1 Structural Effects of Amines in Enhancing

2 Methanesulfonic Acid-driven New Particle Formation

Jiewen Shen¹, Jonas Elm², Hong-Bin Xie^{1*}, Jingwen Chen¹, Junfeng Niu³, Hanna
Vehkamäki⁴

5 ¹Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of

6 Education), School of Environmental Science and Technology, Dalian University of

- 7 Technology, Dalian 116024, China
- 8 ²Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-
- 9 8000 Aarhus C, Denmark

³Research Center for Eco-environmental Engineering, Dongguan University of
 Technology, Dongguan 523808, China

- ⁴Institute for Atmospheric and Earth System Research/Physics, University of Helsinki,
- 13 P.O. Box 64 (Gustaf Hällströmin katu 2a), FI-00014 Helsinki, Finland

14	
15	
16	
17	
18	
19	
20	Totally, 57 pages, 11 figures and 3 tables
21	

22

Contents

23	1. Basic Formula of ACDC	S3
24	2. Judgement of Cluster Stability	S3
25	3. Selection of Boundary Clusters	S4
26	4. Effect of Coagulation Sink Coefficient	S4
27	5. Energy Decomposition Analysis based on Force Field (EDA-FF)	S5
28	6. Table S1	S7
29	7. Table S2	S12
30	8. Table S3	S13
31	9. Figure S1	S14
32	10. Figure S2	S14
33	11. Figure S3	S15
34	12. Figure S4	S15
35	13. Figure S5	S16
36	14. Figure S6	S16
37	15. Figure S7	S17
38	16. Figure S8	S18
39	17. Figure S9	S19
40	18. Figure S10	S19
41	19. Figure S11	S20
42	20. Coordinates of all optimized clusters	S21
43	21. References	

45 **Basic Formula of ACDC.** Briefly, the birth-death equation (Eq. (1)) is employed to

46 describe the time-dependent cluster distributions in ACDC simulation:

$$47 \qquad \frac{dc_i}{dt} = \frac{1}{2} \sum_{j < i} \beta_{j,(i-j)} c_j c_{(i-j)} + \sum_j \gamma_{(i+j) \to i} c_{i+j} - \sum_j \beta_{i,j} c_i c_j - \frac{1}{2} \sum_{j < i} \gamma_{i \to j} c_i + Q_i - S_i$$
(1)

where subscripts (*i*, *j*, *i-j*, *j-i* and *i+j*) denote different clusters or monomers in the system, c_i denotes the number concentration of *i*, $\beta_{i,j}$ denotes the collision rate coefficient between *i* and *j*, $\gamma_{(i+j) \rightarrow i}$ denotes the evaporation rate of a cluster *i+j* into smaller cluster (or monomer) *i* and *j*. Q_i denotes an additional outside source term of *i* and S_i denotes other sink terms for *i*. Eq. (2) and Eq. (3) were used to calculate $\beta_{i,j}$ and $\gamma_{(i+j)\rightarrow i}$, respectively.

54
$$\beta_{i,j} = \left(\frac{3}{4\pi}\right)^{1/6} \left(\frac{6k_bT}{m_i} + \frac{6k_bT}{m_j}\right)^{1/2} \left(V_i^{1/3} + V_j^{1/3}\right)^2$$
(2)

where k_b is the Boltzmann constant, *T* is the temperature, and m_i and V_i are the mass and volume of *i*, respectively.

57
$$\gamma_{(i+j)\to i} = \beta_{i,j} c_{\text{ref}} \exp\left\{\frac{\Delta G_{i+j} - \Delta G_i - \Delta G_j}{k_b T}\right\}$$
(3)

58 where ΔG is the formation free energy of a cluster, c_{ref} is the reference monomer 59 concentration at 1 atm (the pressure at which ΔG was calculated).

Judgement of Cluster Stability. In the process of base-acid cluster growth, there is a competition between evaporation into smaller cluster and collision with monomers or clusters to form larger one. Such competition determines the stability of a cluster in view of a cluster growth. A cluster with higher collision rate than that of evaporation

can be judged to be stable. In general, the collision rate constant of a cluster with base/acid monomers is of the order of 10^{-10} cm³ s⁻¹, and the collision rate can be considered to be about 10^{-2} s⁻¹ under the condition that the concetration of base/acid monomer reaches ppt level. Therefore, a given cluster can be deemed as stable enough to engage in further growth when the evaporation rate is lower than 10^{-2} s⁻¹.

69 Selection of Boundary Clusters. The boundary clusters are allowed to leave the simulation box for further growth. Therefore, these clusters are required to be stable 70 71 enough and therefore prefer to further grow. In the studied DMA/MA-MSA systems, 72 $(DMA/MA)_z(MSA)_z$ (z = 1-4) and $(DMA/MA)_z(MSA)_{z+1}$ (z = 1-3) clusters have 73 relatively lower evaporation rates than other clusters. Therefore, this allows us to select 74 (DMA/MA)₄(MSA)₅ and (DMA/MA)₅(MSA)₅ clusters as the boundary clusters for 75 DMA/MA-MSA systems in the " 4×4 box" simulation. Similarly, for " 2×2 box" and 76 " 3×3 box" simulations, (DMA/MA)₂(MSA)₃ and (DMA/MA)₃(MSA)₃, and 77 (DMA/MA)₃(MSA)₄ and (DMA/MA)₄(MSA)₄ clusters are assumed to leave the 78 corresponding simulation boxes.

