)-1-(3-chlorophenyl)ethanamine ($9.63 \mathrm{~g}, 61.90 \mathrm{mmol}, 1.0$ equiv.) in tetrahydrofuran (376 mL). The reaction mixture was stirred at room temperature for 18 h and evaporated under reduced pressure. The residue was dissolved in dichloromethane $(500 \mathrm{~mL})$ and washed with aqueous hydrochloric acid solution $(0.5 \mathrm{M}, 500 \mathrm{~mL})$. The organic phase was dried over sodium sulfate, filtered and dried in vacuo to give 94. Yield: $16.50 \mathrm{~g}(72 \%)$. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\min)=1.11 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=361[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) : $\delta[\mathrm{ppm}]=8.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 4 \mathrm{H}), 4.96($ quin, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (95).

Lithium hydroxide ($15.43 \mathrm{~g}, 644.4 \mathrm{mmol}, 5.0$ equiv.) was added at room temperature to methyl 2$\{[(1 R)-1-(3-c h l o r o p h e n y l) e t h y l] a m i n o\}-7-m e t h o x y-1,3-b e n z o x a z o l e-5-c a r b o x y l a t e ~(94)(46.50 \quad g, ~$ $360.8 \mathrm{mmol})$ in a mixture of tetrahydrofuran and water $(3: 1,800 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 72 h before all volatiles were removed under reduced pressure. The residue was diluted with water and acidified with aqueous hydrochloric acid solution (1 N) to $\mathrm{pH}=2$. The solid was extracted with ethyl acetate and the organic phase was washed with saturated sodium chloride solution, dried over sodium sulfate, filtered and dried in vacuo to give 95 . Yield: $44.1 \mathrm{~g}(93 \%)$. LC-MS $(\operatorname{method} 1 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.95 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=347[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta[\mathrm{ppm}]=12.63-13.03(\mathrm{~m}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.42(\mathrm{~m}, 5 \mathrm{H}), 4.91-5.01(\mathrm{~m}$, $1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-methylpiperidin-1-yl]methanone (27b) as mixture of rac-trans stereoisomers

HATU ($197 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($166 \mu \mathrm{~L}, 0.95 \mathrm{mmol}$, 2.2 equiv.) were added to a solution of $2-\{[(1 R)-1-(3$-chlorophenyl)ethyl $]$ amino $\}-7$-methoxy-1,3-benzoxazole-5-carboxylic acid (95) ($150 \mathrm{mg}, 0.43 \mathrm{mmol}$) in N, N-dimethylformamide (3.6 mL) and stirred at room temperature for 30 min before rac-trans-3-methylpiperidin-4-ol ($55 \mathrm{mg}, 0.48 \mathrm{mmol}$, 1.1 equiv.) was added. The reaction mixture was stirred at room temperature overnight and the reaction mixture was purified without any further work up by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient $+0.01 \%$ formic acid) to give $\mathbf{2 7 b}$ as mixture of rac-trans stereoisomers. Yield: $71 \mathrm{mg}(37 \%)$. LC-MS (method 7a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.94 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=444[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.34$ $(\mathrm{m}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (quin, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{br} \mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$,
4.12-4.37 (m, 1H), 3.90(s, 3H), $3.17(\mathrm{~m}, 1 \mathrm{H}), 2.79-3.07(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.18-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.64-1.01(\mathrm{~m}, 3 \mathrm{H}), 2$ protons are concealed.
(2-\{[1-(3-Chlorophenyl)-2,2,2-trifluoroethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(4-hydroxy-3-methylpiperidin-1-yl)methanone (28) as mixture of all rac-trans stereoisomers.

a) (rac)-1-(3-chlorophenyl)-2,2,2-trifluoroethanamine, DIEA, 1,4-dioxane, RF; b) LiOH, THF/water, RT; c) rac-trans-3-methylpiperidin-4-ol, HATU, DIEA, DMF, RT.
(rac)-Methyl 2-\{[1-(3-chlorophenyl)-2,2,2-trifluoroethyl]amino\}-7-methoxy-1,3-benzoxazole-5carboxylate (96).

N, N-Diisopropylethylamine ($14.8 \mathrm{~mL}, 84.4 \mathrm{mmol}, 5.0$ equiv.) was added to a solution of methyl 2-chloro-7-methoxy-1,3-benzoxazole-5-carboxylate (58) (4.10 g, 17.0 mmol) and (rac)-1-(3-chlorophenyl)-2,2,2-trifluoroethanamine ($6.40 \mathrm{~g}, 30.5 \mathrm{mmol}, 1.8$ equiv.) in 1,4-dioxane (150 mL). The reaction mixture was stirred for 9 days under reflux and then evaporated under reduced pressure. The residue was dissolved in dichloromethane $(100 \mathrm{~mL})$, water $(200 \mathrm{~mL})$ was added and the mixture was vigorously stirred. The precipitate was filtered, washed with a small amount of acetonitrile and dried in vacuo to give 96. Yield: $2.77 \mathrm{~g}(39 \%)$. LC-MS (method 9a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.20$; MS (ESI +): $\mathrm{m} / \mathrm{z}=415$ $[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta[\mathrm{ppm}]=9.74(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{br} \mathrm{d}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98$ (quin, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H})$.
(rac)-2-\{[1-(3-Chlorophenyl)-2,2,2-trifluoroethyl]amino\}-7-methoxy-1,3-benzoxazole-5carboxylic acid (97).

Lithium hydroxide ($779 \mathrm{mg}, 32.5 \mathrm{mmol}, 5.0$ equiv.) was added at room temperature to methyl (rac)methyl 2-\{[1-(3-chlorophenyl)-2,2,2-trifluoroethyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (96) $(2.70 \mathrm{~g}, 6.51 \mathrm{mmol})$ in a mixture of tetrahydrofuran and water $(3: 1,200 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight and then acidified with aqueous hydrochloric acid solution $(1 \mathrm{~N})$. The solid was extracted with dichloromethane and the organic phase was dried over magnesium sulfate, filtered and dried in vacuo. The residue was triturated with acetonitrile / water, filtered and dried in vacuo to give 97 . Yield: $920 \mathrm{mg}(28 \%, 80 \%$ purity $) .100 \mathrm{mg}$ were again triturated with acetonitrile / water, filtered and dried in vacuo to give 97. Yield: 53 mg (93% purity). LC-MS (method 7a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.05 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=401[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta[\mathrm{ppm}]=12.96(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 9.70(\mathrm{br} \mathrm{d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-6.07(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$.
(2-\{[1-(3-Chlorophenyl)-2,2,2-trifluoroethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-methylpiperidin-1-yl]methanone (28) as mixture of all rac-trans stereoisomers.

HATU ($27.3 \mathrm{mg}, 0.072 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($23.0 \mu \mathrm{~L}, 0.132 \mathrm{mmol}$, 2.2 equiv.) were added to a solution of (rac)-2-\{[1-(3-chlorophenyl)-2,2,2-trifluoroethyl]amino $\}$-7-methoxy-1,3-benzoxazole-5-carboxylic acid (97) ($24.0 \mathrm{mg}, 0.060 \mathrm{mmol}$) in N, N-dimethylformamide $(2.0 \mathrm{~mL})$ and stirred at room temperature for 30 min before rac-trans-3-methylpiperidin-4-ol (7.6 mg , $0.066 \mathrm{mmol}, 1.1$ equiv.) was added. The reaction mixture was stirred at room temperature for 1 h and the reaction mixture was purified without any further work up by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient $+0.01 \%$ formic acid) to give $\mathbf{2 8}$ as mixture of all-rac-trans stereoisomers. Yield: $8.4 \mathrm{mg}(28 \%)$. LC-MS (method 7 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.98 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=498$ $[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=9.63(\mathrm{br} \mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{br}$ $\mathrm{d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.58(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.87-6.05(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.86(\mathrm{~m}, 1 \mathrm{H})$, 4.1-4.50 (m, 1H), $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dt}, J=9.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-3.11(\mathrm{~m}, 1 \mathrm{H})$, $1.24-1.92(\mathrm{~m}, 3 \mathrm{H}), 0.62-1.00(\mathrm{~m}, 3 \mathrm{H}), 1$ proton is concealed.

(2-\{[1-(3-Chlorophenyl)cyclopropyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-

 methylpiperidin-1-yl]methanone (29) as mixture of rac-cis stereoisomers.
a) 1-(3-chloro-phenyl)cyclopropane amine hydrochloride, DIEA, THF, RF; b) $\mathrm{LiOH}, \mathrm{THF} /$ water, $60^{\circ} \mathrm{C}$; c) rac-cis-3-methylpiperidin-4-ol hydrochloride, HATU, DIEA, DMF, RT.

Methyl 2-\{[1-(3-chlorophenyl)cyclopropyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (98).

N, N-Diisopropylethylamine ($22.76 \mathrm{~mL}, 130.65 \mathrm{mmol}, 4.0$ equiv.) was added to a solution of methyl 2-chloro-7-methoxy-1,3-benzoxazole-5-carboxylate (58) (7.89 g, 32.66 mmol) and 1-(3-chlorophenyl)cyclopropane amine hydrochloride ($8.67 \mathrm{~g}, 42.46 \mathrm{mmol}, 1.3$ equiv.) in tetrahydrofuran (395 mL). The reaction mixture was stirred at reflux for 96 h and evaporated under reduced pressure. The residue was mixed with dichloromethane $(250 \mathrm{~mL})$ and water $(250 \mathrm{~mL})$ and vigorously stirred for 30 min . The precipitate was filtered and dried in vacuo to give 98. Yield: $11.27 \mathrm{~g}(91 \%)$. LC-MS $(\operatorname{method} 9 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\min)=1.11 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=373[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right):$ $\delta[\mathrm{ppm}]=9.16(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.17(\mathrm{~m}, 5 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 4 \mathrm{H})$.

2-\{[1-(3-Chlorophenyl)cyclopropyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (99).

Lithium hydroxide ($2.06 \mathrm{~g}, 85.83 \mathrm{mmol}, 4.0$ equiv.) was added at room temperature to methyl 2-\{[1-(3-chlorophenyl)cyclopropyl]amino \}-7-methoxy-1,3-benzoxazole-5-carboxylate (98) (8.00 g,
$21.46 \mathrm{mmol})$ in a mixture of tetrahydrofuran and water $(3: 1,320 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight and at $60^{\circ} \mathrm{C}$ for further 6 h before all volatiles were removed under reduced pressure. The residue was diluted with water and acidified with aqueous hydrochloric acid solution $(1 \mathrm{~N})$. The solid was filtered, washed with water and dried in vacuo to give 99 . Yield: 7.43 g (97\%). LC-MS (method 9a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.94 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=359[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d $\left._{6}\right): \delta[\mathrm{ppm}]=9.21(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.17(\mathrm{~m}, 5 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}$, $4 \mathrm{H})$.
(2-\{[1-(3-Chlorophenyl)cyclopropyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-methylpiperidin-1-yl]methanone (29) as mixture of rac-cis stereoisomers.

rac-cis-29

HATU ($46 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($56 \mu \mathrm{~L}, 0.32 \mathrm{mmol}, 3.2$ equiv.) were added to a solution of 2-\{[1-(3-chlorophenyl)cyclopropyl]amino\}-7-methoxy-1,3-benzoxazole-5carboxylic acid (99) (36 mg, 0.10 mmol$)$ in N, N-dimethylformamide (1.0 mL) and stirred at room temperature for 20 min before rac-cis-3-methylpiperidin-4-ol hydrochloride ($18 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1.2 equiv.) was added. The reaction mixture was stirred at room temperature overnight and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 29 as mixture of rac-cis stereoisomers. Yield: 31 mg (68\%). LCMS (method 1a): $\mathrm{t}_{\mathrm{R}}(\min)=0.97 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=456[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta[\mathrm{ppm}]=9.03(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-$ $4.11(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.66(\mathrm{~m}, 1 \mathrm{H})$, 1.46-1.21 (m, 2H), $1.37(\mathrm{~s}, 4 \mathrm{H}), 1.04-0.70(\mathrm{~m}, 3 \mathrm{H})$.

(2-\{[1-(3-Chlorophenyl)cyclobutyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)(4-hydroxy-3-

 methylpiperidin-1-yl)methanone (30) as mixture of rac-trans stereoisomers.
a) 1-(3-chlorophenyl)cyclobutanamine, benzoic acid, $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{ACN}, 80^{\circ} \mathrm{C}$; b) LiOH , THF/water, RT; c) rac-trans-3-methylpiperidin-4-ol, HATU, DIEA, DMF, RT.

Methyl 2-\{[1-(3-chlorophenyl)cyclobutyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (100).

A mixture of methyl 7-methoxy-1,3-benzoxazole-5-carboxylate (58) (300 mg, $1.45 \mathrm{mmol}, 1.2$ equiv.), 1-(3-chlorophenyl)cyclobutanamine ($219 \mathrm{mg}, 1.21 \mathrm{mmol}$), benzoic acid ($295 \mathrm{mg}, 2.40 \mathrm{mmol}$, 2.0 equiv.) and silver carbonate ($399 \mathrm{mg}, 1.45 \mathrm{mmol}, 1.2$ equiv.) in acetonitrile (4.5 mL) was stirred at $80^{\circ} \mathrm{C}$ under air atmosphere overnight. The reaction mixture was filtered over Celite ${ }^{\circledR}$, the residue was washed with acteonitrile and the filtrate was concetrated under reduced pressure. The crude material was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient $+0.01 \%$ formic acid) to give 100. Yield: $67.0 \mathrm{mg}(12 \%)$. LC-MS (method 7a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.20 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=387$ $[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=9.07(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.56(\mathrm{~m}, 2 \mathrm{H})$, 7.33-7.41 (m, $2 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~m}, 4 \mathrm{H}), 2.02-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.80-$ 1.94 (m, 1H).

2-\{[1-(3-Chlorophenyl)cyclobutyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (101).

Lithium hydroxide ($5.2 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.3$ equiv.) was added at room temperature to methyl 2-\{[1-(3-chlorophenyl)cyclobutyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (100) (65.0 mg, $0.17 \mathrm{mmol})$ in a mixture of tetrahydrofuran and water $(3: 1,3.3 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight then acidified with aqueous hydrochloric acid solution (1 N). The solid was extracted with ethyl acetate, the organic phase was washed with saturated sodium chloride solution, dried over sodium sulfate, filtered and dried in vacuo to give 101. Yield: 80.0 mg (127\%). LC-MS $(\operatorname{method} 7 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.03 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=373[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta[\mathrm{ppm}]=12.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.41$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.63(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{td}, J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.94$ (m, 1H).

(2-\{[1-(3-Chlorophenyl)cyclobutyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[4-hydroxy-3-methylpiperidin-1-yl]methanone (30) as mixture of rac-trans stereoisomers.

HATU ($98.0 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($82 \mu \mathrm{~L}, 0.47 \mathrm{mmol}, 2.2$ equiv.) were added to a solution of 2-\{[1-(3-chlorophenyl)cyclobutyl]amino\}-7-methoxy-1,3-benzoxazole-5carboxylic acid (101) ($80 \mathrm{mg}, 0.22 \mathrm{mmol}$) in N, N-dimethylformamide $(1.8 \mathrm{~mL})$ and stirred at room temperature for 30 min before rac-trans-3-methylpiperidin-4-ol ($27.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.1$ equiv.) was added. The reaction mixture was stirred at room temperature overnight and then purified without any further work up by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient $+0.01 \%$ formic acid) to give 30 as mixture of rac-trans stereoisomers. Yield: 75 mg (75\%). LC-MS (method $6 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.23 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=470[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta[\mathrm{ppm}]=8.89-$ $9.01(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{br} \mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.00-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.81$ $(\mathrm{m}, 3 \mathrm{H}), 0.59-1.03(\mathrm{~m}, 3 \mathrm{H})$.

\{2-[(3-Chlorobenzy)amino]-4-methoxy-1,3-benzoxazol-6-yl\}(4-hydroxy-3-methylpiperidin-1-

 yl)methanone (31) as mixture of rac-trans stereoisomers.
a) $\mathrm{HNO}_{3}, \mathrm{AcOH},-5^{\circ} \mathrm{C}$; b) $\mathrm{H}_{2}(1 \mathrm{bar}), 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{RT}$; c) triethyl orthoformate, RF; d) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, RT; e) 1-(3-chlorophenyl)methanamine, benzoic acid, $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{ACN}, 6{ }^{\circ} \mathrm{C}$; f) LiOH , THF/water, RT; g) rac-trans-3-methylpiperidin-4-ol, HATU, DIEA, DMF, RT.

Methyl 3,5-dihydroxy-4-nitrobenzoate (102).

Methyl 3,5 -dihydroxybenzoate ($13.9 \mathrm{~g}, 79.9 \mathrm{mmol}$) in acetic acid (250 mL) was treated very slowly and dropwise with nitric acid $\left(65 \%, 5.10 \mathrm{~mL}, 79.9 \mathrm{mmol}, 1.0\right.$ equiv.) at $-5^{\circ} \mathrm{C}$. After stirring for 3 h at room temperature, another portion of nitric acid ($65 \%, 2.55 \mathrm{~mL}, 39.9 \mathrm{mmol}, 0.5$ equiv.) was slowly added and the reaction mixture was stirred for 96 h . Afterwards, the reaction mixture was diluted with water and then extracted with ethyl acetate and the organic phase was dried over sodium sulfate, filtered in concentrated in vacuo. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient $+0.01 \%$ formic acid) to give 102. Yield: 1.6 g (9\%). LC-MS (method 6a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.76 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=214[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta[\mathrm{ppm}]=11.21(\mathrm{~s}$, 2H), 7.05 (s, 2H), 3.84 (s, 3H).

Methyl 4-amino-3,5-dihydroxybenzoate (103).

Methyl 3,5-dihydroxy-4-nitrobenzoate ($\mathbf{1 0 2}$) ($1.60 \mathrm{~g}, 7.51 \mathrm{mmol}$) in methanol (46.6 mL) was treated at room temperature with $10 \% \mathrm{Pd} / \mathrm{C}(200 \mathrm{mg})$ and then stirred for 2 h under an atmosphere of hydrogen (1 bar). The reaction mixture was filtered over Celite ${ }^{\circledR}$ and then concentrated in vacuo give to give 103. Yield: $1.37 \mathrm{~g}(100 \%)$. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.29$; MS (ESI +): m/z $=184[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=9.36$ (br s, 2H), 6.93 (s, 2H), 3.72 (s, 3H), 3.17 (s, 2H).

Methyl 4-hydroxy-1,3-benzoxazole-6-carboxylate (104).

104
 301 mmol) was stirred under reflux for 4 h . Triethyl orthoformate ($10.0 \mathrm{~mL}, 60.0 \mathrm{mmol}$) was added and stirring under reflux was continued for another 2 h . The hot reaction mixture was concentrated under reduced pressure to yield $\mathbf{1 0 4}$ which was used without further purification within the next steps. Yield: $1.28 \mathrm{~g}(89 \%)$. LC-MS (method 7a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.66 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=194[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) : $\delta[\mathrm{ppm}]=10.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 4-methoxy-1,3-benzoxazole-6-carboxylate (105).

105

Methyl 4-hydroxy-1,3-benzoxazole-6-carboxylate (104) (1.08 g, 5.59 mmol$)$ in $\mathrm{N}, \mathrm{N}-$ dimethylformamide $(50.0 \mathrm{~mL})$ was treated with potassium carbonate $(1.16 \mathrm{~g}, 8.39 \mathrm{mmol})$ and iodomethane ($1.37 \mathrm{~mL}, 22.0 \mathrm{mmol}, 3.9$ equiv.). The reaction mixture was stirred for 1 h at room temperature and then iodomethane ($0.20 \mathrm{~mL}, 3.21 \mathrm{mmol}, 0.6$ equiv.) was added. After stirring overnight, potassium carbonate ($445 \mathrm{mg}, 3.22 \mathrm{mmol}, 0.6$ equiv.) and iodomethane (0.20 mL , $3.21 \mathrm{mmol}, 0.6$ equiv.) were added and stirring was continued for 1 h at $50^{\circ} \mathrm{C}$. The reaction mixture was concentrated under reduced pressure and the residue was dissolved in dichloromethane and washed
with saturated ammonium chloride solution. The organic phase was dried over sodium sulfate, filtered and then concentrated under reduced pressure. The crude material was purified by column chromatography (silica gel, eluent: cyclohexane / ethyl acetate $2: 1$) to give 105. Yield: $605 \mathrm{mg}(52 \%)$. LC-MS (method 7a): $\mathrm{t}_{\mathrm{R}}(\min)=0.79 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=208[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta[\mathrm{ppm}]=8.85(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 2-\{[1-(3-chlorophenyl)cyclobutyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (106).

A mixture of methyl 4-methoxy-1,3-benzoxazole-6-carboxylate (105) ($300 \mathrm{mg}, 1.43 \mathrm{mmol}, 1.2$ equiv.), 1-(3-chlorophenyl)methanamine ($210 \mathrm{mg}, 1.20 \mathrm{mmol}$), benzoic acid ($292 \mathrm{mg}, 2.39 \mathrm{mmol}, 2.0$ equiv.) and silver carbonate ($395 \mathrm{mg}, 1.43 \mathrm{mmol}, 1.2$ equiv.) in acetonitrile (5.3 mL) was stirred at $60^{\circ} \mathrm{C}$ under air atmosphere overnight. The reaction mixture was filtered over Celite ${ }^{\circledR}$, the residue was washed with acteonitrile and the filtrate was concetrated under reduced pressure. The crude material was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 106. Yield: 69.0 mg (13%) LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.04 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=347[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.86(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.46(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$.

2-[(3-Chlorobenzyl)amino]-4-methoxy-1,3-benzoxazole-6-carboxylic acid (107).

Lithium hydroxide ($8.9 \mathrm{mg}, 0.37 \mathrm{mmol}, 2.0$ equiv.) was added at room temperature to methyl 2-\{[1-(3-chlorophenyl)cyclobutyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylate (106) (69.3 mg, $0.19 \mathrm{mmol})$ in a mixture of tetrahydrofuran and water $(2: 1,1.5 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 3 h and then lithium hydroxide ($8.9 \mathrm{mg}, 0.37 \mathrm{mmol}, 2.0$ equiv.) was added. After stirring overnight, lithium hydroxide ($4.5 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv.) was added and stirring was continued for 3 h at $60^{\circ} \mathrm{C}$. The reaction mixture was acidified with aqueous hydrochloric acid solution $(1 \mathrm{~N})$, the solid was extracted with ethyl acetate, the organic phase was washed with saturated sodium chloride solution, dried over sodium sulfate, filtered and dried in vacuo to give 107. Yield: 55.8 mg (88%). LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.87$; MS $(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=333[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,

DMSO- d_{6}): $\delta[\mathrm{ppm}]=12.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.79(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.46(\mathrm{~m}, 5 \mathrm{H}), 4.56$ (br d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$.

\{2-[(3-Chlorobenzyl)amino]-4-methoxy-1,3-benzoxazol-6-yl\}[4-hydroxy-3-methylpiperidin-1-

 yl]methanone (31) as mixture of rac-trans stereoisomers.

