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1) Absorption spectra 

 

Figure S1. Absorption spectra of all molecules studied in this work. 
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2) Joint frequency spectrum and Schmidt decomposition 

To calculate K and E of the SPDC photons in our experiment, the joint photon frequency 

spectrum must be measured, and then the Schmidt decomposition performed on this spectrum. 

First, the entangled photons are passed through a bandpass (BP) filter centered at the degenerate 

wavelength (810 nm) so that only wavelengths within the APD’s detection range are collected. 

The photons are then separated from each other in space. For non-collinear phase-matching, the 

entangled photons can easily be separated from each other with a mirrored knife-edge prism. 

Once separated, each photon is sent through its monochromator and focused onto its APD. The 

joint frequency spectrum is measured by performing a series of scans as follows: one 

monochromator (Bob’s) for the signal photon is set at a given wavelength (e.g. 840 nm). Then 

the other monochromator (Alice’s) for the idler photon is scanned across the wavelength range 

of the bandpass filter (775-845 nm in our experiment). Photon counts after the two 

monochromators are measured in coincidence. The sum of the entangled photons’ frequencies 

must equal the pump photon’s frequency: ωA + ωB = ωp, or equivalently, 
1

𝜆𝐴
+

1

𝜆𝐵
=

1

𝜆𝑝
. 

Additionally, two entangled photons are also strongly correlated in time, so they can only 

produce a coincidence count with each other. Therefore, if Alice’s photon is entangled with 

Bob’s 840 nm photon, coincidence counts should be registered when, and only when, Alice has 

her monochromator set at 780 nm. The joint frequency spectrum is obtained by scanning one of 

the monochromators, while the other´s wavelength is kept fixed. 

There is a very small chance that two photons that are not entangled happen to arrive at 

the two APDs within the coincidence window, known as an accidental count. These accidental 

counts can be subtracted out of the true coincidence count signal. They can be measured by 

adding a delay to one of the APD’s channels to the coincidence counter. This delay (100 ns in 

our experiment) must be longer than the coincidence window (10 ns in our experiment) so that 

only the accidental coincidence counts are measured and can then be subtracted from the joint 

frequency spectrum. The joint frequency spectrum then only contains coincidence counts from 

entangled photon pairs. 

Before applying the Schmidt decomposition to the experimental joint frequency 

spectrum, we can make the decomposition more precise by fitting the experimental spectrum 

with an analytical model and applying the decomposition to this analytical model. The model 
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consists of two components: the joint photon intensity (i.e. square of the joint photon amplitude) 

and the BP filter used in the experiment. It has previously been shown that in the limit of long-

pulse-width pumping of SPDC (of which CW pumping is the most extreme limit), the joint 

photon amplitude of Type I SPDC can be accurately modeled with a double-Gaussian1: 

 𝑧 = 𝐴 ∙ 𝑒𝑥𝑝 [
−

1

2
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)

2] (S1) 

where A is the maximum coincidence count probability, x (y) is the frequency of Alice’s 

(Bob’s) photon, xc (yc) is the central frequency of Alice’s (Bob’s) one-photon amplitude, ω1 (ω2) 

is the diagonal (anti-diagonal) width of the two-photon amplitude, and θ is the angle of the 

coincidence count amplitude relative to the x-axis. These parameters are labeled in the example 

double-Gaussian contour plot in Fig. S2.  

 

 

Figure S2. Example double-Gaussian showing the parameters to be optimized. Note: 

when normalized, A = 1. 

 

The double-Gaussian model is particularly attractive because the Schmidt modes of a 

double-Gaussian can be found analytically1. Additionally, the double-Gaussian in eq. (S1) 

contains only real terms, which is important when one considers that in our experiment with 

APDs, we measure the joint photon intensity, not the joint photon amplitude. Therefore, our 
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experimental data must be fit with the square of the double-Gaussian in eq. (S1), and this can be 

completed in Matlab. Since all terms are real, we can use the square root of our fit as the absolute 

value of the joint photon amplitude for the Schmidt decomposition. When calculating K and E, 

the square of the Schmidt coefficients are used, so the use of the absolute value of the joint 

amplitude does not affect our calculation of K and E. 

To confirm the accuracy of our model, we experimentally measured the joint frequency 

spectrum of SPDC filtered with a BP filter centered at 810 nm with FWHM = 30 nm (810-30 

nm BP filter) and compared this experimental data with the model’s calculation of the joint 

frequency spectrum, where the model is the double-Gaussian spectral amplitude times the 810-

30 nm BP filter function. The results are shown in Fig. S3. We compared slices of the 2D model 

to the experimental data at various points of interest: a) when energy is conserved so that ωA + 

ωB = ωp, b) when Bob’s wavelength is constant at the degenerate wavelength, 810 nm, and c) 

when ωA = ωB. These plots are also shown in Fig. S3. All plots and data have been normalized. 
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Figure S3. Model of non-collinear Type-I degenerate, CW-pumped SPDC filtered by an 

810-30 nm BP filter. Shown is the full 2D model as well as slices used to compare with 

experimental data. 