Effect of Coagulation Sink Coefficient. To examine the effect of coagulation sink coefficient on enhancing potentials of DMA and MA, here, ACDC test runs were performed with various values covering cases of clean and haze days ($6 \times 10^{-4}-6 \times 10^{-2}$ 2 s⁻¹) under the conditions of [MSA] = 10^6 cm⁻³, [DMA/MA] = 10 ppt and 278.15 K for DMA-MSA and MA-MSA systems. As can be seen in Figure S2, $\sum[(MSA)_2]$ and *J* decrease with increasing coagulation sink coefficient for both systems. In addition, the

DMA-MSA system shows a stronger dependence on coagulation sink coefficient than 85 MA-MSA system. More importantly, $\sum [(MSA)_2]$ of DMA-MSA system is significantly 86 higher than that of MA-MSA system within the considered range of coagulation sink 87 88 coefficients, however, J in DMA-MSA system is lower than that of MA-MSA system 89 in most considered cases (~ 1.5×10^{-3} - 6.0×10^{-2} s⁻¹). The conclusion is consistent with the case where the coagulation sink coefficient 2.6×10^{-3} s⁻¹ is used. 90 With two extreme coagulation sink coefficients of 6.0×10^{-4} s⁻¹ and 6.0×10^{-2} s⁻¹. 91 92 corresponding clean day condition and haze day condition, respectively, the effect of 93 coagulation sink coefficients on cluster growth pathways were tested. As can be seen in Figure S3, when coagulation sink coefficient is 6.0×10^{-4} s⁻¹, the cluster growth 94 95 pathways for both systems are similar to those at the condition with coagulation sink coefficient of 2.6×10^{-3} s⁻¹. When coagulation sink coefficient is 6×10^{-2} s⁻¹, the cluster 96 97 growth pathways change slightly for MA-MSA system, however, they become more 98 complicate for DMA-MSA system than that of the case where coagulation sink 99 coefficient is 2.6×10^{-3} s⁻¹. Still, the dominant growth pathways for both systems are 100 kept when coagulation sink coefficients is changed. 101 Energy Decomposition Analysis based on Force Field (EDA-FF). For the selected 102 model clusters (DMA)_z(MSA)_z and (MA)_z(MSA)_z (z = 1-4), energy decomposition

analysis based on force field (EDA-FF) was performed using GAFF force field using

103

104 Multiwfn software version $3.7.^{1}$ The total intermolecular interaction energy (E_{int}) in

105 EDA-FF can be decomposed into three terms including electrostatic (E_{ele}), repulsion

106 (E_{rep}) and dispersion (E_{disp}) energies¹⁻⁵:

$$E_{\rm int} = E_{\rm ele} + E_{\rm rep} + E_{\rm disp} \tag{1}$$

107 $E_{\text{ele}}, E_{\text{rep}}$ and E_{disp} can be described by following equations:

$$E_{\rm ele} = \frac{q_{\rm A} q_{\rm B}}{r_{\rm AB}} \tag{2}$$

$$E_{\rm rep} = \varepsilon_{\rm AB} \left(\frac{R_{\rm AB}^0}{r_{\rm AB}} \right)^{12} \tag{3}$$

$$E_{\rm disp} = -2\varepsilon_{\rm AB} \left(\frac{R_{\rm AB}^0}{r_{\rm AB}}\right)^6 \tag{4}$$

108 where q_A and q_B are the atomic charge atom A and B, respectively, r_{AB} is the interatomic 109 distance between atom A and B, ε_{AB} represents the depth of the van der Waals 110 interaction potential well and R_{AB} represents the non-bonding contact distance.

111 $E_{int}^*, E_{ele}^*, E_{rep}^*$ and E_{disp}^* for both the studied DMA-MSA and MA-MSA system 112 are presented in Figure S6, along with the obtained total intermolecular interaction 113 energy (E_{int}) at the DLPNO-CCSD(T)/aug-cc-pVTZ level of theory as a comparison. It 114 can be infered from Figure S6 that both E_{int}^* -DMA and E_{int}^* -MA obtained from EDA-115 FF analysis are compared to E_{int} -DMA and E_{int}^* -MA obtained from EDA-116 pVTZ level of theory, respectively, showing rationality for the force field selection in 117 EDA-FF analysis. 119 Table S1. Evaporation coefficients (s⁻¹) for all evaporation pathways of clusters at

120 278.15 K.