HATU ($74.3 \mathrm{mg}, 0.195 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($62 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$, 2.2 equiv.) were added to a solution of 2-[(3-chlorobenzyl)amino]-4-methoxy-1,3-benzoxazole-6carboxylic acid (107) $(55.8 \mathrm{mg}, 0.163 \mathrm{mmol})$ in N, N-dimethylformamide $(1.4 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 30 min before rac-trans-3-methylpiperidin-4-ol (27.2 mg , $0.24 \mathrm{mmol}, 1.1$ equiv.) was added. The reaction mixture was stirred at room temperature overnight and then purified without any further work up by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 31 as mixture of rac-trans stereoisomers. Yield: 32.2 mg (46%). LC-MS $(\operatorname{method} 7 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.89 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=430[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$: $\delta[\mathrm{ppm}]=8.60(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{br} \mathrm{d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.21(\mathrm{~m}, 1 \mathrm{H})$, 2.86-3.09 (m, 1H), 1.69-1.93 (m, 1H), 1.18-1.50 (m, 2H), 0.72-1.05 (m, 3H), 1 proton concealed.

\{2-[(3-Chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridin-6-yl\}[4-hydroxy-3-

 methylpiperidin-1-yl]methanone (32) as mixture of rac-trans stereoisomers.
a) $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, 0^{\circ} \mathrm{C}$; b) trimethylsilyl-diazomethane, toluene $/ \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to RT ; c) H_{2} (1 bar), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{RT} ;$ d) ethoxycarbonyl isothiocyanate, 1,4-dioxane, RT ; e) hydroxylamine hydrochloride, DIEA, $\mathrm{MeOH} / \mathrm{EtOH}, \mathrm{RT}$ to $60^{\circ} \mathrm{C}$; f) i) 3-chlorbenzaldehyde, DMF, RT to RF, ii) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, \mathrm{RT}$ to RF; g) $\mathrm{LiOH}, \mathrm{THF} /$ water, RT ; h) rac-trans-3-methylpiperidin-4-ol hydrochloride, HATU, DIEA, DMF, RT.

Methyl 5-hydroxy-6-nitronicotinate (108).

Nitric acid (1.28 mL) was added dropwise and slowly to concentrated sulfuric acid $(8.00 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture stirred for 10 min . The cooling bath was removed and methyl 5-hydroxynicotinate ($1.00 \mathrm{~g}, 6.53 \mathrm{mmol}$) added in portions. The reaction mixture was stirred at room temperature overnight and poured onto iced water. The precipitate was filtered and dried in vacuo to give 108. Yield: $529 \mathrm{mg}(39 \%)$. LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.59 ; \mathrm{MS}(E S I+): \mathrm{m} / \mathrm{z}=199[\mathrm{M}+\mathrm{H}]^{+}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta[\mathrm{ppm}]=12.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 5-methoxy-6-nitronicotinate (109).

A solution of trimethylsilyl-diazomethane (2 M in diethyl ether, $6.41 \mathrm{~mL}, 12.81 \mathrm{mmol}, 5.0$ equiv.) was added under argon atmosphere at $0^{\circ} \mathrm{C}$ to a mixture of methyl 5-hydroxy-6-nitronicotinate (108) $(529 \mathrm{mg}, 2.56 \mathrm{mmol})$ in toluene $(50 \mathrm{~mL})$ and methanol $(17 \mathrm{~mL})$. The reaction mixture was allowed to warm to room temperature, stirred overnight, mixed with water and evaporated under reduced pressure. After addition of dichloromethane / water and phase separation, the aqueous phase was extracted two times with dichloromethane. The combined organic phases were washed with brine, dried over sodium sulfate, filtered, evaporated under reduced pressure and dried in vacuo to give 109. Yield: $552 \mathrm{mg}(92 \%$, 91% purity). LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.75$; MS (ESI +): $\mathrm{m} / \mathrm{z}=213[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}): $\delta[\mathrm{ppm}]=8.60(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 6-amino-5-methoxynicotinate (110).

A solution of methyl 5-methoxy-6-nitronicotinate (109) ($552 \mathrm{mg}, 2.37 \mathrm{mmol}$) in ethanol (30 mL) was mixed at room temperature with palladium (10% on carbon, 62 mg), purged with hydrogen gas and stirred at room temperature overnight under hydrogen gas atmosphere (1 bar). The reaction mixture was filtered through a filter layer, which was successively washed with ethanol. The combined filtrates were concentrated under reduced pressure and dried in vacuo to give 110. Yield: 336 g (80\%). LC-MS $($ method 3 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.56 ; \mathrm{MS}($ ESI +$): \mathrm{m} / \mathrm{z}=183[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 6-\{[(ethoxycarbonyl)carbamothioyl]amino\}-5-methoxynicotinate (111).

Ethoxycarbonyl isothiocyanate ($296 \mu \mathrm{~L}, 2.62 \mathrm{mmol}, 1.5$ equiv.) was added under argon atmosphere at room temperature to a solution of methyl 6-amino-5-methoxynicotinate (110) ($335 \mathrm{mg}, 1.75 \mathrm{mmol}$) in 1,4 -dioxane (6 mL). The reaction mixture was stirred at room temperature overnight. The formed precipitate was filtered and washed with little ethyl acetate. The combined filtrates were concentrated
under reduced pressure and dried in vacuo to give 111. Yield: 381 mg (70\%). LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.84 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=314[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 2-amino-8-methoxy[1,2,4]triazolo[1,5-a]pyridine-6-carboxylate (112).

112
Hydroxylamine hydrochloride ($456 \mathrm{mg}, 6.56 \mathrm{mmol}, 5.4$ equiv.) was added at room temperature to a mixture of methyl 6 - $\{[($ ethoxycarbonyl)carbamothioyl]amino\}-5-methoxynicotinate (111) (381 mg , 1.22 mmol) and N, N-diisopropylethylamine ($686 \mu \mathrm{~L}, 3.94 \mathrm{mmol}, 3.2$ equiv.) in methanol / ethanol ($1: 1$, 24 mL). The reaction mixture was stirred at room temperature for 2 h and at $60^{\circ} \mathrm{C}$ for 1.5 h . The formed precipitate was filtered, washed with methanol and dried in vacuo to give 112. Yield: $215 \mathrm{mg}(80 \%)$. LC-MS (method 7 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.53 ; \mathrm{MS}(E S I+): \mathrm{m} / \mathrm{z}=223[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.69(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$.

Ethyl 2-[(3-chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridine-6-carboxylate (113).

3-Chlorbenzaldehyde ($61 \mu \mathrm{~L}, 0.54 \mathrm{mmol}, 1.2$ equiv.) was added under argon atmosphere at room temperature to a solution of methyl 2 -amino-8-methoxy[1,2,4]triazolo[1,5-a]pyridine-6-carboxylate (112) ($100 \mathrm{mg}, 0.45 \mathrm{mmol}$) in N, N-dimethylformamide (2 mL). The reaction mixture was stirred under reflux for 2 h . After cooling to room temperature, the reaction mixture was mixed with ethanol (20 mL), heated to $50^{\circ} \mathrm{C}$, mixed cautiously with sodium borohydride ($31 \mathrm{mg}, 0.81 \mathrm{mmol}, 1.8$ equiv.) and stirred under reflux for 30 min . After cooling to RT, water was added and the formed precipitate was filtered and dried in vacuo to give 113. Yield: $56 \mathrm{mg}(35 \%)$. LC-MS (method 9a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.09$; MS (ESI +): $\mathrm{m} / \mathrm{z}=361[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) : $\delta[\mathrm{ppm}]=8.73(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42-7.26 (m, 4H), $7.23(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 14.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}$, $3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

2-[(3-Chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridine-6-carboxylic acid (114).

Lithium hydroxide ($11 \mathrm{mg}, 0.47 \mathrm{mmol}, 3.0$ equiv.) was added at room temperature to a mixture of ethyl 2-[(3-chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridine-6-carboxylate (113) (56 mg, $0.16 \mathrm{mmol})$ in a mixture of tetrahydrofuran / water ($3: 1,2.0 \mathrm{~mL}$). The reaction mixture was stirred at room temperature for 3 h , mixed with aqueous hydrochloric acid solution (1 N), concentrated under reduced pressure and dried in vacuo to give 114. Yield: 64 mg (quantitative, 91% purity). LC-MS $($ method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.80 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=333[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.67(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 2 H), 3.96 ($\mathrm{s}, 3 \mathrm{H}$).

\{2-[(3-Chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridin-6-yl\}[4-hydroxy-3-methylpiperidin-1-yl]methanone (32).

HATU ($80 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($67 \mu \mathrm{~L}, 0.38 \mathrm{mmol}, 2.2$ equiv.) were added to a solution of 2-[(3-chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridine-6carboxylic acid (114) ($64 \mathrm{mg}, 91 \%$ purity, 0.17 mmol) in N, N-dimethylformamide (1.8 mL) and stirred at room temperature for 20 min before rac-trans-3-methylpiperidin-4-ol hydrochloride (32 mg , $0.21 \mathrm{mmol}, 1.2$ equiv.) was added. The reaction mixture was stirred at room temperature overnight and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give $\mathbf{3 2}$ as mixture of rac-trans stereoisomers. Yield: 35 mg (47%). LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.77$; MS $(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=430[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta[\mathrm{ppm}]=8.31(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 3.24-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.11-2.94(\mathrm{~m}, 1 \mathrm{H}), 3.11-2.92(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.28(\mathrm{~m}, 2 \mathrm{H})$, $1.01-0.75(\mathrm{~m}, 3 \mathrm{H}), 3$ protons are concealed.

\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[4-hydroxy-2,5-dimethylpiperidin-

 1-yl]methanone as mixture of 6 stereoisomers (33a) and as single stereoisomer of unknown absolute stereochemistry (33b).
a) $\mathrm{NH}_{4} \mathrm{Cl}$, 2-propanol, RT to RF; b) NaOMe , toluene, RF; c) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, \mathrm{RT}$; d) 78, HATU, DIEA, DMF, RT; e) diastereomer separation.

Ethyl 3-\{[3-ethoxy-2-methyl-3-oxopropyl]amino\}butanoate (115).

Ethyl 2-methylprop-2-enoate ($2.66 \mathrm{~mL}, 21.30 \mathrm{mmol}, 1.065$ equiv.) and ammonium chloride (64 mg , $1.20 \mathrm{mmol}, 0.06$ equiv.) were added at room temperature to a solution of ethyl 3-aminobutanoate $(2.94 \mathrm{~mL}, 20.00 \mathrm{mmol})$ in 2-propanol $(1.1 \mathrm{~mL})$. The reaction mixture was refluxed for 5 h and evaporated under reduced pressure and in high vacuum to remove unreacted ethyl 2-methylprop-2enoate to give $115(3.67 \mathrm{~g})$ as raw material which was used without further purification.

2,5-Dimethylpiperidin-4-one (116).

Sodium methanolate solution (25% in methanol, $3.5 \mathrm{~mL}, 0.14 \mathrm{mmol}$) was added dropwise under argon atmosphere to a refluxing mixture of ethyl 3-\{[3-ethoxy-2-methyl-3-oxopropyl]amino \}butanoate (115) (3.66 g, raw material) in toluene (10 mL). Methanol was removed via distillation (head temperature up to $90^{\circ} \mathrm{C}$), and the residual mixture was stirred for further 1 h under reflux. After cooling to room temperature, concentrated hydrochloric acid solution (5 mL) was added, and the reaction mixture stirred again for further 3 h under reflux. After cooling to room temperature, the mixture was neutralized by
addition of solid sodium hydrogen carbonate, set to pH 11 by addition of aqueous sodium hydroxide solution and stirred for 1 h at room temperature. After dilution with dichloromethane, filtration and phase separation, the organic phase was dried over sodium sulfate, filtered, evaporated under reduced pressure and dried in vacuo to give 116 as raw material which was used without further purification.

2,5-Dimethylpiperidin-4-ol (117).

Sodium borohydride ($158 \mathrm{mg}, 4.16 \mathrm{mmol}$) was added in portions to a mixture of 2,5-dimethylpiperidin-4-one (116) (662 mg , raw material) in ethanol $(12 \mathrm{~mL}$). The reaction mixture was stirred at room temperature for 1 h before acetone (5 mL) was added, then stirred for 10 min , evaporated under reduced pressure und dried in vacuo to give 117 as raw material which was used without further purification.
\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[4-hydroxy-2,5-dimethylpiperidin-$1-\mathrm{yl}]$ methanone as mixture of 6 stereoisomers (33a) and as single stereoisomer of unknown absolute stereochemistry (33b).

HATU ($336 \mathrm{mg}, 0.88 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($321 \mu \mathrm{~L}, 1.84 \mathrm{mmol}$, 2.5 equiv.) were added to a solution of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5carboxylic acid (78) ($245 \mathrm{mg}, 0.74 \mathrm{mmol}$) in N, N-dimethylformamide (10 mL) and stirred at room temperature for 30 min before 2,5-dimethylpiperidin-4-ol (117) (571 mg , raw material with proposed 50% purity, $2.21 \mathrm{mmol}, 3.0$ equiv.) was added. The reaction mixture was stirred for 1 h , then additional 2,5-dimethylpiperidin-4-ol ($285 \mathrm{mg}, 50 \%$ purity, $1.10 \mathrm{mmol}, 1.5$ equiv.) was added in portions until the conversion was complete. The reaction mixture was evaporated under reduced pressure and purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 33a in a mixture of three racemic diastereomers. Yield: $198 \mathrm{mg}(58 \%)$. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.85 / 0.87 / 0.90 ; \mathrm{MS}$ $(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=444[\mathrm{M}+\mathrm{H}]^{+}$.

This mixture was submitted for diastereomer separation (preparative method: HPLC: column: Sunfire C-18; eluent: 5% solution of 1% TFA / 50% water / 45% acetonitrile) and each racemic diastereomer 1-3 was then submitted to enantiomer separation (preparative method: HPLC: column: Daicel Chiralpak AD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$; diastereomer 1 and 2: eluent: 65% iso-hexane / 35% ethanol; diastereomer 3: 60% iso-hexane / 40% ethanol; temperature: $35{ }^{\circ} \mathrm{C}$; flow rate: $15 \mathrm{~mL} / \mathrm{min}$; UV
detection: 220 nm ; analytical method: HPLC: column: Daicel Chiralpak AD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} x$ 4.6 mm ; eluent: 65% iso-hexane / 35% ethanol; temperature: $30^{\circ} \mathrm{C}$; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; UV detection: 220 nm) to give six enantiomers: diastereomer 1: $12 \mathrm{mg}(6 \%), \mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}(\mathrm{min})=8.68,>99 \%$ ee; ent-diastereomer 1: $12 \mathrm{mg}(6 \%)$, HPLC: $\mathfrak{t}_{\mathrm{R}}(\mathrm{min})=13.21,>99 \%$ ee; diastereomer $2: 31 \mathrm{mg}(16 \%)$, HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=7.52,>99 \%$ ee; ent-diastereomer 2: $47 \mathrm{mg}(24 \%)$, HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=10.16,>99 \%$ ee; diastereomer 3: $10 \mathrm{mg}(3 \%)$, HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=8.57,>99 \%$ ee; ent-diastereomer 3, which corresponds to the desired stereoisomer 33b: $9 \mathrm{mg}(5 \%)$, $\mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}(\mathrm{min})=9.73,>95 \%$ ee; ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{DMSO}_{\mathrm{d}}$) : $\delta[\mathrm{ppm}]=8.63(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}$, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.99-2.86(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.62$ $(\mathrm{m}, 3 \mathrm{H}), 1.48-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.75(\mathrm{~m}, 4 \mathrm{H})$.

\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[2-ethyl-4-hydroxy-5-

 methylpiperidin-1-yl]methanone (34) as racemic diastereomer.
a) i) $\mathrm{KBH}(\mathrm{Oi} \text { - } \mathrm{Pr})_{3}, 2$-propanol, $-45^{\circ} \mathrm{C}$, ii) phenyl chloroformate, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{RT}$; b) $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{RT}$; c) $\mathrm{Boc}_{2} \mathrm{O}$, TEA, DMAP, DCM, RT; d) i) LDA, THF, $-78^{\circ} \mathrm{C}$, ii) MeI, DMPU, $-78{ }^{\circ} \mathrm{C}$ to RT; e) i) EtMgBr , $\mathrm{CuI}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$, ii) 121, THF, $-78^{\circ} \mathrm{C}$ to RT; f) TFA, DCM, RT; g) 78, HATU, TEA, DMAP, DMF, RT; h) i) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, \mathrm{RT}$, ii) diastereomer separation.

Phenyl 4-oxo-3,4-dihydropyridine-1(2H)-carboxylate (118).

Potassium triisopropoxyborohydride solution (1 M in tetrahydrofuran, $784.4 \mathrm{~mL}, 784.4 \mathrm{mmol}$, 2.0 equiv.) was added dropwise at $-45^{\circ} \mathrm{C}$ to a solution of 4-methoxypyridine ($42.8 \mathrm{~g}, 392.2 \mathrm{mmol}$) in

2-propanol (500 mL), followed by very slow addition of a solution of phenyl chloroformate (51.7 mL , 411.8 mmol , 1.05 equiv.) in diethyl ether (400 mL). The reaction mixture was stirred at room temperature for 2 h and added dropwise to aqueous hydrochloric acid solution (10% in water, 1 L). The resulting mixture was extracted with ethyl acetate. The organic phase was dried and concentrated under reduced pressure. The residue was suspended in diethyl ether and the solid filtered and dried in vacuo to give 118. Yield: $60.0 \mathrm{~g}(70 \%)$. LC-MS (method 7 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.79 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=218[\mathrm{M}+\mathrm{H}]^{+}$.

2,3-Dihydropyridin-4(1H)-one (119).

119

A solution of phenyl 4-oxo-3,4-dihydropyridine-1 $2 H$)-carboxylate ($\mathbf{1 1 8}$) ($30.0 \mathrm{~g}, 138.1 \mathrm{mmol}$) in methanol (270 mL) was added at room temperature dropwise to a solution of sodium methylate (7.85 g , $138.1 \mathrm{mmol}, 1.0$ equiv.) in methanol $(30 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 2 h , adjusted to pH 1 by addition of concentrated hydrochloric acid solution and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, eluent: dichloromethane / methanol $10: 1$ to $3: 1$ to $0: 1$) to give 119. Yield: $10.7 \mathrm{~g}(79 \%)$. GC-MS (method 1 b): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=4.09 ; \mathrm{MS}(\mathrm{EI}+): \mathrm{m} / \mathrm{z}=97[\mathrm{M}]^{+}$.

tert-Butyl 4-oxo-3,4-dihydropyridine-1(2H)-carboxylate (120).

120

Triethylamine ($36.6 \mathrm{~mL}, 262.5 \mathrm{mmol}, 1.3$ equiv.), 4-dimethylaminopyridine ($2.47 \mathrm{~g}, 20.19 \mathrm{mmol}$, 0.1 equiv.) and di-tert-butyldicarbonate ($57.3 \mathrm{~g}, 262.5 \mathrm{mmol}, 1.3$ equiv.) were added at room temperature to a mixture of 2,3-dihydropyridin-4(1H)-one (119) (19.6 g, 201.9 mmol) in dichloromethane $(200 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight, mixed with additional di-tert-butyldicarbonate ($22.0 \mathrm{~g}, 101.0 \mathrm{mmol}, 0.5$ equiv.) and triethylamine (14.1 mL , $101.0 \mathrm{mmol}, 0.5$ equiv.) and stirred at room temperature overnight. The reaction mixture was poured onto aqueous hydrochloric acid solution $(0.5 \mathrm{~N})$. After phase separation, the organic phase was washed with aqueous hydrochloric acid solution $(0.5 \mathrm{~N})$ and brine, dried, filtered and evaporated in vacuo. The residue was purified by column chromatography (silica gel, eluent: cyclohexane / ethyl acetate $3: 1$ to 1:1) to give 120. Yield: $3.54 \mathrm{~g}(7 \%, 80 \%$ purity). GC-MS (method 2 b$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.63$; MS (ESI +): $\mathrm{m} / \mathrm{z}=198[\mathrm{M}+\mathrm{H}]^{+}$.

tert-Butyl 3-methyl-4-oxo-3,4-dihydropyridine-1(2H)-carboxylate (121).

121

A solution of tert-butyl 4-oxo-3,4-dihydropyridine-1 $(2 H)$-carboxylate (120) (500 $\mathbf{~ m g}, 2.54 \mathrm{mmol})$ in tetrahydrofuran (5 mL) was added under argon atmosphere at $-78^{\circ} \mathrm{C}$ dropwise to a solution of lithium diisopropylamide solution (1 M in tetrahydrofuran, $3.80 \mathrm{~mL}, 3.80 \mathrm{mmol}, 1.5$ equiv.) in tetrahydrofuran $(5 \mathrm{~mL})$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min before iodomethane $(0.28 \mathrm{~mL}, 4.56 \mathrm{mmol}$, 1.8 equiv.) and N, N^{\prime}-dimethylpropyleneurea ($0.46 \mathrm{~mL}, 3.80 \mathrm{mmol}, 1.5$ equiv.) were added at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature, stirred overnight, poured onto water and extracted several times dichloromethane. The combined organic phases were washed with brine, dried over sodium sulfate, filtered and concentrated in vacuo. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 121. Yield: 100 mg (19\%). LC-MS $(\operatorname{method} 9 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.92 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=212[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ $[\mathrm{ppm}]=7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=5.9 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{t}$, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 1 \mathrm{H}$, partially concealed), $1.49(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
tert-Butyl 2-ethyl-5-methyl-4-oxopiperidine-1-carboxylate (122).

122

Ethylmagnesium bromide solution (3 M in dichloromethane, $2.13 \mathrm{~mL}, 6.39 \mathrm{mmol}, 3.0$ equiv.) was added under argon atmosphere at $-78^{\circ} \mathrm{C}$ dropwise to a mixture of copper(I) iodide ($580 \mathrm{mg}, 3.04 \mathrm{mmol}$, 1.4 equiv.) in tetrahydrofuran (10 mL). The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$, cooled again to $-78{ }^{\circ} \mathrm{C}$ and mixed with a solution of tert-butyl 3-methyl-4-oxo-3,4-dihydropyridine-1 2 H)carboxylate (121) ($600 \mathrm{mg}, 75 \%$ purity, 2.13 mmol) in tetrahydrofuran $(10 \mathrm{~mL})$. The reaction mixture was stirred 1 h at $-78^{\circ} \mathrm{C}$ and 20 min after removal of the cooling bath, quenched with saturated aqueous ammonium chloride solution $(10 \mathrm{~mL})$ and extracted several times with diethyl ether. The combined organic phases were washed with brine, dried, filtered, evaporated under reduced pressure and dried in vacuo to give 122 which was used in the next step without further purification. Yield: 690 mg (quantitative, 88% purity). GC-MS $(\operatorname{method} 2 b): \mathrm{t}_{\mathrm{R}}(\min)=5.05 / 5.18 ; \mathrm{MS}(\mathrm{EI}+): \mathrm{m} / \mathrm{z}=142[\mathrm{M}+\mathrm{H}-$ Boc $]^{+}$.

2-Ethyl-5-methylpiperidin-4-one trifluoroacetate (123).