The plots in Fig. S3 confirms that our fitted model of the filtered SPDC joint frequency 

spectrum accurately compares to experimental data. Therefore, to quantify the degree of 

frequency entanglement of our filtered SPDC photons, the Schmidt decomposition is performed 

on this fitted model of the joint frequency spectrum. Since the Schmidt decomposition is a 

continuous function reformulation of the matrix formulated singular value decomposition 

(SVD), we can discretize our continuous function model into a matrix. The SVD can then be 

performed on the matrix form of our fitted model using the SVD function from a linear algebra 

programming package, such as NumPy or Matlab. With the calculated Schmidt coefficients, we 

then determine K and E, as shown in the manuscript. 
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3) ETPA signal details 

 

Error bars are calculated as the propagated error from the standard deviation of 5 

measurements. For a reference “blank,” we measure the entangled photon transmission through 

two different pure solvent trials. The difference in their transmission is the baseline of the 

experiment, and we subtract that baseline from the measured ETPA signal. When removing the 

solvent from the cuvette and adding either the chromophore solution or second solvent sample, 

the black box containing the cuvette always remains closed. An injection port connecting the lid 

of the box to the cuvette allows for easy removal and addition of liquid from the cuvette. By not 

opening the box during experiments, the entangled photon alignment on the APD remains as 

steady as possible, which helps to lower the noise level and limit of detection of the experiment. 

 

Analysis of potential signals interfering with the ETPA signal 

 

The probability of OPA at the entangled photon wavelength (810 ± 15 nm) is very small 

since none of the chromophores have excited states near the entangled photon wavelength. Any 

small loss due to OPA can be estimated using the UV-vis absorbance at 810 ± 15 nm. Since there 

are no excited states at those wavelengths (Fig. S1), we can use the limit of detection of the 

spectrophotometer as an upper-bound for OPA: absorbance = ~0.0005, which equates to a 0.1 % 

loss in transmission. For an input of 106 photons/s, this loss equates to, at most, 103 photons/s, 

1-2 orders of magnitude smaller than the chromophore’s loss in transmission in our ETPA 

experiment. Classical TPA cross-sections of chromophores are typically around ~10-47 

cm4/s/molecule or smaller, which could only result in an extremely small loss in transmission of 

10-11 photons/s. 

Previous ETPA experiments have used chromophore concentrations as high as 110 mM 

without noticeable scattering from the chromophore.2 To be cautious with avoiding scattering, 

we use solutions no more concentrated than 1 mM, where the chromophore-to-solvent molecule 

ratio is at most ~1:104. Scattering detected from such a diluted solution comes mainly from the 

solvent, and the solvent scattering is typically around 1-2 orders of magnitude larger than the 

chromophore’s scattering in dilute solutions.3 Anyway, scattering from the solvent is accounted 

for in the pure solvent transmission scan and is subtracted out of the ETPA signal. Nonetheless, 

we can estimate the intensity of scattering from both the chromophore and solvent to definitively 
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rule out the possibility of scattering contributing to our measured signal. For the chromophores, 

the most probable sources of scattering could come from non-resonant Rayleigh scattering at 

810 nm or resonant hyper-Rayleigh scattering of the entangled photon pair at the two-photon 

energy, 405 nm. It has been shown that for chromophores with molar extinction coefficients of 

~105 M-1 cm-1 (which is typical for chromophores, if not smaller), the intensity of resonance 

Rayleigh scattering is only 4x10-6 of the one-photon absorption at the same wavelength.4 The 

intensity of non-resonant Rayleigh scattering would be an additional 1-2 orders of magnitude 

smaller than the resonance Rayleigh scattering.3 Using our estimate of OPA at 810 ± 15 nm, the 

non-resonant Rayleigh scattering of the chromophore would at most be 10-4 photons/s. To 

estimate resonant hyper-Rayleigh scattering, we first estimate the non-resonant hyper-Rayleigh 

scattering intensity, which is 3-4 orders of magnitude smaller than non-resonant Rayleigh 

scattering.5 Resonant hyper-Rayleigh scattering can have an enhancement over the non-resonant 

scattering by about a factor of 5.6 Therefore, at most, the loss in transmission from resonant 

hyper-Rayleigh scattering would be 10-6 photons/s. Raman or hyper-Raman scattering would 

have even smaller intensities. 

For the solvent, the scattering cross-section for an organic solvent is on the order of 10-

26 cm2/molecule.7 We calculate the number of solvent molecules within the beam path using its 

density and estimate that the solvent would only scatter 10-2 photons/s. As expected, the solvent 

would scatter more than the chromophore by 2 orders of magnitude,3 but the solvent scattering 

is still several orders of magnitude smaller than ETPA. 