Even anotion motherways	Example and the second second
Evaporation pathways	Evaporation coefficients
$(DMA)_1(MSA)_1 \rightarrow DMA + MSA$	6.86×10^{2}
$(DMA)_1(MSA)_2 \rightarrow (DMA)_1(MSA)_1 + MSA$	7.42 × 10 ⁻⁴
$(DMA)_1(MSA)_2 \rightarrow DMA + (MSA)_2$	4.95 × 10 ⁻³
$(DMA)_1(MSA)_3 \rightarrow (DMA)_1(MSA)_2 + MSA$	3.12×10^{2}
$(DMA)_1(MSA)_3 \rightarrow (DMA)_1(MSA)_1 + (MSA)_2$	1.88 × 10-5
$(DMA)_1(MSA)_3 \rightarrow DMA + (MSA)_3$	2.10×10^{-8}
$(DMA)_1(MSA)_4 \rightarrow (DMA)_1(MSA)_3 + MSA$	6.77×10^{2}
$(DMA)_1(MSA)_4 \rightarrow (DMA)_1(MSA)_2 + (MSA)_2$	1.50×10^{1}
$(DMA)_1(MSA)_4 \rightarrow (DMA)_1(MSA)_1 + (MSA)_3$	1.52×10^{-8}
$(DMA)_1(MSA)_4 \rightarrow DMA + (MSA)_4$	1.10×10^{-12}
$(DMA)_2(MSA)_1 \rightarrow (DMA)_2 + MSA$	$4.05 imes 10^{-6}$
$(DMA)_2(MSA)_1 \rightarrow (DMA)_1(MSA)_1 + DMA$	1.49×10^{5}
$(DMA)_2(MSA)_2 \rightarrow (DMA)_2(MSA)_1 + MSA$	2.63×10^{-12}
$(DMA)_2(MSA)_2 \rightarrow (DMA)_2 + (MSA)_2$	8.64 × 10 ⁻²²
$(DMA)_2(MSA)_2 \rightarrow (DMA)_1(MSA)_2 + DMA$	$5.27 imes 10^{-4}$
$(DMA)_2(MSA)_2 \rightarrow (DMA)_1(MSA)_1 + (DMA)_1(MSA)_1$	2.38×10^{-10}
$(DMA)_2(MSA)_3 \rightarrow (DMA)_2(MSA)_2 + MSA$	$2.89 imes 10^2$
$(DMA)_2(MSA)_3 \rightarrow (DMA)_2(MSA)_1 + (MSA)_2$	5.41×10^{-14}
$(DMA)_2(MSA)_3 \rightarrow (DMA)_2 + (MSA)_3$	2.98×10^{-25}
$(DMA)_2(MSA)_3 \rightarrow (DMA)_1(MSA)_3 + DMA$	$4.87 imes 10^{-4}$
$(DMA)_2(MSA)_3 \rightarrow (DMA)_1(MSA)_2 + (DMA)_1(MSA)_1$	1.62×10^{-4}
$(DMA)_2(MSA)_4 \rightarrow (DMA)_2(MSA)_3 + MSA$	1.13×10^{2}
$(DMA)_2(MSA)_4 \rightarrow (DMA)_2(MSA)_2 + (MSA)_2$	$2.10 imes 10^{0}$
$(DMA)_2(MSA)_4 \rightarrow (DMA)_2(MSA)_1 + (MSA)_3$	6.61 × 10 ⁻¹⁸
$(DMA)_2(MSA)_4 \rightarrow (DMA)_2 + (MSA)_4$	2.35×10^{-30}
$(DMA)_2(MSA)_4 \rightarrow (DMA)_1(MSA)_4 + DMA$	8.13×10^{-5}
$(DMA)_2(MSA)_4 \rightarrow (DMA)_1(MSA)_3 + (DMA)_1(MSA)_1$	5.31 × 10 ⁻⁵
$(DMA)_2(MSA)_4 \rightarrow (DMA)_1(MSA)_2 + (DMA)_1(MSA)_2$	$0.98 imes 10^1$
$(DMA)_3(MSA)_1 \rightarrow (DMA)_3 + MSA$	1.91×10^{-7}
$(DMA)_3(MSA)_1 \rightarrow (DMA)_2(MSA)_1 + DMA$	5.78×10^{9}
$(DMA)_3(MSA)_1 \rightarrow (DMA)_2 + (DMA)_1(MSA)_1$	2.84×10^{1}
$(DMA)_3(MSA)_2 \rightarrow (DMA)_3(MSA)_1 + MSA$	5.48×10^{-13}
$(DMA)_3(MSA)_2 \rightarrow (DMA)_3 + (MSA)_2$	7.43×10^{-24}
$(DMA)_3(MSA)_2 \rightarrow (DMA)_2(MSA)_2 + DMA$	1.20×10^{9}
$(DMA)_3(MSA)_2 \rightarrow (DMA)_2(MSA)_1 + (DMA)_1(MSA)_1$	3.37×10^{-6}
$(DMA)_3(MSA)_2 \rightarrow (DMA)_2 + (DMA)_1(MSA)_2$	1.84×10^{-8}