123

Trifluoroacetic acid ($1.15 \mathrm{~mL}, 14.88 \mathrm{mmol}, 6.0$ equiv.) was added to a solution of tert-butyl 2-ethyl-5-methyl-4-oxopiperidine-1-carboxylate (122) ($680 \mathrm{mg}, 88 \%$ purity, 2.48 mmol) in dichloromethane $(10 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight, evaporated in vacuo, mixed with some water and lyophilized to give $\mathbf{1 2 3}$ which was used in the next step without further purification. Yield: 768 mg (quantitative).

1-(\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}carbonyl)-2-ethyl-5-methylpiperidin-4-one (124).

A mixture of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (78) (501 mg, 1.50 mmol), HATU ($629 \mathrm{mg}, 1.66 \mathrm{mmol}, 1.1$ equiv.), triethylamine ($419 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 2.0$ equiv.) and 4-dimethylaminopyridine ($202 \mathrm{mg}, 1.66 \mathrm{mmol}, 1.1$ equiv.) in N, N-dimethylformamide (15 mL) was stirred at room temperature for 10 min before 2-ethyl-5-methylpiperidin-4-one (123) (768 mg , $3.00 \mathrm{mmol}, 2.0$ equiv.) was added. The reaction mixture was stirred at room temperature overnight and poured onto water (250 mL). The forming precipitate was filtered. After phase separation, the organic phase was evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 124. Yield: 122 mg (17\%). LC-MS (method 3a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.08 / 5.16 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=456[\mathrm{M}+\mathrm{H}]^{+}$.
\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[2-ethyl-4-hydroxy-5-methylpiperidin-1-yl]methanone (34) as racemic diastereomer.

Sodium borohydride ($27 \mathrm{mg}, 0.73 \mathrm{mmol}, 3.0$ equiv.) was added in portions under argon atmosphere at room temperature to a mixture of 1-(\{2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5yl \} carbonyl)-2-ethyl-5-methylpiperidin-4-one (124) ($115 \mathrm{mg}, 0.24 \mathrm{mmol}$) in ethanol (3.0 mL). The
reaction mixture was stirred at room temperature for 1.5 h , mixed with some water and filtered. The filtrate was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 34 in a mixture of racemic diastereomers. Yield: 91 mg ($67 \%, 80 \%$ purity). LC-MS (method 3 a): t_{R} $(\min)=4.84 / 4.90 / 4.92 / 4.97 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=458[\mathrm{M}+\mathrm{H}]^{+}$.

This mixture (89 mg) was submitted for diastereomer separation (preparative method: HPLC: column: Kromasil $100 \mathrm{C} 185 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$; eluent: A + B: 50% water / 50% acetonitrile, C: 2% trifluoroacetic acid, gradient of $\mathrm{A}+\mathrm{B}$ while C was constantly dosed; temperature: $24{ }^{\circ} \mathrm{C}$; flow $\mathrm{A}+\mathrm{B}$: $23.75 \mathrm{~mL} / \mathrm{min}$, flow $\mathrm{C}: 1.25 \mathrm{~mL} / \mathrm{min}$; UV detection: 210 nm) to give three racemic diastereomers: racemic diastereomer 1: $16 \mathrm{mg}(14 \%, 98 \%$ purity $)$, LC-MS (method 7 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.95 ; \mathrm{MS}(\mathrm{ESI}+)$: $\mathrm{m} / \mathrm{z}=458[\mathrm{M}+\mathrm{H}]^{+}$; racemic diastereomer 2, which corresponds to the desired stereoisomer 34: 12 mg $(11 \%,>99 \%$ purity $)$, LC-MS $(\operatorname{method} 7 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.97 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=458[\mathrm{M}+\mathrm{H}]^{+} ;$racemic diastereomer 3: $18 \mathrm{mg}(16 \%, 97 \%$ purity $)$, LC-MS $(\operatorname{method} 7 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\min)=0.99 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=458$ $[\mathrm{M}+\mathrm{H}]^{+}$.
\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[(2-cyclopropyl-4-hydroxy-5-methylpiperidin-1-yl]methanone (35) as mixture of two racemic diastereomers.

a) i) cyclopropylmagnesium bromide, CuI , THF, $-78^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$, ii) $\mathbf{1 2 1}$, $\mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to RT ; b) TFA, DCM, RT; c) 78, HATU, TEA, DMF, RT; d) i) NaBH_{4}, EtOH, RT, ii) diastereomer separation.
tert-Butyl 2-cyclopropyl-5-methyl-4-oxopiperidine-1-carboxylate (125).

Cyclopropylmagnesium bromide solution (0.5 M in tetrahydrofuran, $12.78 \mathrm{~mL}, 6.39 \mathrm{mmol}, 3.0$ equiv.) was added under argon atmosphere at $-78^{\circ} \mathrm{C}$ dropwise to a mixture of copper(I) iodide (580 mg , $3.04 \mathrm{mmol}, 1.4$ equiv.) in tetrahydrofuran (5 mL). The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$, cooled again to $-78^{\circ} \mathrm{C}$ and mixed with a solution of tert-butyl 3-methyl-4-oxo-3,4-dihydropyridine-
$1(2 \mathrm{H})$-carboxylate ($\mathbf{1 2 1}$) ($600 \mathrm{mg}, 75 \%$ purity, 2.13 mmol) in tetrahydrofuran $(5 \mathrm{~mL})$. The reaction mixture was stirred 1 h at $-78^{\circ} \mathrm{C}$ and 20 min after removal of the cooling bath, quenched with saturated aqueous ammonium chloride solution (10 mL) and extracted several times with diethyl ether. The combined organic phases were washed with brine, dried, filtered, evaporated under reduced pressure and dried in vacuo to give $\mathbf{1 2 5}$ which was used in the next step without further purification. Yield: $750 \mathrm{mg}\left(82 \%, 59 \%\right.$ purity). LC-MS (method 9a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.07 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=154[\mathrm{M}+\mathrm{H}-\mathrm{Boc}]^{+}$.

2-Cyclopropyl-5-methylpiperidin-4-one trifuoroacetate (126).

Trifluoroacetic acid ($1.06 \mathrm{~mL}, 13.79 \mathrm{mmol}, 8.0$ equiv.) was added to a solution of tert-butyl 2 -cyclopropyl-5-methyl-4-oxopiperidine-1-carboxylate (125) ($740 \mathrm{mg}, 59 \%$ purity, 1.72 mmol) in dichloromethane (10 mL). The reaction mixture was stirred at room temperature overnight, evaporated in vacuo, mixed with some water and lyophilized to give $\mathbf{1 2 6}$ which was used in the next step without further purification. Yield: 874 mg (quantitative).

1-(\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}carbonyl)-2-cyclopropyl-5-methylpiperidin-4-one (127).

A mixture of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (78) (544 mg, 1.64 mmol), HATU ($684 \mathrm{mg}, 1.80 \mathrm{mmol}, 1.1$ equiv.), triethylamine ($456 \mu \mathrm{~L}, 3.27 \mathrm{mmol}, 2.0$ equiv.) and 4-dimethylaminopyridine ($220 \mathrm{mg}, 1.80 \mathrm{mmol}$, 1.1 equiv.) in N, N-dimethylformamide (15 mL) was stirred at room temperature for 10 min before 2-cyclopropyl-5-methylpiperidin-4-one (126) (874 mg, $3.27 \mathrm{mmol}, 2.0$ equiv.) was added. The reaction mixture was stirred at room temperature overnight and poured onto water $(250 \mathrm{~mL})$. The forming precipitate was filtered. After phase separation, the organic phase was evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 127. Yield: 110 mg ($10 \%, 67 \%$ purity). LC-MS $(\operatorname{method} 7 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.13 / 5.20 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=468[\mathrm{M}+\mathrm{H}]^{+}$.

\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}(2-cyclopropyl-4-hydroxy-5-

 methylpiperidin-1-yl)methanone (35) as mixture of two racemic diastereomers.

Sodium borohydride ($18 \mathrm{mg}, 0.47 \mathrm{mmol}, 3.0$ equiv.) was added in portions under argon atmosphere at room temperature to a mixture of 1-(\{2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5yl carbonyl)-2-cyclopropyl-5-methylpiperidin-4-one (127) ($110 \mathrm{mg}, 0.16 \mathrm{mmol}$) in ethanol (2.0 mL). The reaction mixture was stirred at room temperature for 1.5 h , mixed with some water and filtered. The filtrate was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 35 in a mixture of racemic diastereomers. Yield: 70 mg ($64 \%, 67 \%$ purity). LC-MS (method 3a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=4.89 / 4.93 / 4.97 / 5.01 ; \mathrm{MS}\left(\right.$ ESI +): $\mathrm{m} / \mathrm{z}=470[\mathrm{M}+\mathrm{H}]^{+}$.

This mixture (70 mg) was submitted for diastereomer separation (preparative method: HPLC: column: Kromasil $100 \mathrm{C} 1810 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$; eluent: A + B: 50% water / 50% acetonitrile, C: 2% trifluoroacetic acid, gradient of A + B while C was constantly dosed; temperature: $24^{\circ} \mathrm{C}$; flow A +B : $23.75 \mathrm{~mL} / \mathrm{min}$, flow C: $1.25 \mathrm{~mL} / \mathrm{min}$; UV detection: 210 nm) to give four racemic diastereomers: racemic diastereomer 1: $10 \mathrm{mg}(13 \%, 92 \%$ purity $)$, LC-MS (method 3a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=4.88 ;$ MS (ESI +): $\mathrm{m} / \mathrm{z}=470[\mathrm{M}+\mathrm{H}]^{+}$; racemic diastereomer $2+3$, which corresponds to the desired stereoisomer mixture 35: $16 \mathrm{mg}(21 \%, 98 \%$ purity $)$, LC-MS (method 3a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=4.93 / 4.96$; MS (ESI +): $\mathrm{m} / \mathrm{z}=470$ $[\mathrm{M}+\mathrm{H}]^{+}$; racemic diastereomer 3: $19 \mathrm{mg}(25 \%,>99 \%$ purity $)$, LC-MS (method 3a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.00 ; \mathrm{MS}$ (ESI+): $\mathrm{m} / \mathrm{z}=470[\mathrm{M}+\mathrm{H}]^{+}$.

\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[4-hydroxy-2-(2-hydroxyethyl)-5-

 methylpiperidin-1-yl]methanone (36) as racemic diastereomer.

a) i) vinylmagnesium bromide, CuI , THF, $-78^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$, ii) $\mathbf{1 2 1}$, THF, $-78{ }^{\circ} \mathrm{C}$ to RT ; b) i) $9-\mathrm{BBN}$, THF, RT, ii) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{RT}$; c) i) 78, HATU, TEA, DMF, RT, ii) diastereomer separation.

tert-Butyl 5-methyl-4-oxo-2-vinylpiperidine-1-carboxylate (128).

128

Vinylmagnesium bromide solution (1.0 M in tetrahydrofuran, $16.62 \mathrm{~mL}, 16.62 \mathrm{mmol}, 3.0$ equiv.) was added under argon atmosphere at $-78^{\circ} \mathrm{C}$ dropwise to a mixture of copper(I) iodide ($1.51 \mathrm{~g}, 7.91 \mathrm{mmol}$, 1.4 equiv.) in tetrahydrofuran (25 mL). The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$, cooled again to $-78^{\circ} \mathrm{C}$ and mixed with a solution of tert-butyl 3-methyl-4-oxo-3,4-dihydropyridine-1 $(2 \mathrm{H})$ carboxylate (121) (1.33 g, 5.54 mmol$)$ in tetrahydrofuran $(25 \mathrm{~mL})$. The reaction mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ and for 20 min after removal of the cooling bath, quenched with saturated aqueous ammonium chloride solution (20 mL) and extracted several times with diethyl ether. The combined organic phases were washed with brine, dried, filtered, evaporated under reduced pressure and dried in vacuo to give 128 which was used in the next step without further purification. Yield: $1.45 \mathrm{~g}(93 \%, 85 \%$ purity). GC-MS $(\operatorname{method} 2 b): \mathrm{t}_{\mathrm{R}}(\min)=4.90 / 5.04 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=140[\mathrm{M}+\mathrm{H}-\mathrm{Boc}]^{+}$.

2-(2-Hydroxyethyl)-5-methylpiperidin-4-ol hydrochloride (129).

9-Borabicyclo(3.3.1)nonane solution (0.5 M in tetrahydrofuran, $22.66 \mathrm{~mL}, 11.33 \mathrm{mmol}, 2.2$ equiv.) was added under water cooling to a mixture of tert-butyl 5-methyl-4-oxo-2-vinylpiperidine-1-carboxylate (128) ($1.45 \mathrm{~g}, 85 \%$ purity, 5.15 mmol$)$ in tetrahydrofuran $(21 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 1.5 h , mixed with aqueous sodium hydroxide solution ($2 \mathrm{~N}, 12.86 \mathrm{~mL}$, $25.75 \mathrm{mmol}, 5.0$ equiv.) and stirred for 10 min , before hydrogen peroxide solution (35% in water, $4.51 \mathrm{~mL}, 51.50 \mathrm{mmol}, 10.0$ equiv.) was added dropwise (caution! strongly exothermic) under water cooling. The reaction mixture was stirred at room temperature for 30 min , mixed with ethyl acetate and saturated with sodium chloride. After phase separation, the aqueous phase was extracted several times with ethyl acetate. The combined organic phases were washed with aqueous sodium hydrogen sulfite solution (39% in water, $11.20 \mathrm{~mL}, 56.65 \mathrm{mmol}, 11.0$ equiv.) and brine, dried, filtered and evaporated under reduced pressure. The residue was dissolved in aqueous hydrogen chloride solution (100 mL) and evaporated in vacuo to give $\mathbf{1 2 9}$ which was used in the next step without further purification. Yield: 2.35 g .
\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[4-hydroxy-2-(2-hydroxyethyl)-5-methylpiperidin-1-yl]methanone (36) as racemic diastereomer.

A mixture of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (78) (2.66 g, 8.01 mmol), 2-(2-hydroxyethyl)-5-methylpiperidin-4-ol hydrochloride (129) ($2.35 \mathrm{~g}, 12.01 \mathrm{mmol}$, 1.5 equiv.), HATU ($4.57 \mathrm{~g}, 12.01 \mathrm{mmol}, 1.5$ equiv.), triethylamine ($2.23 \mathrm{~mL}, 16.01 \mathrm{mmol}, 2.0$ equiv.) and 4-dimethylaminopyridine ($978 \mathrm{mg}, 8.01 \mathrm{mmol}, 1.0$ equiv.) in N, N-dimethylformamide (60 mL) was stirred at room temperature overnight and poured onto water. After phase separation, the aqueous phase was extracted several times with ethyl acetate. The combined organic phases were evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give $\mathbf{3 6}$ in a mixture of racemic diastereomers. Yield: 535 mg ($13 \%, 89 \%$ purity). LC-MS (method 3a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=4.47 / 4.58 / 4.69 / 4.74 ; \mathrm{MS}(E S I+): \mathrm{m} / \mathrm{z}=474[\mathrm{M}+\mathrm{H}]^{+}$.

This mixture (535 mg) was submitted for diastereomer separation (preparative method: HPLC: column: Chiralcel OZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$; eluent: 50% iso-hexane / 50% ethanol; temperature: $30^{\circ} \mathrm{C}$; flow rate: $15 \mathrm{~mL} / \mathrm{min}$; UV detection: 220 nm) to give four racemic diastereomers of which after testing the most potent racemic diastereomer was repurified (preparative method: HPLC: column: Chiralpak AZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$; eluent: 50% iso-hexane / 50% ethanol; temperature: $40^{\circ} \mathrm{C}$; flow rate: $15 \mathrm{~mL} / \mathrm{min}$; UV detection: 220 nm ; analytical method: HPLC: column: Chiralpak AZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm}$ x 4.6 mm ; eluent: 50% iso-hexane / 50% ethanol plus 0.2% trifluoroacetic acid and 1% water; temperature: $40^{\circ} \mathrm{C}$; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; UV detection: 220 nm) to give $\mathbf{3 6}$ as racemic diastereomer. Yield: $10 \mathrm{mg}(94 \%$ purity $)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=8.83 ;$ LC-MS $(\operatorname{method} 3 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=4.57 ; \mathrm{MS}(\mathrm{ESI}+)$: $\mathrm{m} / \mathrm{z}=474[\mathrm{M}+\mathrm{H}]^{+} ;$LC-MS $(\operatorname{method} 9 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.81 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=474[\mathrm{M}+\mathrm{H}]^{+}$.

\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[2-(2-hydroxyethyl)-5-

methylpiperidin-1-yl]methanone (37) as single stereoisomer.

a) i) n - BuLi , $(i-\operatorname{Pr})_{2} \mathrm{NH}, \mathrm{TMEDA}$, THF, $-40^{\circ} \mathrm{C}$, ii) 2,5-dimethylpyridine, $-40^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}$, iii) ethyl chloroformate, $-78^{\circ} \mathrm{C}$ to RT; b) H_{2} (1 bar), $\mathrm{PtO}_{2} \times \mathrm{H}_{2} \mathrm{O}, \mathrm{AcOH}, \mathrm{RT}$; c) i) $\mathrm{LiBH}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, ii) $\mathrm{LiAlH}_{4}, 0^{\circ} \mathrm{C}$ to RT ; d) i) 78, HATU, DMAP, DMF, RT, ii) diastereomer and enantiomer separation.

Ethyl (5-methylpyridin-2-yl)acetate (130).

n-Butyllithium solution (2.5 M in hexane, $82.12 \mathrm{~mL}, 205.31 \mathrm{mmol}, 2.2$ equiv.) was added dropwise under argon atmosphere at $-40^{\circ} \mathrm{C}$ to a solution of diisopropyl amine ($28.78 \mathrm{~mL}, 205.31 \mathrm{mmol}$, 2.2 equiv.) and $N, N, N^{\prime}, N^{\prime}$-tetramethylethylendiamine ($10.00 \mathrm{~mL}, 66.26 \mathrm{mmol}, 0.7$ equiv.) in tetrahydrofuran $(90 \mathrm{~mL})$. The reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , mixed with 2,5dimethylpyridine $(10.00 \mathrm{~g}, 93.32 \mathrm{mmol})$, stirred at $0^{\circ} \mathrm{C}$ for 1 h , cooled to $-78^{\circ} \mathrm{C}$, before slowly at $-78^{\circ} \mathrm{C}$
ethyl chloroformate ($8.92 \mathrm{~mL}, 93.32 \mathrm{mmol}, 1.0$ equiv.) was added. The reaction mixture was stirred overnight while allowing to warm to room temperature, poured onto iced water and saturated with sodium chloride. After phase separation, the aqueous phase was extracted several times with ethyl acetate. The combined organic phases were washed with brine, dried, filtered and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, eluent: cyclohexane / ethyl acetate $3: 1$ to $2: 1)$ to give 130. Yield: $5.40 \mathrm{~g}(29 \%, 91 \%$ purity $)$. LC-MS (method 9 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 0.49; MS (ESI+): m/z = $180[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta[\mathrm{ppm}]=8.23(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{dd}, J=1.7 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

Ethyl (5-methylpiperidin-2-yl)acetate hydrochloride (131).

A solution of ethyl (5-methylpyridin-2-yl)acetate (130) (2.70 g, 14.76 mmol) in acetic acid (70 mL) was mixed under argon atmosphere at room temperature with platin(IV) oxide hydrate (54 mg), purged with hydrogen gas and stirred at room temperature for 5 days under hydrogen gas atmosphere (1 bar), mixed with palladium (10% on carbon, 236 mg) and stirred at room temperature for another 2 days under hydrogen gas atmosphere (1 bar). The reaction mixture was filtered through Celite ${ }^{\circledR}$ and concentrated under reduced pressure. The residue was dissolved in aqueous hydrogen chloride solution $(100 \mathrm{~mL})$, concentrated under reduced pressure and lyophilized to give $\mathbf{1 3 1}$ which was used in the next step without further purification. Yield: $3.06 \mathrm{~g}(73 \%, 78 \%$ purity $)$. GC-MS (method 1 b$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=3.59$ / 3.68; MS (ESI+): m/z = 156 [M-Et]. ${ }^{\text {. }}$

2-(5-Methylpiperidin-2-yl)ethanol (132).

Lithium borohydride ($557 \mathrm{mg}, 25.58 \mathrm{mmol}, 2.0$ equiv.) was added at $0^{\circ} \mathrm{C}$ to a solution of ethyl (5-methylpiperidin-2-yl)acetate (131) (3.00 g, 78\% purity, 12.79 mmol) in tetrahydrofuran (60 mL). The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 2 h , before lithium aluminum hydride solution $(1 \mathrm{M}$ in tetrahydrofuran, $12.79 \mathrm{~mL}, 12.79 \mathrm{mmol}, 1.0$ equiv.) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 30 min and quenched with brine. The aqueous phase was extracted several times with ethyl acetate. The combined organic phases were dried over sodium sulfate, filtered,
evaporated under reduced pressure and dried in vacuo to give 132. Yield: 1.03 g (29% yield, 51% purity). GC-MS (method 1b): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=2.81 / 2.89 ; \mathrm{MS}(\operatorname{method} 1 \mathrm{c}):(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=144[\mathrm{M}+\mathrm{H}]^{+}$.
\{2-[(3-Chlorobenzyl)amino]-7-methoxy-1,3-benzoxazol-5-yl\}[2-(2-hydroxyethyl)-5-methylpiperidin-1-yl]methanone (37a) in a mixture of racemic diastereomers and (37b) as single stereoisomer.

A mixture of 2-[(3-chlorobenzyl)amino]-7-methoxy-1,3-benzoxazole-5-carboxylic acid (78) (814 mg, 2.45 mmol), 2-(5-methylpiperidin-2-yl)ethanol (132) ($1.03 \mathrm{~g}, 51 \%$ purity, $3.67 \mathrm{mmol}, 1.5$ equiv.), HATU ($1.02 \mathrm{~g}, 2.69 \mathrm{mmol}, 1.1$ equiv.) and 4-dimethylaminopyridine ($329 \mathrm{mg}, 2.69 \mathrm{mmol}, 1.1$ equiv.) in N, N-dimethylformamide (20 mL) was stirred at room temperature for 2 days, filtered and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 37a in a mixture of racemic diastereomers. Yield: $440 \mathrm{mg}(37 \%$, 93% purity). LC-MS (method 9a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.05 / 5.10 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=458[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) : $\delta[\mathrm{ppm}]=8.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.47-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.83-$ $4.68 / 4.45-4.20 / 3.9-3.77(3 \mathrm{x} \mathrm{m}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.29-$ $3.16(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.41(\mathrm{~m}, 5 \mathrm{H}), 1.39-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.63(\mathrm{~m}, 3 \mathrm{H}), 2$ protons are concealed.

