Supporting Information

Improving Ion Selectivity of 1,4,7-Triazacyclononane-Based Receptors by Zinc Coordination: "Turn-On" Chemosensor for Br⁻and Fe³⁺ Ions

Mei-Hua Lin,^a Xiao-Xia Ren,^a Xiao-Min Ning,^a Dong-Yang Liu,^a and Jing Qian,^{a*, b, c}

a College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China

b Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, 1Tianjin 300387, P. R. China

c Key Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Ministry of Education, Tianjin 300387, P. R. China

Corresponding authors: qianjinger@aliyun.com (J. Qian)

A list:

Number of pages	10
Number of figures	15
Number of schemes	0
Number of tables	2

A table of contents:

Figure S1. ¹H NMR spectroscopy of btacn.

Figure S2. ¹³C NMR spectroscopyof btacn.

Figure S3. ESI-mass spectrum of btacn.

Figure S4. ¹H NMR spectroscopy of Zn(btacn)Cl₂.

Figure S5. FT-IR pattern for Zn(btacn)Cl₂.

Figure S6. ESI-mass spectrum of Zn(btacn)Cl₂.

Figure S7. Excitation and emission spectra of btacn and [Zn(btacn)Cl]⁺.

Figure S8. luminescence spectra of btacn and [Zn(btacn)Cl]⁺ for 0 h and 24 h.

Figure S9. Fluorescence emission of btacn with addition of Cu²⁺, Mn²⁺, Zn²⁺, Co²⁺, Fe³⁺.

Table S1. Comparison of [Zn(btacn)Cl]⁺ with literature probes for Fe³⁺ ions.

Figure S10. Comparison of the fluorescence intensity of [Zn(btacn)Cl]⁺ with the addition of other background ions.

Figure S11. The variation of luminescent intensity of [Zn(btacn)Cl]⁺ with immersion time in Fe(NO₃)₃.

Figure S12. Temporal fluorescence decay of [Zn(btacn)Cl]⁺ and after added detection ions.

Table S2. Comparison of the lifetimes of [Zn(btacn)Cl]⁺ before and after added detection ions.

Figure S13. Fluorescence emission spectra of different concentrations of [Zn(btacn)Cl]⁺.

Figure S14. The variation of luminescent intensity of [Zn(btacn)Cl]⁺ with immersion time in KBr.

Figure S15. Fluorescence intensity of $[Zn(btacn)Cl]^+$ upon addition of Br⁻ ions in the presence of Ag⁺ ions.

Reference.

Figure S1. 400 MHz ¹H NMR spectroscopy of btacn (D₂O, 300 K, ppm).

Figure S2. 100 MHz ¹³C NMR spectroscopy of btacn (D₂O, 300 K, ppm).

Figure S3. ESI-mass spectrum of btacn in D_2O ; calcd for $C_{15}H_{23}O_3N_4^+$ ([btacn+H⁺]⁺) 307.37, found 307.17.

Figure S4. 400 MHz ¹H NMR spectroscopy of Zn(btacn)Cl₂ (D₂O, 300 K, ppm).

Figure S6. ESI-mass spectrum of Zn(btacn)Cl₂ in D₂O; Attributions: 405.066, [Zn(btacn)Cl]⁺.

Figure S7. Excitation and emission spectra of btacn (blue) and $[Zn(btacn)Cl]^+$ (green); Solvents: H₂O, c: 5 μ M for $[Zn(btacn)Cl]^+$, 200 μ M for btacn, slit width: 4 nm.

Figure S8. luminescence spectra of btacn (blue) and $[Zn(btacn)Cl]^+$ (green) for 0 h (solid) and 24 h (short dashed). Solvents: H₂O, c: 5 μ M for $[Zn(btacn)Cl]^+$, 100 μ M for btacn, λ_{ex} : 312 nm, slit width: 4 nm.

Figure S9. Fluorescence emission of btacn with addition of Cu^{2+} (a), Mn^{2+} (b), Zn^{2+} (c), Co^{2+} (d), Fe^{3+} (e). c: 200 μ M for btacn except Cu^{2+} (50 μ M for btacn), λ_{ex} : 312 nm, slit width: 4 nm.

S. No	Probe	LOD (M)	Ref	
4	Mg-CP probe	4.7×10^{-4}	1	
5	Zn-L-MOF probe	6.4 × 10 ⁻⁶	2	
6	Zn(II)-based MOF probe	2×10^{-6}	3	
7	Ln(III)-MOF probe	10 ⁻⁶	4	
8	Europium-Based MOF probe	0.793× 10 ⁻⁶	5	
9	${[Eu(Hdcppa)(H_2O)_2] \cdot H_2O}n$ probe	10 ⁻⁶	6	
10	[Zn(btacn)Cl] ⁺ probe	1.6 × 10 ⁻⁷	This work	

Table S1. Comparison of [Zn(btacn)Cl]⁺ with literature probes for Fe³⁺ ions.