$(DMA)_3(MSA)_3 \rightarrow (DMA)_3(MSA)_2 + MSA$	2.17 × 10-9
$(DMA)_3(MSA)_3 \rightarrow (DMA)_3(MSA)_1 + (MSA)_2$	7.64×10^{-26}
$(DMA)_3(MSA)_3 \rightarrow (DMA)_3 + (MSA)_3$	1.74×10^{-38}
$(DMA)_3(MSA)_3 \rightarrow (DMA)_2(MSA)_3 + DMA$	9.02×10^{-3}
$(DMA)_3(MSA)_3 \rightarrow (DMA)_2(MSA)_2 + (DMA)_1(MSA)_1$	2.51×10^{-3}
$(DMA)_3(MSA)_3 \rightarrow (DMA)_2(MSA)_1 + (DMA)_1(MSA)_2$	7.81×10^{-12}
$(DMA)_3(MSA)_3 \rightarrow (DMA)_2 + (DMA)_1(MSA)_3$	1.15×10^{-19}
$(DMA)_3(MSA)_4 \rightarrow (DMA)_3(MSA)_3 + MSA$	1.44×10^{1}
$(DMA)_3(MSA)_4 \rightarrow (DMA)_3(MSA)_2 + (MSA)_2$	1.84×10^{-12}
$(DMA)_3(MSA)_4 \rightarrow (DMA)_3(MSA)_1 + (MSA)_3$	1.09×10^{-30}
$(DMA)_3(MSA)_4 \rightarrow (DMA)_3 + (MSA)_4$	1.60×10^{-44}
$(DMA)_3(MSA)_4 \rightarrow (DMA)_2(MSA)_4 + DMA$	1.15×10^{-3}
$(DMA)_3(MSA)_4 \rightarrow (DMA)_2(MSA)_3 + (DMA)_1(MSA)_1$	1.15×10^{-4}
$(DMA)_3(MSA)_4 \rightarrow (DMA)_2(MSA)_2 + (DMA)_1(MSA)_2$	3.54×10^{1}
$(DMA)_3(MSA)_4 \rightarrow (DMA)_2(MSA)_1 + (DMA)_1(MSA)_3$	2.99×10^{-13}
$(DMA)_3(MSA)_4 \rightarrow (DMA)_2 + (DMA)_1(MSA)_4$	2.24×10^{-21}
$(DMA)_4(MSA)_1 \rightarrow (DMA)_4 + MSA$	$4.80 imes 10^{-8}$
$(DMA)_4(MSA)_1 \rightarrow (DMA)_3(MSA)_1 + DMA$	3.51×10^{10}
$(DMA)_4(MSA)_1 \rightarrow (DMA)_3 + (DMA)_1(MSA)_1$	$7.14 imes10^{0}$
$(DMA)_4(MSA)_1 \rightarrow (DMA)_2(MSA)_1 + (DMA)_2$	$5.88 imes 10^6$
$(DMA)_4(MSA)_2 \rightarrow (DMA)_4(MSA)_1 + MSA$	1.72×10^{-12}
$(DMA)_4(MSA)_2 \rightarrow (DMA)_4 + (MSA)_2$	5.27×10^{-24}
$(DMA)_4(MSA)_2 \rightarrow (DMA)_3(MSA)_2 + DMA$	1.10×10^{11}
$(DMA)_4(MSA)_2 \rightarrow (DMA)_3(MSA)_1 + (DMA)_1(MSA)_1$	$5.78 imes 10^{-5}$
$(DMA)_4(MSA)_2 \rightarrow (DMA)_3 + (DMA)_1(MSA)_2$	$1.30 imes 10^{-8}$
$(DMA)_4(MSA)_2 \rightarrow (DMA)_2(MSA)_2 + (DMA)_2$	3.45×10^{6}
$(DMA)_4(MSA)_2 \rightarrow (DMA)_2(MSA)_1 + (DMA)_2(MSA)_1$	$0.98 imes 10^{0}$
$(DMA)_4(MSA)_3 \rightarrow (DMA)_4(MSA)_2 + MSA$	1.05×10^{-11}
$(DMA)_4(MSA)_3 \rightarrow (DMA)_4(MSA)_1 + (MSA)_2$	1.06×10^{-27}
$(DMA)_4(MSA)_3 \rightarrow (DMA)_4 + (MSA)_3$	5.46×10^{-41}
$(DMA)_4(MSA)_3 \rightarrow (DMA)_3(MSA)_3 + DMA$	$5.28 imes 10^8$
$(DMA)_4(MSA)_3 \rightarrow (DMA)_3(MSA)_2 + (DMA)_1(MSA)_1$	1.01×10^{-3}
$(DMA)_4(MSA)_3 \rightarrow (DMA)_3(MSA)_1 + (DMA)_1(MSA)_2$	5.93×10^{-13}
$(DMA)_4(MSA)_3 \rightarrow (DMA)_3 + (DMA)_1(MSA)_3$	3.61 × 10 ⁻²²
$(DMA)_4(MSA)_3 \rightarrow (DMA)_2(MSA)_3 + (DMA)_2$	1.14×10^{-7}
$(DMA)_4(MSA)_3 \rightarrow (DMA)_2(MSA)_2 + (DMA)_2(MSA)_1$	$6.48 imes 10^{0}$
$(DMA)_4(MSA)_4 \rightarrow (DMA)_4(MSA)_3 + MSA$	1.49×10^{-9}
$(DMA)_4(MSA)_4 \rightarrow (DMA)_4(MSA)_2 + (MSA)_2$	8.50×10^{-25}
$(DMA)_4(MSA)_4 \rightarrow (DMA)_4(MSA)_1 + (MSA)_3$	1.45×10^{-42}
$(DMA)_4(MSA)_4 \rightarrow (DMA)_4 + (MSA)_4$	4.82×10^{-57}
$(DMA)_4(MSA)_4 \rightarrow (DMA)_3(MSA)_4 + DMA$	5.43×10^{-2}