To reduce the mechanical movement of the equipment during the experiment, we use an 

injection port attached to the cuvette that opens at the lid of the black box containing all the 

optics and detectors. We can remove and refill liquid in the cuvette without opening the black 

box or disturbing the equipment inside it. In this way, all sources of mechanical movement in 

the setup are significantly reduced. 

The noise level, or baseline, of our ETPA experiment, is measured by comparing the 

entangled photon transmission for two different pure solvent trials. The process of removing the 

first solvent trial from the cuvette and replacing it with the second solvent trial in the cuvette 

perfectly mimics the process of adding a chromophore solution to the cuvette. This process 

accounts for any remaining movement to the equipment caused by inserting the pipette into the 

injection port. It also accounts for fluctuations in the average pump laser power over time, which 

would change the input entangled photon rate. For entangled photon input rates on the order of 
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106 photons/s, the noise level is around 103 counts/s, which corresponds to 0.1 % of the input 

rate. 

The error in the ETPA signal is measured by taking multiple measurements (in our 

experiment, 5) at each input rate. The standard deviations of the measured transmitted count rates 

for the solvent reference and the chromophore solution are propagated to calculate error bars. 

This error accounts for fluctuations in the input entangled photon rate, caused primarily by power 

fluctuations of the CW pump laser, and accounts for the electronic noise of the APDs and 

counter. For entangled photon input rates on the order of 106 photons/s, the typical error is around 

103 counts/s, the same as the 0.1 % noise level. These results were summarized in Table 3 in the 

main manuscript. 

 

ETPA with Collinear Type-I CW-Pumped SPDC 

 

Results for the ETPA rate using collinear phase-matched Type-I degenerate, CW-

pumped SPDC are shown in Fig. S4 

 

 

Figure S4. ETPA results obtained with type-I collinear SPDC entangled photons excitation. 
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Fluorescence ETPA experiments. 

For fluorescence ETPA experiments, the entangled photons were focused by using a 

plano-convex lens, fl = 2.5 cm. A previously designed fluorescence collection unit (Ref. 8 and 

references therein), cut = 450 and 650 nm long and short pass filters, and a photomultiplier tube 

with a single photon counting module were used to isolate and detect the ETPA induced 

fluorescence signal. 

 

4) Control on the population of a final state through the frequency joint spectrum  

 

The probability on a three-level system to be in a final state f, driven by entangled two-

photon excitation from the ground state (g) and using intermediate states (e), as a function of 

time, obtained perturbatively is9: 

〈�̂�𝑓(𝑡)〉𝜓 = 〈�̂�𝑓𝑔
† (𝑡)�̂�𝑓𝑔(𝑡)〉                                     (S2) 

The transition amplitude corresponds to: 

�̂�𝑓𝑔(𝑡) = ∫ 𝑑𝜔1 ∫ 𝑑𝜔2 𝑇𝑡(𝜔1, 𝜔2)�̂�2(𝜔2)�̂�1(𝜔1)                           (S3) 

𝑇𝑡(𝜔1, 𝜔2) = (
𝐸0

ℏ
)

2
∑ (

𝜇𝑔𝑒

𝜔1−𝜔𝑒+𝑖𝛾𝑒
+

𝜇𝑔𝑒

𝜔2−𝜔𝑒+𝑖𝛾𝑒
) (

𝜇𝑒𝑓

𝜔1+𝜔2−𝜔𝑓+𝑖𝛾𝑓
𝑒−𝒊(𝜔1+𝜔2)𝑡) 𝑒   (S4) 

�̂�𝑓𝑔(𝑡) is expressed in terms of the transition dipole moments (𝜇𝑔𝑒 and 𝜇𝑒𝑓) and 

subscripts 1 and 2 represent signal and/or idler photon. 𝜔𝑒 and 𝜔𝑓 correspond to the energy of 

the intermediate and final states; and  𝛾𝑥 (x = e, f ) is the state linewidth.  

As can be seen from equations (S2) – (S4), the population of a particular final excited 

state can be adjusted precisely by tuning the frequency correlations of the entangled pair.9,10 The 

frequency correlation can be controlled by shaping the spatial distribution of the pump beam.  It 

was demonstrated that the optimal 𝑇𝑓 function can be represented in a Schmidt decomposition 

of the matter response function as9 

 𝑇𝑡(𝜔1, 𝜔2) = ∑ 𝑟𝑘𝜓𝑘
∗ (𝜔1)𝑘 𝜙𝑘

∗ (𝜔2) (S5) 

𝜓𝑘 and 𝜙𝑘 functions form an orthonormal basis set, with 𝑟𝑘 chosen to be real and positive 

numbers. This orthonormal set is also a way to represent the ideal joint spectrum of the entangled 
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photon pairs inducing with maximum probability the ETPA transition from an initial to final 

states through selectively excited intermediate states. 
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