Figure S10. Comparison of the fluorescence intensity of $[Zn(btacn)Cl]^+$: blank as control, addition of other background ions, and followed by addition of Fe³⁺ ions. Solvents: H₂O, c: 40 μ M for $[Zn(btacn)Cl]^+$, $[Fe^{3+}]$ and [background ion], λ_{ex} : 312 nm, λ_F : 405 nm, slit width: 4 nm. Background ions: Cr³⁺, Mn²⁺, Cu²⁺, Ni²⁺, Zn²⁺, Co²⁺, Sn²⁺, Mg²⁺ and Ca²⁺.

Figure S11. The variation of luminescent intensity of $[Zn(btacn)Cl]^+$ at 405 nm with immersion time in 15 μ M Fe(NO₃)₃.

Figure S12. Temporal fluorescence decay of 10 μ M [Zn(btacn)Cl]⁺ (a) and after added 100 μ M Fe³⁺ ions (b), and after added 13 μ M Br⁻ ions (c) in H₂O excited at 312 nm and monitored at 405 nm; The solid curve shows the best single exponential fit to the data; The data are obtained at 54.9 ps per point.

	L (*)-],L	()-1	L	()1
Compounds	$\tau_1(ns)$	B ₁ (%)	$\tau_2(ns)$	B ₂ (%)	τ (ns)
[Zn(btacn)Cl] ⁺	0.76	31.97	3.39	68.03	2.55
[Zn(btacn)Cl] ⁺ -Br ⁻	0.46	4.73	3.24	95.27	3.11
[Zn(btacn)Cl] ⁺ -Fe ³⁺	0.80	66.90	3.01	33.10	1.53

Table S2. Comparison of the lifetimes of [Zn(btacn)Cl]⁺, [Zn(btacn)Cl]⁺-Fe³⁺ and [Zn(btacn)Cl]⁺-Br⁻.

Figure S13. Fluorescence emission spectra of different concentrations of $[Zn(btacn)Cl]^+$; Solvents: H₂O; λ_{ex} : 312 nm; slit width: 4 nm.

Figure S14. The variation of luminescent intensity of $[Zn(btacn)Cl]^+$ at 405 nm with immersion time in 5 μ M KBr.

Figure S15. Fluorescence intensity of $[Zn(btacn)Cl]^+$ upon addition of 1.0 equiv Br⁻ ions in the presence of 0.0~1.5 equiv Ag⁺ ions. Solvents: H₂O, c: 10 μ M for $[Zn(btacn)Cl]^+$, λ_{ex} : 312 nm, slit width: 4 nm.

Reference:

1. Wu, Z. F.; Gong, L. K.; Huang, X. Y. A Mg-CP with in Situ Encapsulated Photochromic Guest as Sensitive Fluorescence Sensor for Fe³⁺/Cr³⁺ Ions and Nitro-Explosives. *Inorg. Chem.* **2017**, *56*, 7397–7403.

2. Yu, C. Y.; Sun, X. D.; Zou, L. F.; Li, G. H.; Zhang, L. R.; Liu, Y. L. A Pillar-Layered Zn-LMOF with Uncoordinated Carboxylic Acid Sites: High Performance for Luminescence Sensing Fe³⁺ and TNP. *Inorg. Chem.* 2019, *58*, 4026–4032.

3. Lv, R.; Li, H.; Su, J.; Fu, X.; Yang, B. Y.; Gu, W.; Liu, X. Zinc Metal–Organic Framework for Selective Detection and Differentiation of Fe(III) and Cr(VI) Ions in Aqueous Solution. *Inorg. Chem.* **2017**, *56*, 12348–12356.

4. Zhang, Q. S.; Wang, J.; Alexander, M. K.; Dou, W.; Xu, C.; Xu, C. L.; Yang, L. Z.; Fang, R.; Liu, W. S. Multifunctional Ln–MOF Luminescent Probe for Efficient Sensing of Fe³⁺,Ce³⁺, Acetone. *ACS Appl. Mater. Interfaces.* **2018**, *10*, 23976–23986.

5. Purna, C. R.; Mandal, S. Europium-Based Metal–Organic Framework as a Dual Luminescence Sensor for the Selective Detection of the Phosphate Anion and Fe³⁺ Ion in Aqueous Media. *Inorg. Chem.* **2018**, *57*, 11855–11858

6. Zhang, H. J.; Fan, R. Q.; Chen, W.; Fan, J. Z.; Dong, Y. W.; Song, Y.; Du, X.; Wang, P.; Yang, Y. L. 3D Lanthanide Metal–Organic Frameworks Based on Mono-, Tri-, and Heterometallic Tetranuclear Clusters as Highly Selective and Sensitive Luminescent Sensor for Fe³⁺ and Cu²⁺ Ions. *Cryst. Growth Des.* **2016**, *16*, 5429–5440.