$(DMA)_4(MSA)_4 \rightarrow (DMA)_3(MSA)_3 + (DMA)_1(MSA)_1$	6.43 × 10 ⁻⁴
$(DMA)_4(MSA)_4 \rightarrow (DMA)_3(MSA)_2 + (DMA)_1(MSA)_2$	1.37×10^{-9}
$(DMA)_4(MSA)_4 \rightarrow (DMA)_3(MSA)_1 + (DMA)_1(MSA)_3$	2.17×10^{-24}
$(DMA)_4(MSA)_4 \rightarrow (DMA)_3 + (DMA)_1(MSA)_4$	6.75×10^{-34}
$(DMA)_4(MSA)_4 \rightarrow (DMA)_2(MSA)_4 + (DMA)_2$	1.39×10^{-18}
$(DMA)_4(MSA)_4 \rightarrow (DMA)_2(MSA)_3 + (DMA)_2(MSA)_1$	2.84×10^{-11}
$(DMA)_4(MSA)_4 \rightarrow (DMA)_2(MSA)_2 + (DMA)_2(MSA)_2$	1.41×10^{3}
$(MA)_1(MSA)_1 \rightarrow MA + MSA$	2.31×10^{5}
$(MA)_1(MSA)_2 \rightarrow (MA)_1(MSA)_1 + MSA$	3.56×10^{-3}
$(MA)_1(MSA)_2 \rightarrow MA + (MSA)_2$	8.58×10^{-2}
$(MA)_1(MSA)_3 \rightarrow (MA)_1(MSA)_2 + MSA$	$4.12 imes 10^{0}$
$(MA)_1(MSA)_3 \rightarrow (MA)_1(MSA)_1 + (MSA)_2$	1.25×10^{-6}
$(MA)_1(MSA)_3 \rightarrow MA + (MSA)_3$	5.05×10^{-7}
$(MA)_1(MSA)_4 \rightarrow (MA)_1(MSA)_3 + MSA$	$5.02 imes 10^4$
$(MA)_1(MSA)_4 \rightarrow (MA)_1(MSA)_2 + (MSA)_2$	1.53×10^{1}
$(MA)_1(MSA)_4 \rightarrow (MA)_1(MSA)_1 + (MSA)_3$	7.75×10^{-8}
$(MA)_1(MSA)_4 \rightarrow MA + (MSA)_4$	2.03×10^{-9}
$(MA)_2(MSA)_1 \rightarrow (MA)_2 + MSA$	3.93×10^{-2}
$(MA)_2(MSA)_1 \rightarrow (MA)_1(MSA)_1 + MA$	$6.22 imes 10^6$
$(MA)_2(MSA)_2 \rightarrow (MA)_2(MSA)_1 + MSA$	9.91 × 10 ⁻¹²
$(MA)_2(MSA)_2 \rightarrow (MA)_2 + (MSA)_2$	3.48×10^{-17}
$(MA)_2(MSA)_2 \rightarrow (MA)_1(MSA)_2 + MA$	1.82×10^{-2}
$(MA)_2(MSA)_2 \rightarrow (MA)_1(MSA)_1 + (MA)_1(MSA)_1$	1.14×10^{-10}
$(MA)_2(MSA)_3 \rightarrow (MA)_2(MSA)_2 + MSA$	$2.71 imes 10^{0}$
$(MA)_2(MSA)_3 \rightarrow (MA)_2(MSA)_1 + (MSA)_2$	2.06×10^{-15}
$(MA)_2(MSA)_3 \rightarrow (MA)_2 + (MSA)_3$	1.21 × 10 ⁻²²
$(MA)_2(MSA)_3 \rightarrow (MA)_1(MSA)_3 + MA$	1.24×10^{-2}
$(MA)_2(MSA)_3 \rightarrow (MA)_1(MSA)_2 + (MA)_1(MSA)_1$	1.57×10^{-7}
$(MA)_2(MSA)_4 \rightarrow (MA)_2(MSA)_3 + MSA$	2.03×10^{3}
$(MA)_2(MSA)_4 \rightarrow (MA)_2(MSA)_2 + (MSA)_2$	3.74×10^{-1}
$(MA)_2(MSA)_4 \rightarrow (MA)_2(MSA)_1 + (MSA)_3$	4.76×10^{-18}
$(MA)_2(MSA)_4 \rightarrow (MA)_2 + (MSA)_4$	1.81×10^{-26}
$(MA)_2(MSA)_4 \rightarrow (MA)_1(MSA)_4 + MA$	5.17×10^{-4}
$(MA)_2(MSA)_4 \rightarrow (MA)_1(MSA)_3 + (MA)_1(MSA)_1$	$7.10 imes 10^{-5}$
$(MA)_2(MSA)_4 \rightarrow (MA)_1(MSA)_2 + (MA)_1(MSA)_2$	3.57×10^{-2}
$(MA)_3(MSA)_1 \rightarrow (MA)_3 + MSA$	2.61×10^{-8}
$(MA)_3(MSA)_1 \rightarrow (MA)_2(MSA)_1 + MA$	$8.55 imes 10^6$
$(MA)_3(MSA)_1 \rightarrow (MA)_2 + (MA)_1(MSA)_1$	1.24×10^{0}
$(MA)_3(MSA)_2 \rightarrow (MA)_3(MSA)_1 + MSA$	1.23×10^{-10}
$(MA)_3(MSA)_2 \rightarrow (MA)_3 + (MSA)_2$	2.56×10^{-22}
$(MA)_3(MSA)_2 \rightarrow (MA)_2(MSA)_2 + MA$	1.11 × 10 ⁸