This mixture (440 mg) was submitted for diastereomer and enantiomer separation (preparative method: HPLC: column: Daicel Chiralpak AZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 30 \mathrm{~mm}$; eluent: 30% iso-hexane / 70% ethanol; temperature: $25^{\circ} \mathrm{C}$; flow rate: $30 \mathrm{~mL} / \mathrm{min}$; UV detection: 230 nm ; analytical method: HPLC: column: Daicel Chiralpak AZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$; eluent: 100% ethanol; temperature: $30^{\circ} \mathrm{C}$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; UV detection: 220 nm) to give four enantiomers: diastereomer 1: $15 \mathrm{mg}(1 \%, 92 \%$ purity $)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=6.80,>99 \%$ ee; LC-MS (method 3a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.08 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=458[\mathrm{M}+\mathrm{H}]^{+}$; diastereomer 2: $95 \mathrm{mg}\left(8 \%, 99 \%\right.$ purity). HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=7.59,98 \%$ ee; LC-MS (method 3 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})$ $=5.12 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=458[\mathrm{M}+\mathrm{H}]^{+}$; ent-diastereomer 2 , which corresponds to the desired stereoisomer 37b: $88 \mathrm{mg}(8 \%,>99 \%$ purity $)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=8.97,97 \%$ ee; LC-MS (method 3a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.13 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=458[\mathrm{M}+\mathrm{H}]^{+}$; ent-diastereomer $1: 21 \mathrm{mg}(1 \%, 70 \%$ purity $)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=9.84,40 \%$ de; LC-MS $($ method 3 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.09 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=458[\mathrm{M}+\mathrm{H}]^{+}$.

(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[2-(2-hydroxyethyl)-2-

 methylmorpholin-4-yl]methanone (38) as single stereoisomer.
a) i) LHMDS, THF, $-78{ }^{\circ} \mathrm{C}$, ii) allyl iodide, $0^{\circ} \mathrm{C}$ to RT ; b) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}$, THF/water, $0{ }^{\circ} \mathrm{C}$; c) NaBH_{4}, $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$; d) $\mathrm{BH}_{3} \times \mathrm{Me}_{2} \mathrm{~S}$, THF, RF; e) $\mathrm{H}_{2}(1 \mathrm{bar}), 10 \% \mathrm{Pd} / \mathrm{C}, 20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, $\mathrm{EtOH}, \mathrm{RT}$; f) i) 95, HATU, DIEA, DMF, RT, ii) diastereomer separation.

2-Allyl-4-benzyl-2-methylmorpholin-3-one (134) as racemate.

134

4-Benzyl-2-methylmorpholin-3-one (racemate 133) (20.0 g, 97.4 mmol) [lit: Perrone, R. et al., Synthesis 1976, 9, 598-600] was initially charged in tetrahydrofuran (500 mL), lithium hexamethyldisilazide solution in tetrahydrofuran ($1 \mathrm{M}, 136 \mathrm{~mL}, 136 \mathrm{mmol}, 1.40$ equiv.) was added under argon at $-78^{\circ} \mathrm{C}$ and the reaction mixture was then stirred for 15 min . Subsequently, at $-78{ }^{\circ} \mathrm{C}$, allyl iodide ($19.6 \mathrm{~g}, 10.7 \mathrm{~mL}, 117 \mathrm{mmol}, 1.20$ equiv.) was added, and the reaction mixture was warmed to room temperature and stirred overnight. The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$, lithium hexamethyldisilazide solution in tetrahydrofuran ($1 \mathrm{M}, 68 \mathrm{~mL}, 68.0 \mathrm{mmol}, 0.70$ equiv.) and allyl iodide ($9.80 \mathrm{~g}, 5.35 \mathrm{~mL}, 56.5 \mathrm{mmol}, 0.60$ equiv.) were added and the mixture was stirred at room temperature for 3 h . The reaction was terminated by addition of saturated aqueous ammonium chloride solution and then extracted with ethyl acetate. The organic phase was washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude product 134 was used without further purification in the next step. Yield: $25.8 \mathrm{~g}(73 \%, 67 \%$ purity). LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.97 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=246[\mathrm{M}+\mathrm{H}]^{+}$.

(4-Benzyl-2-methyl-3-oxomorpholin-2-yl)acetaldehyde (135) as racemate.

2-Allyl-4-benzyl-2-methylmorpholin-3-one (134) (racemate) ($6.40 \mathrm{~g}, 26.1 \mathrm{mmol}$) in tetrahydrofuran $(400 \mathrm{~mL})$ and water $(250 \mathrm{~mL})$ was treated with 2.5% solution of osmium tetroxide in tert-butanol ($6.55 \mathrm{~mL}, 2.41 \mathrm{mmol}, 0.09$ equiv.) and sodium periodate $(16.7 \mathrm{~g}, 78.3 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 20 h . The reaction solution was filtered through Celite ${ }^{\circledR}$ and the filter residue was washed with tetrahydrofuran. The reaction solution was taken up in ethyl acetate, washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude product 135 was used without further purification in the next step. Yield: 6.99 g of crude product. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}(\min)}=0.78 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=$ $248[\mathrm{M}+\mathrm{H}]^{+}$.

4-Benzyl-2-(2-hydroxyethyl)-2-methylmorpholin-3-one (136) as racemate.

(4-Benzyl-2-methyl-3-oxomorpholin-2-yl)acetaldehyde (135) (racemate) (6.99 g , about 28.3 mmol , crude product) in methanol (120 mL) was treated with sodium borohydride ($3.04 \mathrm{~g}, 80.4 \mathrm{mmol}$, 2.84 equiv.) at $0{ }^{\circ} \mathrm{C}$. The mixture was then warmed to room temperature and stirred for 30 min . Water was added to the reaction solution, most of the methanol was removed under reduced pressure and the residue was extracted with ethyl acetate. The organic phase was dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude product 136 was used without further purification in the next step. Yield: $5.80 \mathrm{~g}(82 \%$, crude product). LC-MS (method 2 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.67$; MS $(\mathrm{ESI}+)$: $\mathrm{m} / \mathrm{z}=250[\mathrm{M}+\mathrm{H}]^{+}$.

2-(4-Benzyl-2-methylmorpholin-2-yl)ethanol (137) as racemate.

4-Benzyl-2-(2-hydroxyethyl)-2-methylmorpholin-3-one (racemate 136) (5.80 g, about 23.3 mmol , crude product) in tetrahydrofuran $(230 \mathrm{~mL})$ was treated with borane-dimethyl sulfide complex solution
in tetrahydrofuran ($2 \mathrm{M}, 116 \mathrm{~mL}, 233 \mathrm{mmol}, 10$ equiv.) under argon and the reaction mixture was then stirred under reflux for 1 h . The mixture was subsequently cooled to room temperature, ethanol (90 mL) was added carefully and the mixture was then stirred under reflux for 1 h . The mixture was concentrated completely under reduced pressure, the residue was taken up in acetonitrile and purified directly by preparative HPLC (reversed phase, acetonitrile / water, isocratic) to give 137. Yield: $4.58 \mathrm{~g}(83 \%)$. LCMS (method 4a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=2.42$; MS (ESI+): $\mathrm{m} / \mathrm{z}=236[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=7.37-7.21(\mathrm{~m}, 5 \mathrm{H}), 4.27(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 4 \mathrm{H}), 2.29$ (br d, $J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{dt}, J=13.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{dt}, J=13.8,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H})$.

2-(2-Methylmorpholin-2-yl)ethanol (138) as racemate.

138

2-(4-Benzyl-2-methylmorpholin-2-yl)ethanol (racemate 137) ($4.65 \mathrm{~g}, 19.8 \mathrm{mmol}$) in ethanol (200 mL) was treated with 10% palladium on carbon $(465 \mathrm{mg})$ and 20% palladium hydroxide on carbon (235 mg) under argon, and the mixture was then stirred under an atmosphere of hydrogen at standard pressure for 36 h . The reaction solution was filtered through Celite ${ }^{\circledR}$ and the filter residue was washed with methanol. The filtrate was concentrated under reduced pressure and the product $\mathbf{1 3 8}$ was dried under high vacuum. Yield: $2.66 \mathrm{~g}(90 \%)$. MS (method 2 c$): \mathrm{m} / \mathrm{z}=146[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=$ $3.52-3.42(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{dd}, J=5.6,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{dt}, J=13.9,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.55(\mathrm{dt}, J=13.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 2$ protons concealed.
(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[2-(2-hydroxyethyl)-2-methylmorpholin-4-yl]methanone (38) as single stereoisomer.

HATU ($218 \mathrm{mg}, 0.574 \mathrm{mmol}, 1.2$ equiv.) and N, N-diisopropylethylamine ($292 \mu \mathrm{~L}, 1.68 \mathrm{mmol}$, 3.5 equiv.) were added to a solution of $2-\{[(1 R)-1-(3$-chlorophenyl)ethyl]amino $\}-7$-methoxy-1,3-benzoxazole-5-carboxylic acid (95) ($200 \mathrm{mg}, 0.479 \mathrm{mmol}$) in N, N-dimethylformamide (2.2 mL) and stirred at room temperature for 30 min before 2-(2-methylmorpholin-2-yl)ethanol (138) (racemate) ($83.4 \mathrm{mg}, 0.574 \mathrm{mmol}, 1.2$ equiv.) was added. The reaction mixture was stirred at room temperature for 1 h and purified without any further work up by preparative HPLC (reversed phase, eluent: acetonitrile
/ water gradient) to give $\mathbf{3 8}$ in a mixture of racemic diastereomers. Yield: 173 mg (75\%). LC-MS $(\operatorname{method} 1 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.90 ; \mathrm{MS}(E S I+): \mathrm{m} / \mathrm{z}=474[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ $[\mathrm{ppm}]=8.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.93$ (quin, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.42-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.35(\mathrm{~m}, 7 \mathrm{H}), 1.85-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-0.93(\mathrm{~m}, 3 \mathrm{H})$.

This mixture (168 mg) was submitted for diastereomer separation (preparative method: HPLC: column: Daicel Chiralpak AD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$; eluent: 50% iso-hexane / 50% ethanol; temperature: $40^{\circ} \mathrm{C}$; flow rate: $20 \mathrm{~mL} / \mathrm{min}$; UV-detection: 210 nm ; analytical method: HPLC: column: Daicel Chiralpak AD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$; eluent: 50% iso-hexane / 50% ethanol; temperature: $40^{\circ} \mathrm{C}$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; UV-detection: 220 nm) to give two enantiopure diastereomers: single stereoisomer 1: Yield: $52 \mathrm{mg}(23 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=7.68,>99 \%$ de; LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 0.87; MS (ESI +): $\mathrm{m} / \mathrm{z}=474[\mathrm{M}+\mathrm{H}]^{+}$; single stereoisomer 2, which corresponds to the desired stereoisomer 38: Yield: $38 \mathrm{mg}(17 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=8.39,>99 \%$ de; LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ $=0.87$; MS (ESI +): $\mathrm{m} / \mathrm{z}=474[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 1 H), $7.48(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.93$ (quin, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-$ $4.23(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.35(\mathrm{~m}, 7 \mathrm{H}), 1.85-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-0.93$ (m, 3H).
(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[(5R)-2-(2-hydroxyethyl)-2,5-dimethylmorpholin-4-yl]methanone (39) as single stereoisomer.

a) i) TEA, 2-propanol, $0^{\circ} \mathrm{C}$, ii) 2-chloropropionyl chloride, $0^{\circ} \mathrm{C}$ to RT ; b) KOt -Bu, 2-propanol, $0^{\circ} \mathrm{C}$ to RT; c) i) LHMDS, THF, $-78{ }^{\circ} \mathrm{C}$, ii) allyl iodide, $-78^{\circ} \mathrm{C}$ to RT ; d) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}, \mathrm{THF} /$ water, $0^{\circ} \mathrm{C}$ to

RT; e) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to RT; f) $\mathrm{BH}_{3} \times \mathrm{Me}_{2} \mathrm{~S}$, THF, RF; g) H_{2} (1 bar), $10 \% \mathrm{Pd} / \mathrm{C}, 20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, EtOH, RT; h) 95, HATU, DIEA, DMF, RT.
N-Benzyl-2-chloro- N-[(2R)-1-hydroxypropan-2-yl]propanamide (139) as diastereomer mixture (2 isomers).

(2R)-2-(Benzylamino)propan-1-ol ($16.4 \mathrm{~g}, 99.3 \mathrm{mmol}$) [lit: Tewson, T. J. et al., Synthesis 2002, 6, 766770] was initially charged in 2-propanol (500 mL), the mixture was cooled to $0^{\circ} \mathrm{C}$ and triethylamine ($20.1 \mathrm{~g}, 27.7 \mathrm{~mL}, 199 \mathrm{mmol}$) was added. 2-Chloropropionyl chloride (racemate) ($13.9 \mathrm{~g}, 10.8 \mathrm{~mL}$, 109 mmol) was then added dropwise, and the reaction solution was allowed to warm to room temperature, stirred overnight and then concentrated under reduced pressure. Aqueous hydrogen chloride solution $(0.5 \mathrm{~N})$ was added to the residue, and the mixture was extracted with ethyl acetate. The organic phases were dried over sodium sulfate, filtered and concentrated under reduced pressure to give $\mathbf{1 3 9}$ as a crude product which was used without further purification in the next step. Yield: 24.3 g $\left(88 \%, 92 \%\right.$ purity, diastereomer ratio about 1:1). LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.80$ (diastereomer 1), $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.84\left(\right.$ diastereomer 2); MS (ESI +): $\mathrm{m} / \mathrm{z}=256[\mathrm{M}+\mathrm{H}]^{+}$.
(5R)-4-Benzyl-2,5-dimethylmorpholin-3-one (140) as diastereomer mixture (2 isomers).

N-Benzyl-2-chloro- N-[(2R)-1-hydroxypropan-2-yl]propanamide (139, diastereomer mixture, 2 isomers) ($30.0 \mathrm{~g}, 93 \%$ purity, 109 mmol) was initially charged in 2-propanol (588 mL), the mixture was cooled to $0^{\circ} \mathrm{C}$ and potassium tert-butoxide ($49.0 \mathrm{~g}, 436 \mathrm{mmol}$) was added. The reaction solution was allowed to warm to room temperature and stirred overnight. Most of the 2-propanol was removed under reduced pressure, and the residue was taken up in water. The mixture was extracted with ethyl acetate, and the organic phases were dried over magnesium sulfate, filtered and concentrated under reduced pressure to give $\mathbf{1 4 0}$ as crude product which was used without further purification in the next step. Yield: $22.8 \mathrm{~g}(93 \%)$. LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.85$; MS (ESI +): $\mathrm{m} / \mathrm{z}=220[\mathrm{M}+\mathrm{H}]^{+}$.
(5R)-2-Allyl-4-benzyl-2,5-dimethylmorpholin-3-one (141) as diastereomer mixture (2 isomers).

(5R)-4-Benzyl-2,5-dimethylmorpholin-3-one (140, diastereomer mixture, 2 isomers) (22.8 g , $104 \mathrm{mmol})$ was initially charged in tetrahydrofuran $(1.34 \mathrm{~L})$, lithium hexamethyldisilazide solution (1 M in tetrahydrofuran, $146 \mathrm{~mL}, 146 \mathrm{mmol}$) was added under argon atmosphere at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min . At $-78^{\circ} \mathrm{C}$, allyl iodide ($21.0 \mathrm{~g}, 11.4 \mathrm{~mL}, 125 \mathrm{mmol}$) was then added, and the reaction mixture was allowed to warm to room temperature and stirred for 3 h . The reaction was terminated by addition of saturated aqueous ammonium chloride solution, and the mixture was then extracted with ethyl acetate. The organic phase was washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure to give $\mathbf{1 4 1}$ as crude product which was used without further purification in the next step. Yield: $27.5 \mathrm{~g}(77 \%, 75 \%$ purity). LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.99 ; \mathrm{MS}(E S I+): \mathrm{m} / \mathrm{z}=260[\mathrm{M}+\mathrm{H}]^{+}$.
[(5R)-4-Benzyl-2,5-dimethyl-3-oxomorpholin-2-yl]acetaldehyde (142) as diastereomer mixture (2 isomers).

(5R)-2-Allyl-4-benzyl-2,5-dimethylmorpholin-3-one (141, diastereomer mixture, 2 isomers) (27.4 g , 75% purity, 79.9 mmol) was initially charged in tetrahydrofuran $(620 \mathrm{~mL})$ and water $(370 \mathrm{~mL})$, and a solution of osmium tetroxide (2.5% in tert-butanol, $4.35 \mathrm{~mL}, 1.60 \mathrm{mmol}$) and sodium periodate (51.2 g , 240 mmol) were added at $0{ }^{\circ} \mathrm{C}$. The reaction solution was allowed to warm to room temperature and stirred overnight. The reaction solution was filtered through kieselguhr and the filter residue was washed with tetrahydrofuran. The reaction solution was taken up in ethyl acetate and diluted with water. After separation of the phases, the organic phase was washed with aqueous sodium sulfite solution ($1 \mathrm{~N}, 2 \mathrm{x}$ 400 mL), dried over sodium sulfate, filtered and concentrated under reduced pressure to give $\mathbf{1 4 2}$ as crude product which was used without further purification in the next step. Yield: 23.6 g . LC-MS $($ method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.81($ enantiomerically pure isomer 1$) / 0.84($ enantiomerically pure isomer 2$)$; $\mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=262[\mathrm{M}+\mathrm{H}]^{+}$.
(5R)-4-Benzyl-2-(2-hydroxyethyl)-2,5-dimethylmorpholin-3-one (143) as diastereomer mixture (2 isomers).

[(5R)-4-Benzyl-2,5-dimethyl-3-oxomorpholin-2-yl]acetaldehyde (142, diastereomer mixture, 2 isomers) (7.00 g , about 26.8 mmol , crude product) was initially charged in methanol (200 mL), and sodium borohydride ($3.04 \mathrm{~g}, 80.4 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The reaction solution was allowed to warm to room temperature and stirred for 30 min . Water was added to the reaction solution, most of the methanol was removed under reduced pressure and the residue was extracted with ethyl acetate. The organic phase was dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 143. Yield: $6.82 \mathrm{~g}(70 \%, 73 \%$ purity $)$. LC-MS (method 1 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.71$; $\mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=$ $264[\mathrm{M}+\mathrm{H}]^{+}$.

2-[(5R)-4-Benzyl-2,5-dimethylmorpholin-2-yl]ethanol as enantiomerically pure isomer (144a) and enantiomerically pure isomer (144b).

(5R)-4-Benzyl-2-(2-hydroxyethyl)-2,5-dimethylmorpholin-3-one (143, diastereomer mixture, 2 isomers) ($6.80 \mathrm{~g}, 18.9 \mathrm{mmol}, 73 \%$ purity) was initially charged in tetrahydrofuran (191 mL), boranedimethyl sulfide complex solution (2 M in tetrahydrofuran, $37.7 \mathrm{~mL}, 75.4 \mathrm{mmol}$) was added under argon and the mixture was stirred under reflux for 2 h . The mixture was subsequently cooled to $0^{\circ} \mathrm{C}$, methanol (37 mL) was added carefully and the mixture was stirred under reflux for 30 min . The mixture was concentrated completely under reduced pressure, and the residue was taken up in acetonitrile and subjected directly to purification and diastereomer separation by preparative HPLC (reversed phase, eluent: acetonitrile / water, isocratic) to give $1.34 \mathrm{~g}(28 \%)$ enantiomerically pure isomer $\mathbf{1 4 4 a}$ (first compound eluted) and $2.28 \mathrm{~g}(47 \%)$ enantiomerically pure isomer $\mathbf{1 4 4 b}$ (second compound eluted). LCMS (method 4 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=2.55$ (enantiomerically pure isomer 1) / 2.64 (enantiomerically pure isomer 2); MS (ESI+): m/z=250[M+H] ${ }^{+}$.

2-[(5R)-2,5-Dimethylmorpholin-2-yl]ethanol (145) as enantiomerically pure isomer.

2-[(5R)-4-Benzyl-2,5-dimethylmorpholin-2-yl]ethanol (enantiomerically pure isomer 144b) (2.25 g , 9.02 mmol) was initially charged in ethanol (90.7 mL), palladium on carbon ($10 \%, 227 \mathrm{mg}$) and palladium hydroxide on carbon $(20 \%, 113 \mathrm{mg})$ were added under argon and the mixture was stirred under an atmosphere of hydrogen at standard pressure overnight. The reaction solution was filtered through kieselguhr and the filter residue was washed with ethanol. The filtrate was concentrated under reduced pressure and the product was dried under high vacuum to give $\mathbf{1 4 5}$. Yield: 1.46 g (quantitative). MS (method 1c): $\mathrm{m} / \mathrm{z}=160[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=4.21(\mathrm{t}, 1 \mathrm{H}), 3.53-$ $3.44(\mathrm{~d}, 2 \mathrm{H}), 3.34(\mathrm{dd}, 1 \mathrm{H}), 3.14(\mathrm{t}, 1 \mathrm{H}), 2.65-2.52(\mathrm{~m}, 3 \mathrm{H}), 2.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.52(\mathrm{td}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$, 0.85 (d, 3H).
(2-\{[(4-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[(5R)-2-(2-hydroxyethyl)-2,5-dimethylmorpholin-4-yl]methanone (39) as enantiomerically pure isomer.

2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid ($100 \mathrm{mg}, 90 \%$ purity, 0.260 mmol) and 2-[(5R)-2,5-dimethylmorpholin-2-yl]ethanol (enantiomerically pure isomer 145) were initially charged in N, N-dimethylformamide (1.19 mL), and N, N diisopropylethylamine ($117 \mathrm{mg}, 158 \mu \mathrm{~L}, 0.908 \mathrm{mmol}$) was added. Subsequently, HATU (118 mg , 0.311 mmol) was added at room temperature and the mixture was stirred overnight. Without further work-up, the reaction solution was then purified directly by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 44 as enantiomerically pure isomer. Yield: 92.6 mg (73%). LC-MS $($ method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.95 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=488[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$: $\delta[\mathrm{ppm}]=8.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (quin, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.73$ (br dd, $J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{br} \mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}$, $1 \mathrm{H}), 1.58-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2$ protons are concealed.

(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[(5R)-5-ethyl-2-(2-

 hydroxyethyl)-2-methylmorpholin-4-yl]methanone (40) as single stereoisomer.
a) i) benzaldehyde, $\mathrm{MeOH}, \mathrm{RT}$, ii) $\mathrm{NaBH}_{4}, \mathrm{RT}$; b) 2-chloropropionyl chloride, TEA, 2-propanol, RT;
c) $\mathrm{KO} t$ - $\mathrm{Bu}, 2$-propanol, $0{ }^{\circ} \mathrm{C}$ to RT ; d) i) LHMDS, THF, $-78^{\circ} \mathrm{C}$, ii) allyl bromide, $-78{ }^{\circ} \mathrm{C}$ to RT ; e) $\mathrm{O}_{3} / \mathrm{O}_{2}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{MeOH},-7{ }^{\circ} \mathrm{C}$ to RT; f) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$ to RT; g) $\mathrm{BH}_{3} \times \mathrm{Me}_{2} \mathrm{~S}$, THF, RT; h) H_{2} (1 bar), $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{MeOH}, \mathrm{RT}$; i) i) 95, HATU, DIEA, DMF, RT, ii) diastereomer separation.
(2R)-2-(Benzylamino)butan-1-ol (146).

Benzaldehyde ($23.8 \mathrm{~g}, 224.4 \mathrm{mmol}, 1.0$ equiv.) was added under argon atmosphere at room temperature to a mixture of $(2 R)$-2-aminobutan-1-ol $(20.0 \mathrm{~g}, 224.4 \mathrm{mmol})$ in methanol $(230 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 1 h , cooled to $0^{\circ} \mathrm{C}$, mixed with sodium borohydride $(4.2 \mathrm{~g}$, $122.2 \mathrm{mmol}, 0.5$ equiv.), stirred at room temperature for 1.5 h and quenched by addition of water. All volatiles were removed in vacuo. The mixture was extracted with dichloromethane. The organic phase was washed with water, dried over magnesium sulfate, filtered, evaporated under reduced pressure and dried in vacuo to give 146 which was used in the next step without further purification. Yield: 39.2 g (97\%). LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\min)=0.25 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=180[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d $\mathrm{d}_{6}: \delta[\mathrm{ppm}]=7.36-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.65(\mathrm{~m}$,
$2 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$).

