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Figure S1. 400 MHz 1H NMR spectroscopy of btacn (D2O, 300 K, ppm). 

 

 

Figure S2. 100 MHz 13C NMR spectroscopy of btacn (D2O, 300 K, ppm). 

 

 
Figure S3. ESI-mass spectrum of btacn in D2O; calcd for C15H23O3N4

+ ([btacn+H+]+) 307.37, found 307.17. 
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Figure S4. 400 MHz 1H NMR spectroscopy of Zn(btacn)Cl2 (D2O, 300 K, ppm). 

 

 
Figure S5. FT-IR pattern for Zn(btacn)Cl2. 

 

 
Figure S6. ESI-mass spectrum of Zn(btacn)Cl2 in D2O; Attributions: 405.066, [Zn(btacn)Cl]+. 
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Figure S7. Excitation and emission spectra of btacn (blue) and [Zn(btacn)Cl]+ (green); Solvents: H2O, c: 5 μM for 

[Zn(btacn)Cl]+, 200 μM for btacn, slit width: 4 nm. 

 

 

Figure S8. luminescence spectra of btacn (blue) and [Zn(btacn)Cl]+ (green) for 0 h (solid) and 24 h (short dashed). 

Solvents: H2O, c: 5 μM for [Zn(btacn)Cl]+, 100 μM for btacn, λex: 312 nm, slit width: 4 nm. 

 

 

                   (a)                                   (b) 
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                 (c)                                    (d) 

 
                                       (e) 

Figure S9. Fluorescence emission of btacn with addition of Cu2+ (a), Mn2+ (b), Zn2+ (c), Co2+ (d), Fe3+ (e). c: 200 

μM for btacn except Cu2+ (50 μM for btacn), λex: 312 nm, slit width: 4 nm. 

 

Table S1. Comparison of [Zn(btacn)Cl]+ with literature probes for Fe3+ ions. 

S. No Probe LOD (M) Ref 

4 Mg-CP probe 4.7 × 10−4 1 

5 Zn-L-MOF probe 6.4 × 10−6 2 

6 Zn(II)-based MOF probe 2 × 10−6 3 

7 Ln(III)-MOF probe 10−6 4 

8 Europium-Based MOF probe 0.793× 10−6 5 

9 {[Eu(Hdcppa)(H2O)2]·H2O}n probe 10−6 6 

10 [Zn(btacn)Cl]+ probe 1.6 × 10−7 This work 
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Figure S10. Comparison of the fluorescence intensity of [Zn(btacn)Cl]+: blank as control, addition of other 

background ions, and followed by addition of Fe3+ ions. Solvents: H2O, c: 40 μM for [Zn(btacn)Cl]+, [Fe3+] and 

[background ion], λex: 312 nm, λF: 405 nm, slit width: 4 nm. Background ions: Cr3+, Mn2+, Cu2+, Ni2+, Zn2+, Co2+, 

Sn2+, Mg2+ and Ca2+. 

 

 
Figure S11. The variation of luminescent intensity of [Zn(btacn)Cl]+ at 405 nm with immersion time in 15 μM 

Fe(NO3)3. 

 

 

(a) 
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(b)                                   (c) 

Figure S12. Temporal fluorescence decay of 10 μM [Zn(btacn)Cl]+ (a) and after added 100 μM Fe3+ ions (b), and 

after added 13 μM Br− ions (c) in H2O excited at 312 nm and monitored at 405 nm; The solid curve shows the best 

single exponential fit to the data; The data are obtained at 54.9 ps per point. 

 

Table S2. Comparison of the lifetimes of [Zn(btacn)Cl]+, [Zn(btacn)Cl]+-Fe3+ and [Zn(btacn)Cl]+-Br−. 

Compounds τ1 (ns) B1 (%) τ2 (ns) B2 (%) τ (ns) 

[Zn(btacn)Cl]+ 0.76 31.97 3.39 68.03 2.55 

[Zn(btacn)Cl]+-Br− 0.46 4.73 3.24 95.27 3.11 

[Zn(btacn)Cl]+-Fe3+ 0.80 66.90 3.01 33.10 1.53 

 

 
Figure S13. Fluorescence emission spectra of different concentrations of [Zn(btacn)Cl]+; Solvents: H2O; λex: 312 

nm; slit width: 4 nm. 
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Figure S14. The variation of luminescent intensity of [Zn(btacn)Cl]+ at 405 nm with immersion time in 5 μM KBr. 

 

 

 
Figure S15. Fluorescence intensity of [Zn(btacn)Cl]+ upon addition of 1.0 equiv Br− ions in the presence of 

0.0~1.5 equiv Ag+ ions. Solvents: H2O, c: 10 μM for [Zn(btacn)Cl]+, λex: 312 nm, slit width: 4 nm. 
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