$(MA)_3(MSA)_2 \rightarrow (MA)_2(MSA)_1 + (MA)_1(MSA)_1$	3.48×10^{-9}
$(MA)_3(MSA)_2 \rightarrow (MA)_2 + (MA)_1(MSA)_2$	4.03×10^{-8}
$(MA)_3(MSA)_3 \rightarrow (MA)_3(MSA)_2 + MSA$	8.95×10^{-9}
$(MA)_3(MSA)_3 \rightarrow (MA)_3(MSA)_1 + (MSA)_2$	7.75×10^{-23}
$(MA)_3(MSA)_3 \rightarrow (MA)_3 + (MSA)_3$	2.70×10^{-36}
$(MA)_3(MSA)_3 \rightarrow (MA)_2(MSA)_3 + MA$	3.77×10^{-1}
$(MA)_3(MSA)_3 \rightarrow (MA)_2(MSA)_2 + (MA)_1(MSA)_1$	2.88×10^{-6}
$(MA)_3(MSA)_3 \rightarrow (MA)_2(MSA)_1 + (MA)_1(MSA)_2$	7.21×10^{-15}
$(MA)_3(MSA)_3 \rightarrow (MA)_2 + (MA)_1(MSA)_3$	8.32×10^{-17}
$(MA)_3(MSA)_4 \rightarrow (MA)_3(MSA)_3 + MSA$	1.35×10^{1}
$(MA)_3(MSA)_4 \rightarrow (MA)_3(MSA)_2 + (MSA)_2$	7.68×10^{-12}
$(MA)_3(MSA)_4 \rightarrow (MA)_3(MSA)_1 + (MSA)_3$	1.12×10^{-27}
$(MA)_3(MSA)_4 \rightarrow (MA)_3 + (MSA)_4$	2.51×10^{-42}
$(MA)_3(MSA)_4 \rightarrow (MA)_2(MSA)_4 + MA$	2.58×10^{-3}
$(MA)_3(MSA)_4 \rightarrow (MA)_2(MSA)_3 + (MA)_1(MSA)_1$	1.34×10^{-5}
$(MA)_3(MSA)_4 \rightarrow (MA)_2(MSA)_2 + (MA)_1(MSA)_2$	8.18×10^{-3}
$(MA)_3(MSA)_4 \rightarrow (MA)_2(MSA)_1 + (MA)_1(MSA)_3$	2.04×10^{-14}
$(MA)_3(MSA)_4 \rightarrow (MA)_2 + (MA)_1(MSA)_4$	2.15×10^{-20}
$(MA)_4(MSA)_1 \rightarrow (MA)_4 + MSA$	1.06×10^{-10}
$(MA)_4(MSA)_1 \rightarrow (MA)_3(MSA)_1 + MA$	1.03×10^{10}
$(MA)_4(MSA)_1 \rightarrow (MA)_3 + (MA)_1(MSA)_1$	8.84×10^{-4}
$(MA)_4(MSA)_1 \rightarrow (MA)_2(MSA)_1 + (MA)_2$	1.83×10^{3}
$(MA)_4(MSA)_2 \rightarrow (MA)_4(MSA)_1 + MSA$	1.26×10^{-13}
$(MA)_4(MSA)_2 \rightarrow (MA)_4 + (MSA)_2$	9.65×10^{-28}
$(MA)_4(MSA)_2 \rightarrow (MA)_3(MSA)_2 + MA$	1.08×10^{7}
$(MA)_4(MSA)_2 \rightarrow (MA)_3(MSA)_1 + (MA)_1(MSA)_1$	3.87×10^{-9}
$(MA)_4(MSA)_2 \rightarrow (MA)_3 + (MA)_1(MSA)_2$	2.65×10^{-14}
$(MA)_4(MSA)_2 \rightarrow (MA)_2(MSA)_2 + (MA)_2$	2.19×10^{1}
$(MA)_4(MSA)_2 \rightarrow (MA)_2(MSA)_1 + (MA)_2(MSA)_1$	2.37×10^{-9}
$(MA)_4(MSA)_3 \rightarrow (MA)_4(MSA)_2 + MSA$	9.35×10^{-10}
$(MA)_4(MSA)_3 \rightarrow (MA)_4(MSA)_1 + (MSA)_2$	7.64×10^{-27}
$(MA)_4(MSA)_3 \rightarrow (MA)_4 + (MSA)_3$	9.87×10^{-43}
$(MA)_4(MSA)_3 \rightarrow (MA)_3(MSA)_3 + MA$	1.16×10^{6}
$(MA)_4(MSA)_3 \rightarrow (MA)_3(MSA)_2 + (MA)_1(MSA)_1$	2.72×10^{-8}
$(MA)_4(MSA)_3 \rightarrow (MA)_3(MSA)_1 + (MA)_1(MSA)_2$	7.80×10^{-16}
$(MA)_4(MSA)_3 \rightarrow (MA)_3 + (MA)_1(MSA)_3$	5.31×10^{-24}
$(MA)_4(MSA)_3 \rightarrow (MA)_2(MSA)_3 + (MA)_2$	7.22×10^{-9}
$(MA)_4(MSA)_3 \rightarrow (MA)_2(MSA)_2 + (MA)_2(MSA)_1$	3.80×10^{-7}
$(MA)_4(MSA)_4 \rightarrow (MA)_4(MSA)_3 + MSA$	5.88×10^{-10}
$(MA)_4(MSA)_4 \rightarrow (MA)_4(MSA)_2 + (MSA)_2$	3.28×10^{-23}
$(MA)_4(MSA)_4 \rightarrow (MA)_4(MSA)_1 + (MSA)_3$	4.52×10^{-42}

$(MA)_4(MSA)_4 \rightarrow (MA)_4 + (MSA)_4$	3.76×10^{-59}
$(MA)_4(MSA)_4 \rightarrow (MA)_3(MSA)_4 + MA$	5.16 × 10 ⁻⁵
$(MA)_4(MSA)_4 \rightarrow (MA)_3(MSA)_3 + (MA)_1(MSA)_1$	1.68×10^{-9}
$(MA)_4(MSA)_4 \rightarrow (MA)_3(MSA)_2 + (MA)_1(MSA)_2$	3.17× 10 ⁻¹⁵
$(MA)_4(MSA)_4 \rightarrow (MA)_3(MSA)_1 + (MA)_1(MSA)_3$	9.03×10^{-26}
$(MA)_4(MSA)_4 \rightarrow (MA)_3 + (MA)_1(MSA)_4$	5.61 × 10 ⁻³⁸
$(MA)_4(MSA)_4 \rightarrow (MA)_2(MSA)_4 + (MA)_2$	2.02×10^{-21}
$(MA)_4(MSA)_4 \rightarrow (MA)_2(MSA)_3 + (MA)_2(MSA)_1$	7.24×10^{-17}
$(MA)_4(MSA)_4 \rightarrow (MA)_2(MSA)_2 + (MA)_2(MSA)_2$	$0.88 imes 10^{-5}$

121

- 123 Table S2. Number of H-bonds formed by DMA/MA and MSA/SA in the
- 124 $(DMA/MA)_z(MSA/SA)_z$ (z = 1-4) clusters.