N-Benzyl-2-chloro- N-[(2R)-1-hydroxybutan-2-yl]propanamide (147).

Triethylamine ($64.0 \mathrm{~mL}, 459.2 \mathrm{mmol}, 2.1$ equiv.) and 2-chloropropionyl chloride (23.4 mL , $240.5 \mathrm{mmol}, 1.1$ equiv.) were added under argon atmosphere at room temperature to a solution of ($2 R$)-2-(benzylamino)butan-1-ol ($\mathbf{1 4 6}$) ($39.2 \mathrm{~g}, 218.7 \mathrm{mmol}$) in 2-propanol (500 mL). The reaction mixture was stirred at room temperature for 4 h and evaporated under reduced pressure. After addition of water, the aqueous phase was extracted with dichloromethane. The organic phase was dried over magnesium sulfate, filtered, evaporated under reduced pressure and dried in vacuo to give $\mathbf{1 4 7}$ which was used in the next step without further purification. Yield: $49.0 \mathrm{~g}(74 \%, 89 \%$ purity). LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.86 / 0.88 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=270[\mathrm{M}+\mathrm{H}]^{+}$.
(5R)-4-Benzyl-5-ethyl-2-methylmorpholin-3-one (148).

Potassium tert-butylate ($34.3 \mathrm{~g}, 305.8 \mathrm{mmol}, 3.3$ equiv.) was added under argon atmosphere at $0^{\circ} \mathrm{C}$ to a solution of N-benzyl-2-chloro- N-[(2R)-1-hydroxybutan-2-yl]propanamide (147) ($25.0 \mathrm{~g}, 92.7 \mathrm{mmol}$) in 2-propanol (400 mL). The reaction mixture was stirred at room temperature overnight, evaporated to a quarter of volume and mixed with ethyl acetate. The organic phase was washed two times with water, once with aqueous hydrogen chloride solution $(1 \mathrm{M})$ and with brine, dried over magnesium sulfate, filtered, evaporated under reduced pressure and dried in vacuo to give $\mathbf{1 4 8}$ which was used in the next step without further purification. Yield: $19.5 \mathrm{~g}(79 \%, 88 \%$ purity $)$. LC-MS (method 9 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.93$; MS (ESI +): $\mathrm{m} / \mathrm{z}=234[\mathrm{M}+\mathrm{H}]^{+}$.
(5R)-2-Allyl-4-benzyl-5-ethyl-2-methylmorpholin-3-one (149).

Lithium bis(trimethylsilyl)amide solution (1 M in tetrahydrofuran, $82.5 \mathrm{~mL}, 82.5 \mathrm{mmol}, 1.2$ equiv.) was added slowly under argon atmosphere at $-78{ }^{\circ} \mathrm{C}$ to a solution of (5R)-4-benzyl-5-ethyl-2-methylmorpholin-3-one (148) ($17.5 \mathrm{~g}, 75.0 \mathrm{mmol}$) in tetrahydrofuran (300 mL). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , before a solution of allyl bromide ($7.8 \mathrm{~mL}, 90.0 \mathrm{mmol}, 1.2$ equiv.) in tetrahydrofuran $(20 \mathrm{~mL})$ was added dropwise. The reaction mixture was stirred at room temperature overnight and mixed with water. The aqueous phase was extracted with ethyl acetate. The organic phase was washed with brine, dried over magnesium sulfate, filtered and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, eluent: cyclohexane / ethyl acetate gradient) to give 149. Yield: $13.5 \mathrm{~g}(66 \%, 89 \%$ purity $)$. LC-MS (method 7 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.11 ; \mathrm{MS}$ (ESI+): $\mathrm{m} / \mathrm{z}=274[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta[\mathrm{ppm}]=7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.19$ (m, 3H), 5.88-5.72 (m, 1H), 5.18-5.04 (m, 2H), $5.02 / 4.94(2 x \mathrm{~d}, J=15.2 \mathrm{~Hz} / 15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14 /$ $4.11(2 \mathrm{x}$ d, $J=15.2 \mathrm{~Hz} / 15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.75(\mathrm{dt}, J=12.5 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.10-$ $3.02 / 3.02-2.94(2 x \mathrm{~m}, 1 \mathrm{H}), 2.74 / 2.71(2 \mathrm{x} \mathrm{d}, J=6.6 \mathrm{~Hz} / 6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.58$ (m, 2H), $1.36 / 1.29(2 x ~ s, ~ 3 H), 0.83 / 0.82(2 x t, J=7.3 \mathrm{~Hz} / 7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
[(5R)-4-Benzyl-5-ethyl-2-methyl-3-oxomorpholin-2-yl]acetaldehyde (150).

A solution of (5R)-2-allyl-4-benzyl-5-ethyl-2-methylmorpholin-3-one (149) ($10.5 \mathrm{~g}, 38.4 \mathrm{mmol}$) in methanol (300 mL) was purged at $-78^{\circ} \mathrm{C}$ for 30 min with ozone-containing oxygen, then with oxygen until the solution became colorless again. The reaction mixture was mixed with dimethyl sulfide ($28.2 \mathrm{~mL}, 348 \mathrm{mmol}, 10.0$ equiv.), allowed to warm to room temperature overnight and evaporated under reduced pressure. After addition of ethyl acetate, the organic phase was washed with water, with aqueous hydrogen chloride solution (1 M) and with brine, dried over magnesium sulfate, filtered, evaporated under reduced pressure and dried in vacuo to give $\mathbf{1 5 0}$ which was used in the next step without further purification. Yield: $10.1 \mathrm{~g}(67 \%, 70 \%$ purity). LC-MS (method 1 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.90$; MS (ESI +): $\mathrm{m} / \mathrm{z}=276[\mathrm{M}+\mathrm{H}]^{+}$.

(5R)-4-Benzyl-5-ethyl-2-(2-hydroxyethyl)-2-methylmorpholin-3-one (151).

Sodium borohydride ($1.41 \mathrm{~g}, 37.4 \mathrm{mmol}, 1.05$ equiv.) was added under argon atmosphere at $0{ }^{\circ} \mathrm{C}$ to a solution of [(5R)-4-benzyl-5-ethyl-2-methyl-3-oxomorpholin-2-yl]acetaldehyde (150) (9.80 g, $35.6 \mathrm{mmol})$ in methanol $(100 \mathrm{~mL})$. The reaction mixture was stirred for 30 min while allowing to warm to room temperature and quenched with water. The aqueous phase was extracted with ethyl acetate. The organic phase was dried over magnesium sulfate, filtered and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, eluent: cyclohexane / ethyl acetate gradient) to give 151. Yield: $9.79 \mathrm{~g}(84 \%, 85 \%$ purity $)$. LC-MS (method 1 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.79 ; \mathrm{MS}(E S I+): \mathrm{m} / \mathrm{z}=$ $278[\mathrm{M}+\mathrm{H}]^{+}$.

2-[(5R)-4-Benzyl-5-ethyl-2-methylmorpholin-2-yl]ethanol (152).

Borane-dimethyl sulfide complex ($16.09 \mathrm{~g}, 211.78 \mathrm{mmol}, 6.0$ equiv.) was added under argon atmosphere at room temperature to a mixture of (5R)-4-benzyl-5-ethyl-2-(2-hydroxyethyl)-2-methylmorpholin-3-one (151) $(9.79 \mathrm{~g}, 35.30 \mathrm{mmol})$ in tetrahydrofuran $(180 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight, mixed with ethanol unless gas evolution stopped, stirred shortly under reflux and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, eluent: cyclohexane / ethyl acetate gradient) to give 152. Yield: 8.60 g $(80 \%, 86 \%$ purity $)$. LC-MS (method $9 a): t_{R}(\min)=0.46 / 0.49 ; M S(E S I+): m / z=264[M+H]^{+}$.

2-[(5R)-5-Ethyl-2-methylmorpholin-2-yl]ethanol (153).

A solution of 2-[(5R)-4-benzyl-5-ethyl-2-methylmorpholin-2-yl]ethanol (152) (1.00 g, 3.80 mmol$)$ in methanol (53 mL) was mixed under argon atmosphere at room temperature with palladium(II) hydroxide (400 mg), purged with hydrogen gas and stirred at room temperature overnight under hydrogen gas atmosphere (1 bar). The reaction mixture was filtered, evaporated under reduced pressure and dried in vacuo to give $\mathbf{1 5 3}$ which was used in the next step without further purification. Yield: $587 \mathrm{mg} . \mathrm{MS}(\operatorname{method} 1 \mathrm{c}): \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=174[\mathrm{M}+\mathrm{H}]^{+}$.

(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[(5R)-5-ethyl-2-(2-

 hydroxyethyl)-2-methylmorpholin-4-yl]methanone (40) as single stereoisomer.

A mixture of 2-\{[(1R)-1-(3-chlorophenyl)ethyl]amino $\}$-7-methoxy-1,3-benzoxazole-5-carboxylic acid (95) ($364 \mathrm{mg}, 1.05 \mathrm{mmol}$), 2-[(5R)-5-ethyl-2-methylmorpholin-2-yl]ethanol ($\mathbf{1 5 3}$) ($200 \mathrm{mg}, 1.15 \mathrm{mmol}$, 1.1 equiv.), HATU ($519 \mathrm{mg}, 1.36 \mathrm{mmol}, 1.3$ equiv.) and N, N-diisopropylethylamine ($457 \mu \mathrm{~L}$, $2.62 \mathrm{mmol}, 2.5$ equiv.) in N, N-dimethylformamide (5 mL) was stirred at room temperature overnight and purified by preparative HPLC (reversed phase, eluent: acetonitrile / water $+0.1 \%$ acid gradient) to give 40 in a mixture of racemic diastereomers. Yield: $380 \mathrm{mg}(72 \%)$. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 0.94 / 0.96; MS (ESI +): m/z $=502[\mathrm{M}+\mathrm{H}]^{+}$.

This mixture (350 mg) was submitted for diastereomer separation (preparative method: HPLC: column: Daicel Chiralcel OZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$; eluent: 50% iso-hexane $/ 50 \%$ ethanol $+0.2 \%$ diethylamine; temperature: $30^{\circ} \mathrm{C}$; flow rate: $15 \mathrm{~mL} / \mathrm{min}$; UV-detection: 220 nm ; analytical method: HPLC: column: Daicel Chiralcel OZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$; eluent: 50% iso-hexane / 50% ethanol; temperature: $35{ }^{\circ} \mathrm{C}$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; UV-detection: 220 nm) to give two enantiopure diastereomers: single stereoisomer 1: Yield: $70 \mathrm{mg}(20 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.75,>99 \% \mathrm{de}$; LC-MS $(\operatorname{method} 9 a): t_{R}(\min)=0.97 ; M S(E S I+): m / z=502[M+H]^{+}$; single stereoisomer 2, which corresponds to the desired stereoisomer 40: Yield: $148 \mathrm{mg}(42 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=8.04,>99 \%$ de; LC-MS (method $9 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.99 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=502[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta[\mathrm{ppm}]=8.72$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H})$, 4.98-4.87 (m, 1H), $4.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.3(\mathrm{~m}, 3 \mathrm{H}$, partially concealed), 3.19-2.94 (m, 2H), 2.11-1.94 (m, 1H), 1.88-1.73 (m, 1H), 1.68-1.5 (m, 1H), $1.48(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-0.55(\mathrm{~m}, 6 \mathrm{H}), 2$ protons are concealed.
(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[5-(hydroxymethyl)-2-methylmorpholin-4-yl]methanone (41) as single stereoisomer.

a) 2-chloropropanoyl chloride, TEA, 2-propanol, RT; b) KOt - $\mathrm{Bu}, 2$-propanol, $0^{\circ} \mathrm{C}$ to RT ; c) $\mathrm{BH}_{3} \mathrm{x}$ $\mathrm{Me}_{2} \mathrm{~S}$, THF, RT; d) H_{2} (1 bar), $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, $\mathrm{EtOH}, \mathrm{RT}$ and H_{2} (1 bar), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{RT}$; e) i) 95, HATU, DIEA, DMF, RT, ii) diastereomer separation.
N-Benzyl-2-chloro- N-(1,3-dihydroxypropan-2-yl)propanamide (154).

Triethylamine ($48.5 \mathrm{~mL}, 347.6 \mathrm{mmol}, 2.1$ equiv.) and 2-chloropropanoyl chloride (17.7 mL , $182.1 \mathrm{mmol}, 1.1$ equiv.) were added under argon atmosphere at room temperature to a solution of 2-(benzylamino)propane-1,3-diol ($30.0 \mathrm{~g}, 165.5 \mathrm{mmol}$) in 2-propanol (382 mL). The reaction mixture was stirred at room temperature overnight and evaporated under reduced pressure. The residue was mixed with water. The aqueous phase was extracted with dichloromethane. The organic phase was dried over magnesium sulfate, filtered, evaporated under reduced pressure and dried in vacuo to give 154 which was used in the next step without further purification. Yield: 33.0 g ($66 \%, 90 \%$ purity). LC-MS $(\operatorname{method} 1 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\min)=0.65 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=272[\mathrm{M}+\mathrm{H}]^{+}$.

4-Benzyl-5-(hydroxymethyl)-2-methylmorpholin-3-one (155).

Potassium tert-butylate ($68.1 \mathrm{~g}, 607.2 \mathrm{mmol}, 5.0$ equiv.) was added under argon atmosphere at $0{ }^{\circ} \mathrm{C}$ to a solution of N-benzyl-2-chloro- N-(1,3-dihydroxypropan-2-yl)propanamide (154) (33.0 g, 121.4 mmol) in 2-propanol (500 mL). The reaction mixture was stirred at room temperature overnight and evaporated in vacuo. The residue was mixed with dichloromethane. The organic phase was washed with water, dried over magnesium sulfate, filtered, evaporated under reduced pressure and dried in vacuo to give 155 which was used in the next step without further purification. Yield: $23.0 \mathrm{~g}(81 \%)$. LC-MS (method $1 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\min)=0.59 / 0.61 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=236[\mathrm{M}+\mathrm{H}]^{+}$.
(4-Benzyl-6-methylmorpholin-3-yl)methanol (156).

Borane-dimethyl sulfide complex ($44.6 \mathrm{~g}, 586.5 \mathrm{mmol}, 6.0$ equiv.) was added under argon atmosphere at room temperature to a mixture of 4-benzyl-5-(hydroxymethyl)-2-methylmorpholin-3-one (155) $(23.0 \mathrm{~g}, 97.8 \mathrm{mmol})$ in tetrahydrofuran $(460 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 3 days, mixed with ethanol $(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, stirred under reflux for 15 min , evaporated under reduced pressure and dried in vacuo to give 156. Yield: $17.2 \mathrm{~g}(80 \%)$. LC-MS (method 9 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 0.35; MS (ESI +): $\mathrm{m} / \mathrm{z}=222[\mathrm{M}+\mathrm{H}]^{+}$.
(6-Methylmorpholin-3-yl)methanol (157).

157

A solution of (4-benzyl-6-methylmorpholin-3-yl)methanol (156) (500 mg, 2.26 mmol) in ethanol $(20 \mathrm{~mL})$ was mixed under argon atmosphere at room temperature with palladium(II) hydroxide (20% on carbon, 159 mg), purged with hydrogen gas and stirred at room temperature for 1 h under hydrogen gas atmosphere (1 bar). In a second batch, a solution of (4-benzyl-6-methylmorpholin-3-yl)methanol (157) ($500 \mathrm{mg}, 2.26 \mathrm{mmol}$) in methanol (20 mL) was mixed under argon atmosphere at room temperature with palladium (10% on carbon, 240 mg), purged with hydrogen gas and stirred at room temperature for 1 h under hydrogen gas atmosphere (1 bar). Both reaction mixtures were combined, filtered over diatomaceous earth, evaporated under reduced pressure and dried in vacuo to give $\mathbf{1 5 7}$ which was used in the next step without further purification. Yield: 420 mg . MS (method 1c): MS (ESI +): $\mathrm{m} / \mathrm{z}=132[\mathrm{M}+\mathrm{H}]^{+}$.

(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[5-(hydroxymethyl)-2-

 methylmorpholin-4-yl]methanone (41) as single stereoisomer.

A mixture of 2-\{[(1R)-1-(3-chlorophenyl)ethyl]amino $\}$-7-methoxy-1,3-benzoxazole-5-carboxylic acid (95) ($312 \mathrm{mg}, 0.90 \mathrm{mmol}$), (6-methylmorpholin-3-yl)methanol (157) ($130 \mathrm{mg}, 0.99 \mathrm{mmol}, 1.1$ equiv.), HATU ($445 \mathrm{mg}, 1.17 \mathrm{mmol}, 1.3$ equiv.) and N, N-diisopropylethylamine ($392 \mu \mathrm{~L}, 2.25 \mathrm{mmol}$, 2.5 equiv.) in N, N-dimethylformamide (2 mL) was stirred at room temperature overnight and evaporated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water $+0.1 \%$ acid gradient) to give 41 in a mixture of racemic diastereomers. Yield: $197 \mathrm{mg}(48 \%)$. LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.89 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=460[\mathrm{M}+\mathrm{H}]^{+}$.

This mixture (162 mg) was submitted for diastereomer separation (preparative method: HPLC: column: Daicel Chiralpak AD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm}$ x 20 mm ; eluent: 50% iso-hexane / 50\% 2-propanol; temperature: $25^{\circ} \mathrm{C}$; flow rate: $20 \mathrm{~mL} / \mathrm{min}$; UV-detection: 230 nm ; analytical method: HPLC: column: Daicel Chiralpak AD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm}$ x 4.6 mm ; eluent: 50% iso-hexane / 50\% 2-propanol; temperature: $35^{\circ} \mathrm{C}$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; UV-detection: 220 nm) to give four diastereomers: single stereoisomer 1: Yield: $9 \mathrm{mg}(5 \%)$ HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.27,>99 \%$ de; LC-MS $(\operatorname{method} 9 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 0.89; MS (ESI +): $\mathrm{m} / \mathrm{z}=460[\mathrm{M}+\mathrm{H}]^{+}$; single stereoisomer 2: Yield: $41 \mathrm{mg}(21 \%) . \mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ $5.51,>99 \%$ de; LC-MS (method 9a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.91 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=460[\mathrm{M}+\mathrm{H}]^{+}$; mixture of stereoisomer 3+4: Yield: $15 \mathrm{mg}(8 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=7.55 / 8.20 ;$ LC-MS $(\operatorname{method} 9 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 0.89 / 0.91 ; MS (ESI +): $\mathrm{m} / \mathrm{z}=460 / 460[\mathrm{M}+\mathrm{H}]^{+}$; single stereoisomer 4, which corresponds to the desired stereoisomer 41: Yield: $36 \mathrm{mg}(19 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=8.21,>99 \%$ de; LC-MS (method 9a): $\mathrm{t}_{\mathrm{R}}(\min)=0.91 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=460[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta[\mathrm{ppm}]=8.72-8.63$ $(\mathrm{m}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.90 / 6.85(2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}), 6.75 / 6.69(2 \mathrm{x} \mathrm{s}$, $1 \mathrm{H}), 4.99-4.80 / 4.39-4.29(2 \mathrm{x} \mathrm{m}, 2 \mathrm{H}), 4.21-4.11 / 4.01-3.94(2 \mathrm{x} \mathrm{m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.64(\mathrm{~m}$, $1 \mathrm{H}), 3.61-3.45(\mathrm{~m}, 4 \mathrm{H}), 2.99-2.87 / 2.69-2.58(2 \mathrm{x} \mathrm{m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23 / 0.95(2 \mathrm{x} \mathrm{d}$, $J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.76(\mathrm{~m}, 1 \mathrm{H})$.

(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[(2S,5S)-5-(2-

 hydroxyethyl)-2-methylmorpholin-4-yl]methanone (42a) as enantiomerically pure isomer and (2$\{[(1 R)$-1-(3-chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[(2R,5R)-5-(2-hydroxyethyl)-2-methylmorpholin-4-yl]methanone (42b) as enantiomerically pure isomer.

a) 2-chloropropionyl chloride, TEA, 2-propanol, RT; b) $\mathrm{KO} t$ - $\mathrm{Bu}, 2$-propanol, $0^{\circ} \mathrm{C}$ to RT ; c) t - $\mathrm{BuPh}_{2} \mathrm{SiCl}$, imidazole, DMF, $0{ }^{\circ} \mathrm{C}$ to RT ; d) $\mathrm{BH}_{3} \times \mathrm{Me}_{2} \mathrm{~S}$, THF, RT; e) 95, HATU, DIEA, DMF, RT; f) TBAF, THF, RT; g) diastereomer separation.

2-Chloro- N-(1,4-dihydroxybutan-2-yl)propanamide (158) as diastereomer mixture (4 isomers).

2-Aminobutane-1,4-diol (racemate) (5.50 g, 52.3 mmol) [lit: Jogalekar, A. S. et al., WO 2008/151304, 2008] was initially charged in 2-propanol (184 mL), and triethylamine ($5.29 \mathrm{~g}, 7.29 \mathrm{~mL}, 52.3 \mathrm{mmol}$) was added. 2-Chloropropionyl chloride (racemate) ($7.31 \mathrm{~g}, 5.59 \mathrm{~mL}, 57.5 \mathrm{mmol}$) was then added dropwise, and the mixture was stirred at room temperature overnight. The reaction solution was
concentrated under reduced pressure to give $\mathbf{1 5 8}$ as crude product which was used directly in the next step. MS (method 1b): m/z = $195[\mathrm{M}+\mathrm{H}]^{+}$.

5-(2-Hydroxyethyl)-2-methylmorpholin-3-one (159) as diastereomer mixture (4 isomers).

2-Chloro-N-(1,4-dihydroxybutan-2-yl)propanamide (158, diastereomer mixture, 4 isomers) (10.2 g , about 52.3 mmol , crude product) was initially charged in 2-propanol (221 mL), the mixture was cooled to $0^{\circ} \mathrm{C}$ and potassium tert-butoxide $(29.3 \mathrm{~g}, 261 \mathrm{mmol})$ was then added in one portion. The mixture was warmed to room temperature and stirred for 60 h . The reaction solution was concentrated under reduced pressure to give $\mathbf{1 5 9}$ as crude product which was used directly in the next step. LC-MS (method $2 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.34 ; \mathrm{MS}\left(\right.$ ESI +): $\mathrm{m} / \mathrm{z}=160[\mathrm{M}+\mathrm{H}]^{+}$.

5-(2-\{[tert-Butyl(diphenyl)silyl]oxy\}ethyl)-2-methylmorpholin-3-one (160) as main racemic diastereomer (2 isomers).