Clusters Systems	1:1	2:2	3:3	4:4
DMA-MSA	2	4	6	8
MA-MSA	1	4	8	12
DMA-SA ^a	2	4	6	8
MA-SA ^a	2	4	8	10

^adata are obtained from reference 6.⁶

Table S3. The thermochemical information including enthalpy change ΔH (kcal mol⁻¹) 127

- and entropy change ΔS (cal (mol·K)⁻¹) for the optimized DMA/MA-MSA clusters at 128
- 129 298.15 K and 1 atm.

Species	ΔΗ	Δ.S
$(DMA)_1(MSA)_1$	-19.44	-36.64
$(DMA)_1(MSA)_2$	-48.45	-80.49
$(DMA)_1(MSA)_3$	-69.61	-121.76
$(DMA)_1(MSA)_4$	-91.15	-165.78
$(DMA)_2(MSA)_1$	-36.38	-74.59
$(DMA)_2(MSA)_2$	-74.24	-111.41
$(DMA)_2(MSA)_3$	-97.77	-160.84
$(DMA)_2(MSA)_4$	-119.72	-202.62
$(DMA)_3(MSA)_1$	-46.12	-107.37
$(DMA)_3(MSA)_2$	-84.13	-141.48
$(DMA)_3(MSA)_3$	-124.34	-199.83
$(DMA)_3(MSA)_4$	-149.14	-247.63
$(DMA)_4(MSA)_1$	-56.46	-145.74
$(DMA)_4(MSA)_2$	-96.93	-190.81
$(DMA)_4(MSA)_3$	-137.28	-238.93
$(DMA)_4(MSA)_4$	-174.10	-284.11
$(MA)_1(MSA)_1$	-16.16	-36.35
$(MA)_1(MSA)_2$	-44.38	-80.57
$(MA)_1(MSA)_3$	-66.60	-117.12
$(MA)_1(MSA)_4$	-85.63	-160.73
$(MA)_2(MSA)_1$	-31.68	-76.61
$(MA)_2(MSA)_2$	-68.48	-112.39
$(MA)_2(MSA)_3$	-92.73	-155.24
$(MA)_2(MSA)_4$	-114.46	-202.03
$(MA)_3(MSA)_1$	-43.66	-104.57
$(MA)_3(MSA)_2$	-81.17	-147.74
$(MA)_3(MSA)_3$	-117.53	-195.20
$(MA)_3(MSA)_4$	-142.45	-243.43
$(MA)_4(MSA)_1$	-54.43	-142.07
$(MA)_4(MSA)_2$	-94.03	-178.95
$(MA)_4(MSA)_3$	-132.42	-229.11
(MA) ₄ (MSA) ₄	-172.23	-283.37

130

133 Figure S1. Simulated steady-state MSA dimer concentration $\Sigma[(MSA)_2]$ (cm⁻³) (A) and

134 cluster formation rate J (cm⁻³ s⁻¹) (B) as a function of temperature for the DMA-MSA

135 system.

136

Figure S2. Simulated steady-state MSA dimer concentration ($\Sigma[(MSA)_2]$) (cm⁻³) (A) and the cluster formation rate (*J*) (cm⁻³s⁻¹) (B) as a function of condensation sink coefficient for both DMA-MSA and MA-MSA systems at 278.15 K, [MSA] = 10⁶ cm⁻³, and [base] (DMA or MA) = 10 ppt.

Figure S3. Cluster formation pathways for the DMA-MSA system (A) and the MA-MSA system (B) at 278.15 K, $[MSA] = 10^6$ cm⁻³, [DMA/MA] = 10 ppt, and coagulation

145 sink coefficient = 6.0×10^{-4} s⁻¹. For clarity, pathways contributing less than 5% to the

146 flux of the cluster are not shown.

148 Figure S4. Cluster formation pathways for the DMA-MSA system (A) and the MA-

149 MSA system (B) at 278.15 K, $[MSA] = 10^6$ cm⁻³, [DMA/MA] = 10 ppt, and coagulation

150 sink coefficient = 6.0×10^{-2} s⁻¹. For clarity, pathways contributing less than 5% to the

151 flux of the cluster are not shown.

152

147

154 Figure S5. Evaporation rates of $(DMA)_m(MSA)_n$ (m = 0-4 and n = 0-4) (A) and

Figure S6. Interaction energy and interaction energy decomposition of $(DMA)_z(MSA)_z$ (z = 1-4) clusters (A) and $(MA)_z(MSA)_z$ (z = 1-4) clusters (B). The black line represents the interaction energy (E_{int}) obtained from the DLPNO-CCSD(T)/aug-ccpVTZ// ω B97X-D/6-31++G(d,p) level of theory, and the red line represents the total energy (E_{int}^*) obtained from EDA-FF analysis.

155 $(MA)_x(MSA)_y$ clusters (x = 0-4 and y = 0-4) (B) at 278.15 K.