5-(2-Hydroxyethyl)-2-methylmorpholin-3-one (159, diastereomer mixture, 4 isomers) (3.93 g , about 24.7 mmol , crude product) was initially charged in N, N-dimethylformamide (50 mL), and then imidazole ($5.05 \mathrm{~g}, 74.1 \mathrm{mmol}$) and tert-butyldiphenylsilyl chloride ($10.2 \mathrm{~g}, 37.1 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 24 h and warmed to room temperature during this time. Saturated aqueous ammonium chloride solution was then added, and the reaction solution was extracted with ethyl acetate. The combined organic phases were washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude product obtained was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give only the main diastereomer 160. Yield: $2.05 \mathrm{~g}(20 \%)$. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.31$; MS (ESI+): m/z = $398[\mathrm{M}+\mathrm{H}]^{+}$.

5-(2-\{[tert-Butyl(diphenyl)silyl]oxy\}ethyl)-2-methylmorpholine (161) as racemic diastereomer (2 isomers).

5-(2-\{[tert-Butyl(diphenyl)silyl]oxy\}ethyl)-2-methylmorpholin-3-one (160, racemic diastereomer, 2 isomers) ($1.20 \mathrm{~g}, 3.02 \mathrm{mmol}$) was initially charged in tetrahydrofuran (70.6 mL), borane-dimethyl sulfide complex solution (2 M in tetrahydrofuran, $7.55 \mathrm{~mL}, 15.1 \mathrm{mmol}$) was added and the reaction mixture was then stirred at room temperature for 60 h . The reaction was then concentrated completely under reduced pressure and the residue was taken up in ethanol and stirred under reflux overnight. The reaction mixture was then concentrated completely under reduced pressure to give $\mathbf{1 6 1}$ as crude product which was used directly in the next step. Yield: 1.22 g (quantitative). LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 1.08; MS (ESI +): m/z = $383[\mathrm{M}+\mathrm{H}]^{+}$.
[5-(2-\{[tert-Butyl(diphenyl)silyl]oxy\}ethyl)-2-methylmorpholin-4-yl](2-\{[(1R)-1-(3-chlorophenyl) ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)methanone (162) as racemic diastereomer (2 isomers).

2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid ($300 \mathrm{mg}, \quad 0.865 \mathrm{mmol}$) and 5-(2-\{[tert-butyl(diphenyl)silyl $]$ oxy $\}$ ethyl)-2-methylmorpholine (as racemic diastereomer, 2 isomers, $\mathbf{1 6 1}$) ($365 \mathrm{mg}, 0.952 \mathrm{mmol}, 1.1$ equiv.) were initially charged in $N, N-$ dimethylformamide (2.4 mL), and N, N-diisopropylethylamine ($559 \mathrm{mg}, 753 \mu \mathrm{~L}, 4.33 \mathrm{mmol}$) was added. Subsequently, HATU ($395 \mathrm{mg}, 1.04 \mathrm{mmol}$) was added at room temperature and the mixture was stirred overnight. Without further work-up, the reaction solution was then purified directly by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient $+0.1 \%$ formic acid) to give $\mathbf{1 6 2}$ as racemic diastereomer (2 isomers). Yield: $515 \mathrm{mg}(84 \%)$. LC-MS (method 7 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.55$; MS (ESI+): $\mathrm{m} / \mathrm{z}=712[\mathrm{M}+\mathrm{H}]^{+}$.

(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[(2S,5S)-5-(2-

 hydroxyethyl)-2-methylmorpholin-4-yl]methanone (42a) as enantiomerically pure isomer and (2-\{[(1R)-1-(3-chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[(2R,5R)-5-(2-hydroxyethyl)-2-methylmorpholin-4-yl]methanone (42b) as enantiomerically pure isomer.

[5-(2-\{[tert-Butyl(diphenyl)silyl]oxy\}ethyl)-2-methylmorpholin-4-yl](2-\{[(1R)-1-(3-chlorophenyl) ethyl]amino \}-7-methoxy-1,3-benzoxazol-5-yl)methanone (as racemic diastereomer, 2 isomers, 162) $(515 \mathrm{mg}, 0.723 \mathrm{mmol})$ in tetrahydrofuran $(15 \mathrm{~mL})$ was treated at room temperature with tetra- n butylammonium fluoride (1 M in tetrahydrofuran, $378 \mu \mathrm{~L}, 1.45 \mathrm{mmol}, 2.0$ equiv.) and then stirred for 3 h . Water was added and the reaction mixture was concentrated under reduced pressure. The residue was then purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient $+0.1 \%$ formic acid) to give 163 in a mixture of racemic diastereomers. Yield: 224 mg (65\%). LC-MS (method $7 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.95,1.27 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=474[\mathrm{M}+\mathrm{H}]^{+}$.

This mixture (220 mg) was submitted for diastereomer separation (preparative method: HPLC: column: Daicel Chiralcel OZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$; eluent: 50% iso-hexane / 50% ethanol; temperature: $40{ }^{\circ} \mathrm{C}$; flow rate: $15 \mathrm{~mL} / \mathrm{min}$; UV-detection: 220 nm ; analytical method: HPLC: column: Daicel Chiralcel OZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$; eluent: 50% iso-hexane / 50% ethanol; temperature: $40{ }^{\circ} \mathrm{C}$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; UV-detection: 220 nm) to give two enantiopure diastereomers: single stereoisomer 1 (42a): Yield: $103 \mathrm{mg}(30 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=6.34,>99 \%$ de; LC-MS (method 7 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.95 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=474[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta[\mathrm{ppm}]=8.81-8.52$ $(\mathrm{m}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 4.99-4.88 (m, 1H), 4.59-4.40 (m, 1H), 4.36-4.13 (m, 1H), 3.90 (s, 3H), 3.83-3.36 (m, 5H), 3.26 (br d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-0.92(\mathrm{~m}, 3 \mathrm{H}) ;$ single stereoisomer 2 (42b): Yield: $103 \mathrm{mg}(30 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=10.6,>99 \%$ de; LC-MS (method $7 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.27 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=474[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta[\mathrm{ppm}]=8.69$ (br d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.68$ (s, 1H), 4.93 (quin, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.36(\mathrm{~m}$, $5 \mathrm{H}), 3.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.08-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-0.92(\mathrm{~m}, 3 \mathrm{H})$.

(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[5-(3-

 hydroxycyclobutyl)-2-methylmorpholin-4-yl]methanone (43) as single stereoisomer.

a) methyl [(tert-butoxycarbonyl)amino](dimethoxyphosphoryl)acetate, DBU, DCM, RT; b) Mg, MeOH , ultrasonic bath, RT; c) $\mathrm{LiBH}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$ to RT; d) TFA, DCM, RT; e) 2-chloropropionyl chloride, TEA, 2-propanol, $0^{\circ} \mathrm{C}$; f) KOt-Bu, 2-propanol, $0^{\circ} \mathrm{C}$ to RT to $50^{\circ} \mathrm{C}$; g) $\mathrm{BH}_{3} \times \mathrm{Me}_{2} \mathrm{~S}, \mathrm{THF}$, RF; h) benzyl chloroformate, DIEA, DCM, $0{ }^{\circ} \mathrm{C}$ to RT; i) H_{2} (1 bar), $10 \% \mathrm{Pd} / \mathrm{C}, 20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, EtOH, RT; j) i) 95, HATU, DIEA, RT, ii) diastereomer separation.

Methyl [3-(benzyloxy)cyclobutylidene][(tert-butoxycarbonyl)amino]acetate (164).

164
Methyl [(tert-butoxycarbonyl)amino](dimethoxyphosphoryl)acetate (racemate) ($928 \mathrm{mg}, 3.12 \mathrm{mmol}$) and 3-(benzyloxy)cyclobutanone ($500 \mathrm{mg}, 2.84 \mathrm{mmol}$) [lit: Ogura, K.; Tsuchihashi, G. et al., Bull. Chem. Soc. Jpn. 1984, 57, 1637-1642] were initially charged in dichloromethane (50 mL), 1,8-diazabicyclo[5.4.0]undec-7-ene ($605 \mathrm{mg}, 0.590 \mathrm{~mL}, 3.97 \mathrm{mmol}$) was added at room temperature and the mixture was then stirred overnight. The reaction solution was concentrated under reduced pressure and the residue was taken up in ethyl acetate. The organic phase was washed with water, aqueous hydrogen chloride solution (0.5 N), saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 164. Yield: $651 \mathrm{mg}(60 \%)$. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.15$; MS (ESI +): $\mathrm{m} / \mathrm{z}=$ $348[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.42(\mathrm{~s}$, 2H), 4.13 (quin, 1H), 3.63 (s, 3H), 3.25 (br d, 1H), 2.99 (br d, 1H), 2.85 (br d, 1H), 2.65 (m, 1H), 1.37 ($\mathrm{s}, 9 \mathrm{H}$).

Methyl [3-(benzyloxy)cyclobutyl][(tert-butoxycarbonyl)amino]acetate (165) as cis and trans isomer mixture (4 isomers).

165
Methyl [3-(benzyloxy)cyclobutylidene][(tert-butoxycarbonyl)amino]acetate (164) (650 mg, 1.87 mmol) and magnesium turnings ($455 \mathrm{mg}, 18.7 \mathrm{mmol}$) were initially charged in methanol (50 mL) and reacted at room temperature in an ultrasonic bath [Elma, Transsonic T 780] for 3 h . Semisaturated aqueous ammonium chloride solution was added, and the reaction solution was extracted repeatedly with dichloromethane. The organic phases were dried over sodium sulfate, filtered and concentrated under reduced pressure to give $\mathbf{1 6 5}$ as crude product which was used without further purification in the next step. Yield: $630 \mathrm{mg}(96 \%)$. LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.16$; MS (ESI+): $\mathrm{m} / \mathrm{z}=350[\mathrm{M}+\mathrm{H}]^{+}$, $250\left[\mathrm{M}+\mathrm{H}-\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right]$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=7.39-7.20(\mathrm{~m}, 6 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H})$,
4.07 (quin, 0.3 H$), 3.99-3.73(\mathrm{~m}, 1.7 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.34-1.94(\mathrm{~m}, 3.5 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 1.5 \mathrm{H}), 1.45-$ 1.27 (m, 9H).
tert-Butyl \{1-[3-(benzyloxy)cyclobutyl]-2-hydroxyethyl\}carbamate (166) as cis and trans isomer mixture (4 isomers).

166

Methyl [3-(benzyloxy)cyclobutyl][(tert-butoxycarbonyl)amino]acetate (165, cis and trans isomer mixture, 4 isomers) ($620 \mathrm{mg}, 1.77 \mathrm{mmol}$) was initially charged in tetrahydrofuran (6.0 mL), and lithium borohydride solution (2 M in tetrahydrofuran, $4.44 \mathrm{~mL}, 8.87 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The mixture was then stirred for 4 h and allowed to warm to room temperature during this time. The reaction was terminated by addition of ethyl acetate $(50.0 \mathrm{~mL})$ and the reaction solution was subsequently washed with aqueous hydrogen chloride solution $(0.5 \mathrm{~N})$. The organic phase was dried over sodium sulfate, filtered and concentrated under reduced pressure to give 166 as crude product which was used without further purification in the next step. Yield: $560 \mathrm{mg}(96 \%)$. LC-MS $(\operatorname{method} 1 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.99 ; \mathrm{MS}$ (ESI +): $\mathrm{m} / \mathrm{z}=322[\mathrm{M}+\mathrm{H}]^{+}, 222[\mathrm{M}+\mathrm{H}-\mathrm{Boc}] ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=7.47-7.15(\mathrm{~m}$, $5 \mathrm{H}), ~ 6.65-6.41(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 3.88-3.70(\mathrm{~m}, 0.7 \mathrm{H}), 3.67-3.09(\mathrm{~m}, 3.8 \mathrm{H}), 2.36-$ $1.78(\mathrm{~m}, 3.5 \mathrm{H}), 1.74-1.48(\mathrm{~m}, 1.5 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$.

2-Amino-2-[3-(benzyloxy)cyclobutyl]ethanol trifluoroacetate (167) as cis and trans isomer mixture (4 isomers).

167
tert-Butyl \{1-[3-(benzyloxy)cyclobutyl]-2-hydroxyethyl $\}$ carbamate (166, cis and trans isomer mixture, 4 isomers) ($560 \mathrm{mg}, 1.74 \mathrm{mmol}$) was initially charged in dichloromethane $(8.0 \mathrm{~mL})$, trifluoroacetic acid $(1.0 \mathrm{~mL}, 12.9 \mathrm{mmol})$ was added at room temperature and the mixture was stirred for 2 h . The reaction solution was then concentrated completely under reduced pressure and excess trifluoroacetic acid was removed by repeated coevaporation with dichloromethane to give 167 as crude product which was used without further purification in the next step. Yield: $580 \mathrm{mg}(95 \%)$. LC-MS $(\operatorname{method} 4 a): \mathrm{t}_{\mathrm{R}}(\min)=2.10$; MS (ESI +): $\mathrm{m} / \mathrm{z}=222[\mathrm{M}+\mathrm{H}-\mathrm{TFA}]^{+}$.

N-\{1-[3-(Benzyloxy)cyclobutyl]-2-hydroxyethyl\}-2-chloropropanamide (168) as diastereomer

 mixture (8 isomers).

2-Amino-2-[3-(benzyloxy)cyclobutyl]ethanol trifluoroacetate (167, cis and trans isomer mixture, 4 isomers) ($580 \mathrm{mg}, 1.73 \mathrm{mmol}$) was initially charged in 2-propanol (15 mL), the mixture was cooled to $0^{\circ} \mathrm{C}$ and triethylamine ($700 \mathrm{mg}, 960 \mu \mathrm{~L}, 6.92 \mathrm{mmol}$) was added. 2-Chloropropionyl chloride (racemate) ($242 \mathrm{mg}, 190 \mu \mathrm{~L}, 1.90 \mathrm{mmol}$) was then added dropwise, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then concentrated completely under reduced pressure. Aqueous hydrogen chloride solution $(0.5 \mathrm{~N}, 50 \mathrm{~mL})$ was added to the residue, and the mixture was extracted repeatedly with dichloromethane. The organic phases were dried over sodium sulfate, filtered and concentrated under reduced pressure to give $\mathbf{1 6 8}$ as crude product which was used without further purification in the next step. Yield: $638 \mathrm{mg}\left(91 \%, 77 \%\right.$ purity). LC-MS (method 4a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=2.36 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=312$ $[\mathrm{M}+\mathrm{H}]^{+}$.

5-[3-(Benzyloxy)cyclobutyl]-2-methylmorpholin-3-one (169) as diastereomer mixture (8 isomers).

169
N-\{1-[3-(Benzyloxy)cyclobutyl]-2-hydroxyethyl\}-2-chloropropanamide (168, diastereomer mixture, 8 isomers) ($1.15 \mathrm{~g}, 3.69 \mathrm{mmol}$) was initially charged in 2 -propanol (30.0 mL), the mixture was cooled to $0^{\circ} \mathrm{C}$ and potassium tert-butoxide $(1.66 \mathrm{~g}, 14.8 \mathrm{mmol})$ was then added in one portion. The mixture was allowed to warm to room temperature and then stirred at $50^{\circ} \mathrm{C}$ for 1 h . Most of the 2-propanol was removed under reduced pressure and the residue was taken up in ethyl acetate. The organic phase was washed with aqueous hydrogen chloride solution (1 N), dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 169. Yield: $953 \mathrm{mg}(93 \%)$. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 0.88; MS (ESI): $\mathrm{m} / \mathrm{z}=276[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.43-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.40$ (br s, 0.16H), $6.24(\mathrm{br} \mathrm{s}, 0.38 \mathrm{H}), 6.12-5.94(\mathrm{~m}, 0.46 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.24-4.05(\mathrm{~m}, ~ 1.25 \mathrm{H}), 4.03-3.86$ $(\mathrm{m}, 1.25 \mathrm{H}), 3.82-3.51(\mathrm{~m}, 1.5 \mathrm{H}), 3.31-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.54-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 3 \mathrm{H})$.

5-[3-(Benzyloxy)cyclobutyl]-2-methylmorpholine (170) as diastereomer mixture (8 isomers).

5-[3-(Benzyloxy)cyclobutyl]-2-methylmorpholin-3-one (169, diastereomer mixture, 8 isomers) ($953 \mathrm{mg}, 3.46 \mathrm{mmol}$) was initially charged in tetrahydrofuran (10 mL), borane-dimethyl sulfide complex solution (2 M in tetrahydrofuran, $6.92 \mathrm{~mL}, 13.8 \mathrm{mmol}$) was added under argon and the mixture was stirred under reflux for 3 h . The reaction solution was then carefully added dropwise to ethanol $(50.0 \mathrm{~mL})$ and stirred under reflux for 8 h . The mixture was then concentrated under reduced pressure, and the residue was taken up in acetonitrile and purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 170. Yield: 780 mg (84%). LC-MS (method 1 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.57 /$ 0.60; MS (ESI+): m/z = $262[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=7.39-7.24(\mathrm{~m}, 5 \mathrm{H})$, 4.37-4.31 (m, 2H), 4.11-3.98 (m, 0.3H), 3.92-3.78 (m, 0.7H), 3.72-3.54 (m, 0.5H), 3.50-3.40 (m, 1.5H), 2.94-2.70 (m, 1H), $2.61(\mathrm{td}, 0.3 \mathrm{H}), 2.48-1.82(\mathrm{~m}, 5.7 \mathrm{H}), 1.73-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.06-0.94(\mathrm{~m}, 3 \mathrm{H}), 1$ proton concealed.

Benzyl 5-[3-(benzyloxy)cyclobutyl]-2-methylmorpholine-4-carboxylate (171) as diastereomer mixture (4 isomers).

171

5-[3-(Benzyloxy)cyclobutyl]-2-methylmorpholine (170, diastereomer mixture, 8 isomers) (900 mg , 3.44 mmol) and N, N-diisopropylethylamine ($890 \mathrm{mg}, 1.20 \mathrm{~mL}, 6.89 \mathrm{mmol}$) were initially charged in dichloromethane (45.0 mL), benzyl chloroformate ($881 \mathrm{mg}, 0.74 \mathrm{~mL}, 5.17 \mathrm{mmol}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred overnight and allowed to warm to room temperature during this time. The reaction solution was concentrated under reduced pressure and the residue was taken up in acetonitrile. Purification and diastereomer separation by HPLC (achiral reversed phase, eluent: acetonitrile / water gradient) gave $537 \mathrm{mg}(36 \%)$ of diastereomer mixture 1 (4 isomers) and 588 mg (43%) of diastereomer mixture 2 (4 isomers) which corresponds to the target compound 171. LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\min)=1.29$; MS (ESI+): $\mathrm{m} / \mathrm{z}=396[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta[\mathrm{ppm}]=7.44-7.22(\mathrm{~m}, 10 \mathrm{H}), 5.20-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.14-3.34(\mathrm{~m}, 6 \mathrm{H}), 2.88-2.57(\mathrm{~m}$, 1.5 H), 2.44-1.53 (m, 4.5H), 1.10-1.03 (m, 3H).

3-(6-Methylmorpholin-3-yl)cyclobutanol (172) as diastereomer mixture (4 isomers).

172
Benzyl 5-[3-(benzyloxy)cyclobutyl]-2-methylmorpholin-4-carboxylate (171, diastereomer mixture, 4 isomers) ($580 \mathrm{mg}, 1.47 \mathrm{mmol}$) was initially charged in ethanol (100 mL), palladium on carbon (10%, 58 mg) and palladium hydroxide on carbon $(20 \%, 58 \mathrm{mg})$ were added under argon and the mixture was then stirred under an atmosphere of hydrogen at standard pressure overnight. The reaction solution was filtered through kieselguhr and the filter residue was washed with ethanol. The filtrate was concentrated under reduced pressure and the product was dried under high vacuum to give 172. Yield: $245 \mathrm{mg}(97 \%)$. GC-MS (method 1b): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=4.60 / 4.67$; MS (EI+): m/z $=171[\mathrm{M}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): \delta[\mathrm{ppm}]=4.94-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.05(\mathrm{~d}, 0.6 \mathrm{H}), 3.93-3.82(\mathrm{~m}, 0.7 \mathrm{H}), 3.55-3.40(\mathrm{~m}, 3.3 \mathrm{H}), 3.19-$ $3.14(\mathrm{~m}, 0.7 \mathrm{H}), 3.17(\mathrm{~d}, 1 \mathrm{H}), 2.47-1.76(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.28(\mathrm{~m}, 1.5 \mathrm{H}), 1.08-0.94(\mathrm{~m}, 3.5 \mathrm{H})$.
(2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[5-(3-hydroxycyclo-butyl)-2-methylmorpholin-4-yl|methanone (43) as single stereoisomer.

2-\{[(1R)-1-(3-Chlorophenyl)ethyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid ($100 \mathrm{mg}, 0.260 \mathrm{mmol}, 90 \%$ purity) and 3-(6-methylmorpholin-3-yl)cyclobutanol as diastereomer mixture (4 isomers, 172) $(53.3 \mathrm{mg}, 0.311$, mmol, 1.2 equiv.) were initially charged in $N, N-$ dimethylformamide (1.20 mL), and N, N-diisopropylethylamine ($117 \mathrm{mg}, 158 \mu \mathrm{~L}, 0.910 \mathrm{mmol}$, 3.5 equiv.) was added. Subsequently, HATU ($118 \mathrm{mg}, 0.311 \mathrm{mmol}$) was added at room temperature and the mixture was stirred overnight. Without further work-up, the reaction solution was then purified directly by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give a diastereomer mixture (4 isomers). Yield: $105 \mathrm{mg}(80 \%)$. LC-MS (method 1 a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.97$; MS (ESI+): m/z = $500[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.70(\mathrm{br} \mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.48 (br s, 1H), 7.43-7.24 (m, 3H), 6.95-6.53 (m, 2H), 5.09-7.78 (m, 2H), 4.49-4.02 (m, 1H), 3.90 (s , $3 \mathrm{H}), 3.82-3.41(\mathrm{~m}, 3 \mathrm{H}), 3.32-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.22(\mathrm{~m}, 1 \mathrm{H})$, 2.13-1.55 (m, 3H), 1.48 (br d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-0.85(\mathrm{~m}, 4 \mathrm{H})$.

This mixture (100 mg) was submitted for diastereomer separation (preparative method: HPLC: column: Daicel Chiralpak AZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 30 \mathrm{~mm}$; eluent: 50% iso-hexane / 50% ethanol; temperature:
$25^{\circ} \mathrm{C}$; flow rate: $40 \mathrm{~mL} / \mathrm{min}$; UV-detection: 230 nm ; analytical method: HPLC: column: Daicel Chiralpak AD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$; eluent: 50% iso-hexane / 50% ethanol; temperature: $30^{\circ} \mathrm{C}$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; UV-detection: 220 nm) to give four diastereomers: single stereoisomer 1, which corresponds to the desired stereoisomer 43: Yield: $29.6 \mathrm{mg}(21 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=9.97,>99 \%$ de; LC-MS (method 1a): $\operatorname{tr}_{\mathrm{R}}(\mathrm{min})=1.00$; MS (ESI+): $\mathrm{m} / \mathrm{z}=500[\mathrm{M}+\mathrm{H}]^{+}$; 1 H NMR (400 MHz , DMSOd6): $\delta[\mathrm{ppm}]=8.70(\mathrm{brd}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.43-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.53(\mathrm{~m}, 2 \mathrm{H}), 5.09-$ $7.78(\mathrm{~m}, 2 \mathrm{H}), 4.49-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.41(\mathrm{~m}, 3 \mathrm{H}), 3.32-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.72(\mathrm{~m}, 1 \mathrm{H})$, $2.70-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{br} \mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-0.85(\mathrm{~m}$, $4 \mathrm{H})$; single stereoisomer 2: Yield: $14.2 \mathrm{mg}(10 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=11.2,>93 \%$ de; LC-MS (method $1 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.99 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=500[\mathrm{M}+\mathrm{H}]^{+}$; single stereoisomer 3: Yield: $26.8 \mathrm{mg}(19 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=13.9,>99 \%$ de; LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.00 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=500[\mathrm{M}+\mathrm{H}]^{+}$; single stereoisomer 4: Yield: $14.9 \mathrm{mg}(11 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=16.9,>90 \%$ de; LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.99 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=500[\mathrm{M}+\mathrm{H}]^{+}$.
(2-\{[(4-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[(5R)-2-(2-hydroxyethyl)-2,5-dimethylmorpholin-4-yl]methanone (44) as enantiomerically pure isomer.

2-\{[(4-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid ($100 \mathrm{mg}, 0.282 \mathrm{mmol}$) and 2-[(5R)-2,5-dimethylmorpholin-2-yl]ethanol (enantiomerically pure isomer 145) $(53.8 \mathrm{mg}, 0.338 \mathrm{mmol})$ were initially charged in N, N-dimethylformamide (1.30 mL), and $N, N-$ diisopropylethylamine ($127 \mathrm{mg}, 172 \mu \mathrm{~L}, 0.986 \mathrm{mmol}$) was added. Subsequently, HATU (129 mg , 0.338 mmol) was added at room temperature and the mixture was stirred overnight. Without further work-up, the reaction solution was then purified directly by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give $\mathbf{4 4}$ as enantiomerically pure isomer. Yield: 96.6 mg (72%). LC-MS $\left(\right.$ method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.77 ;$ MS (ESI +): $\mathrm{m} / \mathrm{z}=475[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]$ $=8.69(\mathrm{t}, 1 \mathrm{H}), 8.52(\mathrm{~d}, 1 \mathrm{H}), 7.53(\mathrm{~d}, 1 \mathrm{H}), 7.45(\mathrm{dd}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, 2 \mathrm{H}), 4.30$ (t, 1H), 3.92 (s, 3H), 3.74 (dd, 1H), 3.38 (br s, 2H), 2.96 (br s, 1H), $2.02\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.22$ (d, 3 H), $1.08(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3$ protons concealed.
(2-\{[(4-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[5-(2-hydroxyethyl)-2-methylmorpholin-4-yl]methanone (45) as enantiomerically pure isomer.

a) 80, HATU, DIEA, DMF, RT; b) i) TBAF, THF, RT, ii) enantiomer separation.
[5-(2-\{[tert-Butyl(diphenyl)silyl]oxy\}ethyl)-2-methylmorpholin-4-yl](2-%7B%5B(4-chloropyridin-2-yl)methyl%5Damino%7D-7-methoxy-1,3-benzoxazol-5-yl)methanone (173) as racemate.

2-\{[(4-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid ($600 \mathrm{mg}, 1.80 \mathrm{mmol}$) and 5-(2-\{[tert-butyl(diphenyl)silyl $]$ oxy $\}$ ethyl)-2-methylmorpholine (racemate 160) ($759 \mathrm{mg}, 1.98 \mathrm{mmol}$) were initially charged in N, N-dimethylformamide (4.90 mL), and $N, N-$ diisopropylethylamine ($744 \mathrm{mg}, 1.00 \mathrm{~mL}, 5.75 \mathrm{mmol}$) was added. HATU ($820 \mathrm{mg}, 2.16 \mathrm{mmol}$) was then added at room temperature, and the mixture was stirred for 1 h . Without further work-up, the reaction solution was then purified directly by preparative HPLC (reversed phase, eluent: acetonitrile / water $+0.1 \%$ formic acid) to give 173. Yield: $845 \mathrm{mg}(67 \%)$. LC-MS $(\operatorname{method} 2 a): t_{R}(\min)=2.94 ; M S$ (ESI +): $\mathrm{m} / \mathrm{z}=699[\mathrm{M}+\mathrm{H}]^{+}$.
(2-\{[(4-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[5-(2-hydroxyethyl)-2-methylmorpholin-4-yl]methanone (45) as enantiomerically pure isomer.

[5-(2-\{[tert-Butyl(diphenyl)silyl]oxy\}ethyl)-2-methylmorpholin-4-yl](2-\{[(4-chloropyridin-2-yl) methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)methanone (racemate 173) ($840 \mathrm{mg}, 1.20 \mathrm{mmol}$) was initially charged in tetrahydrofuran $(25.2 \mathrm{~mL})$, tetra- n-butylammonium fluoride ($628 \mathrm{mg}, 2.40 \mathrm{mmol}$) was added at room temperature and the mixture was stirred for 30 min . The reaction solution was then
concentrated under reduced pressure and the residue was purified directly by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give a racemic mixture. Yield: $525 \mathrm{mg}(91 \%)$. LC-MS (method 9a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.73 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=461[\mathrm{M}+\mathrm{H}]^{+}$.

This racemic mixture (512 mg) was submitted for enantiomer separation (preparative method: HPLC: phase: Daicel Chiralpak OD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4 \mathrm{~mm}$, mobile phase: 50% iso-hexane, 50% ethanol + 0.2% diethylamine; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; temperature: $40^{\circ} \mathrm{C}$; detection: 220 nm ; analytical method: HPLC: phase: Daicel IA $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$; mobile phase: tert-butyl methyl ether / methanol 50:50; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; temperature: $30^{\circ} \mathrm{C}$; UV detection: 220 nm) to give, after re-purification by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient), two enantiopure diastereomers: single stereoisomer 1: Yield: $179 \mathrm{mg}(32 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=4.65,>99.0 \%$ ee; LC-MS (method 2a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.74 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=461[\mathrm{M}+\mathrm{H}]^{+}$; single stereoisomer 2, which corresponds to the desired stereoisomer 45: Yield: $169 \mathrm{mg}(29 \%)$. HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=6.21,>99.0 \%$ ee; LC-MS (method 2a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.74 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=461[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta[\mathrm{ppm}]=8.70(\mathrm{~d}$, $1 \mathrm{H}), 8.52(\mathrm{~d}, 1 \mathrm{H}), 7.52(\mathrm{~d}, 1 \mathrm{H}), 7.45(\mathrm{dd}, 1 \mathrm{H}), 6.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, 2 \mathrm{H}), 4.56-4.14$ $(\mathrm{m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.37(\mathrm{~m}, 5 \mathrm{H}), 3.07-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.21-0.87(\mathrm{~m}, 3 \mathrm{H}), 1$ proton concealed.
(2-\{[(4-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[5-(3-hydroxycyclobutyl)-2-methylmorpholin-4-yl]methanone (46) as enantiomerically pure isomer.

2-\{[(4-Chloropyridin-2-yl)methyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid ($100 \mathrm{mg}, 0.282 \mathrm{mmol}$) and 3-(6-methylmorpholin-3-yl)cyclobutanol (172, diastereomer mixture, 4 isomers) ($57.9 \mathrm{mg}, 0.338 \mathrm{mmol}$) were initially charged in N, N-dimethylformamide (1.30 mL), and N, N-diisopropylethylamine ($127 \mathrm{mg}, 172 \mu \mathrm{~L}, 0,986 \mathrm{mmol}$) was added. Subsequently, HATU (129 mg , $0.338 \mathrm{mmol})$ was added at room temperature and the mixture was stirred overnight. Without further work-up, the reaction solution was then purified directly by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give a diastereomer mixture (4 isomers). Yield: 91.8 mg (67\%). LC-MS $($ method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.78$ (diastereomer 1, 2 isomers), $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.79$ (diastereomer 2, 2 isomers); MS (ESI +): $\mathrm{m} / \mathrm{z}=487[\mathrm{M}+\mathrm{H}]^{+}$.

Diastereomer separation of this mixture (86.0 mg) on achiral phase (preparative method: HPLC: phase: Sunfire C-18 $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$, mobile phase: water / acetonitrile gradient $80: 20 \rightarrow 5: 95$, flow rate: $23.75 \mathrm{~mL} / \mathrm{min}+$ constant addition of 2% strength formic acid; flow rate: $1.25 \mathrm{~mL} / \mathrm{min}$; UV
detection: 210 nm) gave 18.1 mg of diastereomer 1 (2 isomers) and 49.3 mg of diastereomer 2 (2 isomers). LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.81$ (diastereomer 1) / 0.82 (diastereomer 2); MS (ESI+): $\mathrm{m} / \mathrm{z}=487[\mathrm{M}+\mathrm{H}]^{+}$.

Enantiomer separation of 45.0 mg of diastereomer 2 (2 isomers) on chiral phase (preparative method: HPLC: phase: Daicel Chiralpak OZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$, mobile phase: iso-hexane / ethanol $30: 70+0.2 \%$ diethylamine; flow rate: $15 \mathrm{~mL} / \mathrm{min}$, temperature: $40^{\circ} \mathrm{C}$; UV detection: 220 nm ; analytical method: HPLC: phase: Daicel Chiralpak AD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$, mobile phase: iso-hexane / ethanol 50:50; flow rate: $1 \mathrm{~mL} / \mathrm{min}$, temperature: $40^{\circ} \mathrm{C}$; UV detection: 220 nm) gave 14.2 mg of enantiomerically pure isomer 1 which corresponds to $\mathbf{4 6}$ (HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.23,>99.9 \%$ ee) and 19.8 mg of enantiomerically pure isomer $2\left(\mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}(\mathrm{min})=10.4,>99.9 \%\right.$ ee $)$. LC-MS $($ method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.78$ (enantiomerically pure isomer 1,46$) / 0.78$ (enantiomerically pure isomer 2); MS (ESI +): m/z $=487[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.71(\mathrm{t}, 1 \mathrm{H}), 8.51(\mathrm{~d}$, $1 \mathrm{H}), 7.53(\mathrm{~d}, 1 \mathrm{H}), 7.45(\mathrm{~d}, 1 \mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}), 6.67(\mathrm{~d}, 1 \mathrm{H}), 5.03-4.81(2 \mathrm{x} \mathrm{m}, 1 \mathrm{H}), 4.70-4.56(\mathrm{~m}, 2 \mathrm{H})$, 4.41-4.04 $(2 \mathrm{x} \mathrm{m}, 1 \mathrm{H}), 3.85-3.42(\mathrm{~m}, 5 \mathrm{H}), 3.28-2.91(2 \mathrm{x} \mathrm{m}, 1 \mathrm{H}), 2.69-2.5(2 \mathrm{x} \mathrm{m}, 1 \mathrm{H}$, partially concealed), 2.43-2.05 ($2 \mathrm{x} \mathrm{m}, 3 \mathrm{H}$), 1.74-1.54 ($\mathrm{m}, 1 \mathrm{H}$), 1.34-0.82 (m, 5 H), 1 proton concealed.
\{2-[(3-Chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridin-6-yl\}[(5R)-2-(2-hydroxyethyl)-2,5-dimethylmorpholin-4-yl]methanone (47) as enantiomerically pure isomer.

2-[(3-Chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridine-6-carboxylic acid (114) (100 mg , 0.301 mmol) and 2-[(5R)-2,5-dimethylmorpholin-2-yl]ethanol (enantiomerically pure isomer 145) ($57.4 \mathrm{mg}, 0.361 \mathrm{mmol}$) were initially charged in N, N-dimethylformamide (1.38 mL), and $N, N-$ diisopropylethylamine ($136 \mathrm{mg}, 183 \mu \mathrm{~L}, 1.05 \mathrm{mmol}$) was added. Subsequently, HATU (137 mg , 0.361 mmol) was added at room temperature and the mixture was stirred overnight. Without further work-up, the reaction solution was then purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give 47. Yield: $97.6 \mathrm{mg}(67 \%)$. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.88$; MS (ESI+): m/z = $474[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.30(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H})$, 7.37-7.20 (m, 4H), $6.86(\mathrm{~d}, 1 \mathrm{H}), 4.46(\mathrm{~d}, 2 \mathrm{H}), 4.28(\mathrm{t}, 1 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{dd}, 1 \mathrm{H})$, $3.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.48-3.32(\mathrm{~m}, 3 \mathrm{H}), 3.10-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.00\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.49\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.25(\mathrm{~d}, 3 \mathrm{H}), 1.09$ ($\mathrm{s}, 3 \mathrm{H}$).

\{2-[(3-Chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridin-6-yl\}[5-(2-hydroxyethyl)-2-

 methylmorpholin-4-yl]methanone (48) as enantiomerically pure isomer.

a) 2-chloropropionyl chloride, TEA, 2-propanol, $0^{\circ} \mathrm{C}$ to RT ; b) KOt - $\mathrm{Bu}, 2$-propanol, $0^{\circ} \mathrm{C}$; c) $\mathrm{BH}_{3} \mathrm{x}$ $\mathrm{Me}_{2} \mathrm{~S}$, THF, RF; d) $\mathrm{H}_{2}(1 \mathrm{bar}), 10 \% \mathrm{Pd} / \mathrm{C}, 20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{EtOH}, \mathrm{RT}$; e) i) 114, HATU, DIEA, DMF, RT, ii) enantiomer separation.
N-Benzyl-2-chloro- N-(1,4-dihydroxybutan-2-yl)propanamide (174) as diastereomer mixture (4 isomers).

2-(Benzylamino)butane-1,4-diol (racemate) ($20.6 \mathrm{~g}, 106 \mathrm{mmol}$) [lit: Feringa, B. L.; de Lange, B. Heterocycles 1988, 27, 1197-1205] was initially charged in 2-propanol (500 mL), the mixture was cooled to $0^{\circ} \mathrm{C}$ and triethylamine ($21.4 \mathrm{~g}, 29.4 \mathrm{~mL}, 211 \mathrm{mmol}$) was added. 2-Chloropropionyl chloride (racemate) ($16.1 \mathrm{~g}, 12.6 \mathrm{~mL}, 127 \mathrm{mmol}$) was then added dropwise. After 30 min of stirring, a further 2chloropropionyl chloride (racemate) ($10.4 \mathrm{~g}, 8.37 \mathrm{~mL}, 84.4 \mathrm{mmol}$) was added dropwise, and the reaction solution was allowed to warm to room temperature. The solution was then concentrated under reduced pressure and the residue was taken up in ethyl acetate (500 mL) and washed with aqueous hydrogen chloride solution ($0.5 \mathrm{~N}, 400 \mathrm{~mL}$). The aqueous phase was extracted repeatedly with ethyl acetate. The organic phases were dried over sodium sulfate, filtered and concentrated under reduced pressure to give 174 as crude product which was used without further purification in the next step. Yield: $37.5 \mathrm{~g}(78 \%$, 63% purity, diastereomer ratio about 2:1). LC-MS (method 1 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.71$ (diastereomer 1 , 2 isomers), $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.72$ (diastereomer 2, 2 isomers); MS (ESI+): $\mathrm{m} / \mathrm{z}=286[\mathrm{M}+\mathrm{H}]^{+}$.

4-Benzyl-5-(2-hydroxyethyl)-2-methylmorpholin-3-one (175) as diastereomer mixture (4 isomers).

A mixture of N-benzyl-2-chloro- N-(-1,4-dihydroxybutan-2-yl)propanamide (174, diastereomer mixture, 4 isomers) ($37.5 \mathrm{~g}, 82.5 \mathrm{mmol}, 63 \%$ purity) in 2-propanol (500 mL) was cooled to $0{ }^{\circ} \mathrm{C}$, and potassium tert-butoxide $(73.5 \mathrm{~g}, 655 \mathrm{mmol})$ was then added in one portion. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and most of the 2-propanol was then removed under reduced pressure. The residue was taken up in ethyl acetate and washed with an aqueous hydrogen chloride solution ($1 \mathrm{~N}, 400 \mathrm{~mL}$). The organic phase was dried over sodium sulfate, filtered and concentrated under reduced pressure to give 175 as crude product which was used without further purification in the next step. Yield: 28.8 g (quantitative, 82% purity, diastereomer ratio about $2.5: 1$). LC-MS (method 3 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.42$ $\left(\right.$ diastereomer 1, 2 isomers), $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=1.46$ (diastereomer 2, 2 isomers); $\mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=250[\mathrm{M}+\mathrm{H}]^{+}$.

2-(4-Benzyl-6-methylmorpholin-3-yl)ethanol (176) as racemate.

4-Benzyl-5-(2-hydroxyethyl)-2-methylmorpholin-3-one (175, diastereomer mixture, 4 isomers) ($28.8 \mathrm{~g}, 94.7 \mathrm{mmol}, 82 \%$ purity) was initially charged in tetrahydrofuran (800 mL), borane-dimethyl sulfide complex solution (2 M in tetrahydrofuran, $231 \mathrm{~mL}, 462 \mathrm{mmol}$) was added under argon and the mixture was stirred under reflux for 2 h . The mixture was subsequently cooled to $0{ }^{\circ} \mathrm{C}$, methanol $(220 \mathrm{~mL})$ was added carefully and the mixture was stirred under reflux for 30 min . The mixture was subsequently concentrated completely under reduced pressure, and 6.0 g of the residue were taken up in acetonitrile and subjected to purification and diastereomer separation by preparative HPLC (reversed phase, eluent: acetonitrile / water, isocratic) to give the minor diastereomer 1 (698 mg , racemate) and 176 as second eluating component and main diastereomer 2 (1.95 g , racemate); LC-MS (method 4a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=2.23($ diastereomer 1$) / 2.33\left(\right.$ diastereomer 2, 176); $\mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=236[\mathrm{M}+\mathrm{H}]^{+}$.

2-(6-Methylmorpholin-3-yl)ethanol (177) as racemate.

2-(4-Benzyl-6-methylmorpholin-3-yl)ethanol (racemate 176) (1.95 g, 8.29 mmol) was initially charged in ethanol $(83 \mathrm{~mL})$, palladium on carbon $(10 \%, 208 \mathrm{mg})$ and palladium hydroxide on carbon $(20 \%$, 104 mg) were added under argon, and the mixture was then stirred under an atmosphere of hydrogen at standard pressure overnight. The reaction solution was filtered through kieselguhr and the filter residue was washed with ethanol. The filtrate was concentrated under reduced pressure and the product was dried under high vacuum to give 177. Yield: 1.37 g (quantitative). $\mathrm{MS}(\operatorname{method} 1 \mathrm{c})$: $\mathrm{m} / \mathrm{z}=146[\mathrm{M}+\mathrm{H}]^{+}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=3.53-3.41(\mathrm{~m}, 5 \mathrm{H}), 2.69\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.60-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.82-$ $1.69(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, 3 \mathrm{H}), 2$ protons concealed.

\{2-[(3-Chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridin-6-yl\}[5-(2-hydroxyethyl)-2-

 methylmorpholin-4-yl]methanone (48) as enantiomerically pure isomer.

2-[(3-Chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridine-6-carboxylic acid (114) (120 mg, 0.361 mmol) and 2-(6-methylmorpholin-3-yl)ethanol (racemate 177) ($62.8 \mathrm{mg}, 0.433 \mathrm{mmol}$) were initially charged in N, N-dimethylformamide $(1.66 \mathrm{~mL})$, and N, N-diisopropylethylamine (163 mg , $220 \mu \mathrm{~L}, 1.26 \mathrm{mmol}$) was added. Subsequently, HATU ($165 \mathrm{mg}, 0.433 \mathrm{mmol}$) was added at room temperature and the mixture was stirred overnight. Without further work-up, the reaction solution was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to a racemate. Yield: $143 \mathrm{mg}(86 \%)$. LC-MS $(\operatorname{method} 1 \mathrm{a}): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.88 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=460[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.59-$ $4.06(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.86-3.39(\mathrm{~m}, 5 \mathrm{H}), 2.01-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.24-0.94(\mathrm{~m}, 3 \mathrm{H}), 2$ protons concealed.

Enantiomer separation of this racemate $(138 \mathrm{mg})$ on chiral phase (preparative method: HPLC: phase: Daicel Chiralpak IC $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$; mobile phase: tert-butyl methyl ether / methanol 50:50; flow rate: $20 \mathrm{~mL} / \mathrm{min}$; temperature: $25^{\circ} \mathrm{C}$; UV detection: 220 nm ; analytical method: HPLC: phase: Daicel Chiralpak IC $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$; mobile phase: tert-butyl methyl ether / methanol 50:50; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; temperature: $30^{\circ} \mathrm{C}$; UV detection: 220 nm) gave 35.2 mg of enantiomerically
pure isomer 1 which corresponds to $48\left(\mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}(\mathrm{min})=5.43,>99.0 \%\right.$ ee) and 35.9 mg of enantiomerically pure isomer 2 (HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=9.08,>99.0 \%$ ee).
Enantiomerically pure isomer 1, 48: LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.87$; MS (ESI +): $\mathrm{m} / \mathrm{z}=460$ $[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.23(\mathrm{~m}, 4 \mathrm{H})$, $6.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.61-4.08(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.86-3.37(\mathrm{~m}, 5 \mathrm{H}), 2.01-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.22-0.91(\mathrm{~m}$, 3 H), two protons obscured.
Enantiomerically pure isomer 2: LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.87$; MS (ESI +): $\mathrm{m} / \mathrm{z}=460[\mathrm{M}+\mathrm{H}]^{+}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta[\mathrm{ppm}]=8.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{br} \mathrm{s}$, $1 \mathrm{H})$, 4.62-4.09 (m, 4H), $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.38(\mathrm{~m}, 5 \mathrm{H}), 2.00-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.19-0.93(\mathrm{~m}, 3 \mathrm{H})$, two protons obscured.

\{2-[(3-Chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridin-6-yl\}[5-(3-

hydroxycyclobutyl)-2-methylmorpholin-4-yl]methanone (49) as two diastereoisomers.

2-[(3-Chlorobenzyl)amino]-8-methoxy[1,2,4]triazolo[1,5-a]pyridine-6-carboxylic acid (114) (100 mg, $0.301 \mathrm{mmol})$ and 3 -(6-methylmorpholin-3-yl)cyclobutanol ($\mathbf{1 7 2}, 4$ isomers) ($61.8 \mathrm{mg}, 0.361 \mathrm{mmol}$) were initially charged in N, N-dimethylformamide (1.38 mL), and N, N-diisopropylethylamine (136 mg , $183 \mu \mathrm{~L}, 1.05 \mathrm{mmol}$) was added. Subsequently, HATU ($137 \mathrm{mg}, 0.361 \mathrm{mmol}$) was added at room temperature and the mixture was stirred overnight. Without further work-up, the reaction solution was then purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give a diastereomer mixture (4 isomers). Yield: $97.6 \mathrm{mg}(67 \%)$. LC-MS (method 1 a$)$: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.87$; MS (ESI+): $\mathrm{m} / \mathrm{z}=486[\mathrm{M}+\mathrm{H}]^{+}$.

Diastereomer separation of this mixture (93.0 mg) on chiral phase (preparative method: HPLC: phase: Daicel Chiralcel AD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 20 \mathrm{~mm}$; mobile phase: iso-hexane / ethanol $50: 50+0.2 \%$ diethylamine; flow rate: $20 \mathrm{~mL} / \mathrm{min}$; temperature: $20^{\circ} \mathrm{C}$; UV detection: 220 nm ; analytical method: HPLC: phase: Daicel Chiralcel AD-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$; mobile phase: iso-hexane / ethanol $50: 50+0.2 \%$ diethylamine; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; temperature: $40^{\circ} \mathrm{C}$; UV detection: 220 nm) gave 30.2 mg of diastereomer $1+$ diastereomer 2: HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=11.5$; LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=$ 0.87 (diastereomer 1), $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.88$ (diastereomer 2); MS (ESI+): $\mathrm{m} / \mathrm{z}=486[\mathrm{M}+\mathrm{H}]^{+}$and 34.8 mg of diastereomer $3+$ diastereomer 4 which corresponds to 49: HPLC: $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=25.0 ;$ LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.87($ diastereomer 3$), \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.88($ diastereomer 4$) ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=486[\mathrm{M}+\mathrm{H}]^{+}$.

(2-\{[(1S)-1-(3-Chlorophenyl)-2-fluoroethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[(5R)-2-(2-

 hydroxyethyl)-2,5-dimethylmorpholin-4-yl]methanone (50) as enantiomerically pure isomer.

2-\{[1-(3-Chlorophenyl)-2-fluoroethyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (racemate of 75) ($120 \mathrm{mg}, 77 \%$ purity, 0.250 mmol) and 2-[(5R)-2,5-dimethylmorpholin-2-yl]ethanol (145, enantiomerically pure isomer) ($48.4 \mathrm{mg}, 0.300 \mathrm{mmol}$) were initially charged in $N, N-$ dimethylformamide (1.17 mL), and N, N-diisopropylethylamine ($115 \mathrm{mg}, 154 \mu \mathrm{~L}, 0.890 \mathrm{mmol}$) was added. HATU ($116 \mathrm{mg}, 0.300 \mathrm{mmol}$) was then added at room temperature, and the mixture was stirred for 2 h . Without further work-up, the reaction solution was purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give a $1: 1$ diastereomer mixture (2 isomers). Yield: $112 \mathrm{mg}(84 \%)$. LC-MS (method 1 a$): \mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.93 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=506[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta[\mathrm{ppm}]=9.00(\mathrm{dd}, 1 \mathrm{H}), 7.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.50-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H}), 5.24\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.80-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{t}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, 1 \mathrm{H}), 2.96(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H})$, $2.02\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.43(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 1.29-1.02(\mathrm{~m}, 6 \mathrm{H}), 6$ protons concealed.

Diastereomer separation of this mixture (102 mg) on chiral phase (preparative method: HPLC: phase: Daicel Chiralpak AZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 30 \mathrm{~mm}$, mobile phase: iso-hexane / ethanol 50:50; flow rate: $40 \mathrm{~mL} / \mathrm{min}$, temperature: $25^{\circ} \mathrm{C}$; UV detection: 220 nm ; analytical method: HPLC: phase: Daicel Chiralcel AZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$, mobile phase: iso-hexane / ethanol 50:50; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; temperature: $30^{\circ} \mathrm{C}$; UV detection: 220 nm) gave, after re-purification by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient), 24.7 mg of enantiomerically pure isomer 1 $\left(\right.$ HPLC: $\left.\mathrm{t}_{\mathrm{R}}(\mathrm{min})=13.6,>99.0 \% \mathrm{de}\right)$ and 24.0 mg of the enantiomerically pure isomer $2\left(\mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}\right.$ $(\min)=15.6,98.5 \% d e)$ which corresponds to $\mathbf{5 0}$.
Enantiomerically pure isomer $1: L C-M S(\operatorname{method} 1 a): t_{R}(\min)=0.93 ; M S(E S I+): m / z=506[M+H]^{+}$; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta[\mathrm{ppm}]=9.00(\mathrm{~d}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H}), 5.24\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.80-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{t}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, 1 \mathrm{H}), 2.96(\mathrm{br} \mathrm{s}$, $0.5 \mathrm{H}), 2.00\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.43(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 1.26-1.02(\mathrm{~m}, 6 \mathrm{H})$, six protons obscured; enantiomerically pure isomer 2, 50: LC-MS (method 1a): $\mathrm{t}_{\mathrm{R}}(\min)=0.93 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=506[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}): $\delta[\mathrm{ppm}]=9.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.24$ (br d, 1H), 4.86-4.48 (m, 2H), $4.32(\mathrm{t}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, 1 \mathrm{H}), 2.96(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 2.00\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$, $1.43(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 1.21(\mathrm{~d}, 3 \mathrm{H}), 1.07(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 6$ protons concealed.

(2-\{[(1S)-1-(3-Chlorophenyl)-2-fluoroethyl]amino\}-7-methoxy-1,3-benzoxazol-5-yl)[5-(3-

 hydroxycyclobutyl)-2-methylmorpholin-4-yl]methanone (52) as enantiomerically pure isomer.

2-\{[1-(3-Chlorophenyl)-2-fluoroethyl]amino\}-7-methoxy-1,3-benzoxazole-5-carboxylic acid (enantiomerically pure isomer \boldsymbol{S}-75) ($200 \mathrm{mg}, 60 \%$ purity, 0.33 mmol) and 3-(6-methylmorpholin-3yl)cyclobutanol (172, diastereomer mixture, 4 isomers) ($67.6 \mathrm{mg}, 0.40 \mathrm{mmol}$) were initially charged in N, N-dimethylformamide (2.50 mL) , and N, N-diisopropylethylamine ($170 \mathrm{mg}, 229 \mu \mathrm{~L}, 1.32 \mathrm{mmol}$) was added. HATU ($150 \mathrm{mg}, 0.40 \mathrm{mmol}$) was then added at room temperature, and the mixture was stirred for 2 h . Without further work-up, the reaction solution was then purified by preparative HPLC (reversed phase, eluent: acetonitrile / water gradient) to give a diastereomer mixture. Yield: 83.9 mg (48\%). LCMS (method 1a): $\mathrm{t}_{\mathrm{R}}(\mathrm{min})=0.94,0.95 ; \mathrm{MS}(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=518[\mathrm{M}+\mathrm{H}]^{+}$.

Diastereomer separation of this mixture $(75.0 \mathrm{mg})$ on chiral phase (preparative method: HPLC: phase: Daicel Chiralpak AZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 30 \mathrm{~mm}$, mobile phase: iso-hexane / ethanol 50:50; flow rate: $40 \mathrm{~mL} / \mathrm{min}$; temperature: $20^{\circ} \mathrm{C}$; UV detection: 220 nm ; analytical method: HPLC: phase: Daicel Chiralcel OZ-H $5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$, mobile phase: iso-hexane / ethanol 50:50; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; temperature: $30^{\circ} \mathrm{C}$; UV detection: 220 nm) gave 17.4 mg of enantiomerically pure isomer 1 (HPLC: $\left.\mathrm{t}_{\mathrm{R}}(\mathrm{min})=11.1,>99 \% \mathrm{de}\right), 8.6 \mathrm{mg}$ of enantiomerically pure isomer 2 which corresponds to $52\left(\mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}(\min)=12.6,94.3: 5.7 \mathrm{dr}\right), 17.7 \mathrm{mg}$ of enantiomerically pure isomer $3\left(\mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}(\mathrm{min})=\right.$ $14.5,>99 \% d e)$ and 9.5 mg of enantiomerically pure isomer $4\left(\mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}(\mathrm{min})=17.2,96.1: 3.9 \mathrm{dr}\right.$. LC-MS $(\operatorname{method} 1 a): t_{R}(\min)=0.95($ enantiomerically pure isomer 1$) / 0.95$ (enantiomerically pure isomer $2, \mathbf{5 2}$) / 0.95 (enantiomerically pure isomer 3) / 0.94 (enantiomerically pure isomer 4); MS $(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}=518[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta[\mathrm{ppm}]=9.05-8.96(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H})$, $7.50-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~d}, 1 \mathrm{H}), 6.71(\mathrm{~d}, 1 \mathrm{H}), 5.31-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.84(2 \mathrm{x} \mathrm{m}, 1 \mathrm{H}), 4.81-4.53(3 \mathrm{x}$ $\mathrm{m}, 2 \mathrm{H}), 4.44-4.08(3 \mathrm{x} \mathrm{m}, 2 \mathrm{H}), 3.77-3.44(2 \mathrm{x} \mathrm{m}, 4 \mathrm{H}), 3.3-3.19(\mathrm{~m}, 1 \mathrm{H}$, partially concealed), 2.95-2.72 $(2 \mathrm{x} \mathrm{m}, 1 \mathrm{H}), 2.08-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.35-0.77(\mathrm{~m}, 6 \mathrm{H})$.
B. ${ }^{1}$ H NMR data of intermediates 53-58, 60-62, 64-65, 67-69, 72-75, and BAY 1217224 (51):
${ }^{1} \mathrm{H}$ NMR compound 53

${ }^{1} \mathrm{H}$ NMR of compound 54

54

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 5}$

55

${ }^{1} \mathrm{H}$ NMR of compound 56

${ }^{1} \mathrm{H}$ NMR of compound 57

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 8}$

58

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 0}$

60

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 1}$

61

${ }^{1} \mathrm{H}$ NMR of compound 62

${ }^{1} \mathrm{H}$ NMR of compound $(R)-64$

${ }^{1} \mathrm{H}$ NMR of compound (S)-64

${ }^{1} \mathrm{H}$ NMR of compound (S)-65

(S)-65

${ }^{1} \mathrm{H}$ NMR of compound 67

HCl

(S)-67

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 8}$

(S)-68

${ }^{1} \mathrm{H}$ NMR of compound 69

(S)-69

${ }^{1} \mathrm{H}$ NMR of compound (S, S)-72

$(S, S)-72$

${ }^{1} \mathrm{H}$ NMR of compound (S, R)-72

$(S, R)-72$

${ }^{1} \mathrm{H}$ NMR of compound $(S, S)-73$

$(S, S)-73$

${ }^{1} \mathrm{H}$ NMR of compound 74

${ }^{1} \mathrm{H}$ NMR of compound 75

(S)-75

${ }^{1} \mathrm{H}$ NMR of BAY 1217224 (51)

LC-MS (method 1a) of 20a

1: (Time: 0.84) 1:MS RS+

LC-MS (method 1a) of $\mathbf{3 8}$

3: UV Detector: 210

$$
\text { 1: (Time: } 0.87 \text {) }
$$

1:MS ES+
$2.3 e+006$

LC-MS (method 9a) of $\mathbf{4 0}$

3: UV Detector: 210

$\begin{array}{rr}\text { Peak ID } & \text { Time } \\ 1 & 0.99\end{array}$
$1:$ (Time: 0.99) $\quad 1:$ MS ES +

$\begin{array}{rr}\text { Peak ID } & \text { Time } \\ 1 & 0.99\end{array}$
1:(Time: 0.99) 2:MS ES-

LC-MS (method 9a) of 41

$\begin{array}{rr}\text { Peak ID } & \text { Time } \\ 1 & 0.91\end{array}$
$1:($ Time: 0.91) $\quad 1:$ MS ES +

$\begin{array}{rr}\text { Peak ID } & \text { Time } \\ 1 & 0.91\end{array}$
1: (Time: 0.91) 2:MS ES-

LC-MS (method 1a) of 44

$\begin{array}{rr}\text { Peak ID } & \text { Time } \\ 1 & 0.77\end{array}$
1: (Time: 0.77) $\quad 1:$ MS ES+

$\begin{array}{rr}\text { Peak ID } & \text { Time } \\ 1 & 0.77\end{array}$
1: (Time: 0.77) 2:MS ES-

LC-MS (method 2a) of $\mathbf{4 5}$

3: UV Detector: 210
1.167

$\begin{array}{rr}\text { Peak ID } & \text { Time } \\ 1 & 0.74\end{array}$
$1:$ (Time: 0.74) $\quad 1:$ MS ES +

$$
\begin{array}{rr}
\text { Peak ID } & \text { Time } \\
1 & 0.74
\end{array}
$$

$1:$ (Time: 0.74) $2:$ MS ES-
2007

LC-MS (method 1a) of 47

3: UV Detector: 210

$\begin{array}{rr}\text { Peak ID } & \text { Time } \\ 1 & 0.74\end{array}$
$1:($ Time: 0.74) $1:$ MS ES +

$\begin{array}{rr}\text { Peak ID } & \text { Time } \\ 1 & 0.74\end{array}$
1: (Time: 0.74) 2:MS ES-

LC-MS (method 1a) of 50

3: UV Detector: 210 Smooth (Mn, 2x2)

Peak ID Time

$$
\begin{array}{rr}
1 & 0.93 \\
1:(\text { Time }: 0.93) & 1: \text { MS ES }+
\end{array}
$$

$$
\begin{array}{cc}
\text { Peak ID } & \text { Time } \\
1 & 0.93
\end{array}
$$

$$
1: \text { (Time: } 0.93 \text {) } \quad 2: \text { MS ES- }
$$

LC-MS (method 1a) of BAY 1217224 (51)

3: UV Detector: 210

1: (Time: 0.93)
1:MS ES+

1: (Time: 0.93)
2:MS ES-
$2.4 \mathrm{e}+005$

C. Table S1-S4

Table S1. Structure-based druggability assessment using SiteMap. PDB IDs used for the analysis and details on the output of SiteMap ${ }^{1}$

Target	PDB ID	Dscore	SScore	Volume $\left[\AA^{3}\right]$	Size	Enclosure	'Philic'	'Phobic'
Flla	1 KTS 2	1.055	1.016	412	172	0.683	0.905	0.938
FVIIa	2 EC9 3	0.771	0.813	119	46	0.750	0.970	0.698
FIXa	1 RFN 4	0.997	1.002	287	104	0.701	1.116	0.388
FXa	2 W26 5	1.081	1.013	280	120	0.624	0.716	1.098
FXIa	3 SOS 6	1.055	1.019	312	113	0.694	0.926	0.806

Table S2. WaterMap Analysis on Thrombin.

Analyzed x-ray structure PDB ID $1 \mathrm{KTS}^{2}$. Hydration site number as provided by WaterMap ${ }^{7}$, ${ }^{8}$ and details on the energetics of respective water sites. $\Delta \mathrm{G}$ and $\Delta \mathrm{H}$ given in $\mathrm{kcal} / \mathrm{mol}$, occupancy: 1 equals 100%.

Site No.	$\Delta \mathrm{G}$	ΔH	$-\mathrm{T} \Delta \mathrm{S}$	Occupancy
3	6.9	3.8	3.1	0.87
36	6.6	5.7	0.9	0.28
1	5.6	2.4	3.2	0.95
8	5.5	2.9	2.6	0.74
31	3.5	2.6	0.9	0.31
34	3.4	2.6	0.7	0.29
11	2.6	0.6	2.1	0.66
5	2.6	-0.5	3.1	0.86

Table S3. Average Physicochemical Properties of the Four Compound Series
MWcorr ${ }^{9}$ stands for corrected molecular weight, LE ligand efficiency ${ }^{10}$, LLE lipophilic ligand efficiency ${ }^{11}$.

Series	No. of compounds	Av. clogP	Av. tPSA $\left[\AA^{2}\right]$	Av. MW corr	Av. LE	Av. LLE	Av. IC50 $[n M]$
Indazoles	48	4.6	68	421	0.28	1.8	530
Oxazolidinones	51	3.2	96	480	0.29	4.0	95
Imidazoles	263	5.6	91	521	0.26	1.7	384
Benzoxazoles	159	5.1	75	457	0.28	1.7	538

Table S4. Data Collection and Refinement Statistics (Values in Brackets Refer to the Highest Resolution Shell)

Protein	Thrombin								PXR
Compd No.	10	17	20a	31	40	51	42a	42b	17
PDB ID	6ZUG	6ZUH	6ZUN	6ZUU	6ZUW	6ZV8	6ZUX	6ZV7	6TFI
Data Collection and Processing									
Wavelength [Å]	1.541870	1.541870	1.541870	1.541870	1.541870	1.541870	1.541870	1.541870	0.91841
Space group (no.)	C2	C2	C2	C2	C2	$C 2$	C2	C2	$P 2{ }_{1} 2_{1} 2_{1}$
Unit cell	70.151	70.091	69.73	69.97	70.16	69.166	70.26	69.66	85.36
parameters,	71.058	71.054	71.04	71.30	71.31	70.342	71.30	71.40	88.96
$a, b, c[A ̊]$,	72.316	72.620	71.79	71.86	72.08	71.372	72.45	71.47	105.66
beta [${ }^{\text {] }}$	100.270	100.512	99.52	99.92	100.25	100.28	100.43	99.61	90
Resolution limit [Å]	$\begin{aligned} & 1.8-31.78 \\ & (1.8-1.9) \end{aligned}$	$\begin{aligned} & 1.7-20.43 \\ & (1.7-1.79) \end{aligned}$	$\begin{aligned} & 1.79-42.99 \\ & (1.79-1.89) \end{aligned}$	$\begin{aligned} & 1.93-43.19 \\ & \text { (1.93-2.03) } \end{aligned}$	$\begin{gathered} 2.00-43.33 \\ (2.00- \\ 2.11) \end{gathered}$	$\begin{aligned} & 1.59-70.23 \\ & (1.55-1.64) \end{aligned}$	1.93-43.45	1.93-43.01	$\begin{aligned} & 1.85-44.48 \\ & (1.85-1.96) \end{aligned}$
No. of reflections	$\begin{gathered} 93178 \\ (12782) \end{gathered}$	$\begin{gathered} 109295 \\ (3367) \end{gathered}$	$\begin{aligned} & 69947 \\ & (8688) \end{aligned}$	$\begin{gathered} 803764 \\ (9533) \end{gathered}$	23699	130734	68635	185521	344156
No. of unique reflections	$\begin{aligned} & 30046 \\ & (4154) \end{aligned}$	$\begin{aligned} & 31839 \\ & (1760) \end{aligned}$	$\begin{aligned} & 28450 \\ & \text { (3929) } \end{aligned}$	$\begin{aligned} & 23907 \\ & (2905) \end{aligned}$	23699	40347	25381	25162	67925
Multiplicity	3.1	3.4	2.46	3.36	7.1	2.8	2.7	7.4	5.1
I/ $\sigma(1)$	$\begin{aligned} & 10.64 \\ & (3.65) \end{aligned}$	$\begin{aligned} & 12.89 \\ & (2.92) \end{aligned}$	8.57 (2.38)	5.77 (1.26)	12.7 (5.0)	$\begin{aligned} & 12.95 \\ & (2.85) \end{aligned}$	13.0 (4.8)	9.17 (2.55)	$\begin{aligned} & 17.15 \\ & (1.82) \end{aligned}$
$R_{\text {meas }}$ [\%]	4.9 (24.4)	4.7 (36.0)	8.0 (42.0)	13.0 (69.0)	9.90 (38.1)	$\begin{gathered} 6.42 \\ (26.78) \end{gathered}$	5.5 (19.9)	6.2 (30.0)	5.9 (97.7)
Completenes $\mathrm{s} \text { [\%] }$	$\begin{gathered} 92.91 \\ (88.43) \\ \hline \end{gathered}$	$\begin{gathered} 82.64 \\ (31.50) \\ \hline \end{gathered}$	$\begin{gathered} 87.67 \\ (83.37) \\ \hline \end{gathered}$	$\begin{gathered} 90.99 \\ (90.99) \\ \hline \end{gathered}$	100 (100)	89.2 (90.2)	95.4 (85.4)	$\begin{gathered} 96.41 \\ (82.53) \\ \hline \end{gathered}$	97.9 (98.7)
Refinement									
$R_{\text {work }} / R_{\text {free }}$ [\%]	$\begin{gathered} 16.88 / 21.1 \\ 7 \end{gathered}$	$\begin{gathered} 17.82 / 21.7 \\ 8 \end{gathered}$	$\begin{gathered} 22.65 / 26.2 \\ 2 \end{gathered}$	$\begin{gathered} 16.37 / 21.2 \\ 0 \end{gathered}$	$\begin{gathered} 16.58 / 21.3 \\ 5 \end{gathered}$	20.90/24.0 5	16.21/20.6 0	15.18/19.0 2	$\begin{gathered} 17.47 / 20.2 \\ 1 \end{gathered}$
RMSD bond length [Å]	0.016	0.012	0.030	0.022	0.020	0.018	0.020	0.019	0.017
RMSD bond angles [${ }^{\circ}$]	2.566	2.342	3.009	2.303	2.199	1.952	2.011	2.639	1.73
B factors [${ }^{2}$]	41.386	26.847	57.292	35.132	35.252	35.081	28.009	29.767	44.75

REFERENCES

1. Halgren, T. A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model. 2009, 49, 377-389.
2. Hauel, N. H.; Nar, H.; Priepke, H.; Ries, U.; Stassen, J. M.; Wienen, W. Structurebased design of novel potent nonpeptide thrombin inhibitors. J. Med. Chem. 2002, 45, 17571766.
3. Krishnan, R.; Kotian, P. L.; Chand, P.; Bantia, S.; Rowland, S.; Babu, Y. S. Probing the S 2 site of factor VIIa to generate potent and selective inhibitors: the structure of BCX3607 in complex with tissue factor-factor VIIa. Acta Crystallogr. D Biol. Crystallogr. 2007, 63, 689-697.
4. Hopfner, K. P.; Lang, A.; Karcher, A.; Sichler, K.; Kopetzki, E.; Brandstetter, H.; Huber, R.; Bode, W.; Engh, R. A. Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding. Structure 1999, 7, 989-996.
5. Roehrig, S.; Straub, A.; Pohlmann, J.; Lampe, T.; Pernerstorfer, J.; Schlemmer, K. H.; Reinemer, P.; Perzborn, E. Discovery of the novel antithrombotic agent 5-chloro-N-(\{(5S)-2-oxo-3- [4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl\} methyl)thiophene- 2carboxamide (BAY 59-7939): an oral, direct factor Xa inhibitor. J. Med. Chem. 2005, 48, 5900-5908.
6. Fradera, X.; Kazemier, B.; Carswell, E.; Cooke, A.; Oubrie, A.; Hamilton, W.; Dempster, M.; Krapp, S.; Nagel, S.; Jestel, A. High-resolution crystal structures of factor XIa coagulation factor in complex with nonbasic high-affinity synthetic inhibitors. Acta Crystallogr. Sect F Struct. Biol. Cryst. Commun. 2012, 68, 404-408.
7. Abel, R.; Young, T.; Farid, R.; Berne, B. J.; Friesner, R. A. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc. 2008, 130, 2817-2831.
8. Young, T.; Abel, R.; Kim, B.; Berne, B. J.; Friesner, R. A. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl. Acad. Sci. U S A 2007, 104, 808-813.
9. Lobell, M.; Hendrix, M.; Hinzen, B.; Keldenich, J.; Meier, H.; Schmeck, C.; SchoheLoop, R.; Wunberg, T.; Hillisch, A. In silico ADMET traffic lights as a tool for the prioritization of HTS hits. ChemMedChem 2006, 1, 1229-1236.
10. Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 2004, 9, 430-431.
11. Ryckmans, T.; Edwards, M. P.; Horne, V. A.; Correia, A. M.; Owen, D. R.; Thompson, L. R.; Tran, I.; Tutt, M. F.; Young, T. Rapid assessment of a novel series of selective $\mathrm{CB}(2)$ agonists using parallel synthesis protocols: A Lipophilic Efficiency (LipE) analysis. Bioorg. Med. Chem. Lett. 2009, 19, 4406-4409.