Figure S7. Variation of average intermolecular nitrogen-nitrogen distance (D_{N-N}) (Å) 165 (A), sulfur-sulfur distance (D_{S-S}) (Å) (B) and oxygen-oxygen distance (D_{O-O}) (Å) (C), 166

167 and cluster density (ρ) (g cm⁻³) (D) with cluster size for the (DMA)_z(MSA)_z and 168 $(MA)_z(MSA)_z$ clusters (z = 1-4).

Figure S8. Cluster conformations of $(MA)_x(MSA)_y$ (x = 1-4, y = 1-4) at ω B97X-D/6-31++G(d,p) level of theory. The red balls stand for O atoms, the blue ones for N atoms, the gray ones for C atoms and white ones for H atoms. Dashed red lines indicate hydrogen bonds (defined by the configurational criteria).

175

178 Figure S9. Simulated steady-state MSA dimer concentration (Σ [(MSA)₂]) (cm⁻³) (A)

and the cluster formation rate (J) (cm⁻³s⁻¹) (B) as a function of monomer concentration

180 at 278.15 K with a " 2×2 box".

182 Figure S10. Simulated steady-state MSA dimer concentration ($\Sigma[(MSA)_2]$) (cm⁻³) (A)

and the cluster formation rate (J) (cm⁻³s⁻¹) (B) as a function of monomer concentration

- 184 at 278.15 K with a " 3×3 box".
- 185

187

188 Figure S11. Repulsive energy (E_{rep}) (kcal mol⁻¹) obtained from EDA-FF analysis for

189 (DMA/MA)_z(SA)_z (z = 1-4) clusters.

Coordinates of all optimized clusters 191

192 $(DMA)_1(MSA)_1$

N	1 207501	0 127560	0.000107
1N	-1.897391	0.127300	0.000197
H	-1.218638	0.289820	0.787956
C	-2.286995	-1.298629	-0.000207
H	-2.872744	-1.514873	-0.894979
H	-2.872894	-1.515466	0.894318
H	-1.374153	-1.896723	-0.000402
C	-3.011192	1.089809	-0.000024
H	-3.620752	0.942000	-0.892984
H	-2.600546	2.099589	0.001228
H	-3.622507	0.940507	0.891497
S	1.210251	-0.083698	0.000051
0	1.630667	-1.486234	-0.000435
0	0.441871	0.317279	1.227420
0	0.441451	0.318107	-1.226853
H	-1.218135	0.289956	-0.787099
C	2.683041	0.923146	-0.000124
H	3.253704	0.680195	0.896544
H	3.254033	0.678998	-0.896262
H	2.390725	1.973065	-0.000940

$(DMA)_1(MS)_2$	$SA)_2$		
Ν	-0.744416	2.202596	-0.109272
Н	-1.479229	1.498559	-0.378128
С	-0.713661	3.308518	-1.086227
Н	0.090878	3.998527	-0.828003
Н	-1.672231	3.829308	-1.071962
Н	-0.536302	2.890846	-2.077063
С	-0.969852	2.615929	1.291942
Н	-0.158676	3.272311	1.610629
Н	-0.991829	1.712609	1.901598
Н	-1.925310	3.138200	1.362344
S	-1.778051	-1.009529	-0.114565
0	-1.012315	-1.798427	-1.085102
0	-2.461804	0.188460	-0.683093
0	-0.955193	-0.596738	1.078095
Н	0.153122	1.679110	-0.162781
C	-3.069066	-2.053290	0.530685
Н	-3.706129	-2.349735	-0.302901

Н	-2.599664	-2.925681	0.985414
Н	-3.636235	-1.487012	1.269098
S	2.364458	-0.272861	0.065491
0	3.746397	-0.130428	0.465593
0	1.661086	0.930447	-0.418086
0	1.569920	-0.875394	1.282481
Н	0.558049	-0.807549	1.166503
C	2.214540	-1.514182	-1.195078
Н	2.727554	-1.136198	-2.080133
Н	2.697062	-2.418830	-0.824940
Н	1.150865	-1.679623	-1.386636
$(\mathbf{D}\mathbf{M}\mathbf{A}).(\mathbf{N}$	15 A).		
	0.014960	-1 307574	1 760676
Н	0.848880	-0.934065	1.700070
C C	0.092267	-2 786655	1.270301
н	-0.814201	-2.780033	2 178346
н	0.076340	-3.105349	2.176540
н Н	0.173747	-3.10/12/	0.694647
n C	_0 001880	-0.728703	3 118568
н	-0.091009	-0.720703	3 601549
Н	-0 169826	0.351788	3 020121
н	0.799345	-0 997780	3 686675
S	-0 023101	1 924902	0 350779
0	-0.023101	1.524902	-1 078264
0	1 184964	1.575003	1.065573
0	-1 2/0327	1.502057	1.005575
U Н	-1.24/32/	-1 02/033	1 188057
n C	0.047396	3 699816	0.473192
н	0.074958	3 967487	1 529376
н	0.950192	4 037676	-0.036226
Н	-0.841937	4.107587	-0.030220
S S	-3.1771/1	-0.716823	-0.007703
0	-4 450088	-0.710825	-0.700778
0	-7.450088	-1.578850	0.004672
0	-3 443340	0.658084	0.004072
н	_2 202027	1 025/09	0.024703
	-2.392037		_7 786005
	-2.333433	-0.220033	-2.200903 2 8///518
	-2.314/11	-1.151002	-2.044310
	-5.502/52	0.304320	-2./91494
11	-1.030039	0.307080	-2.113000

S	3.208243	-0.684585	-0.695929
0	2.265602	-1.425680	0.152818
0	4.517412	-1.247186	-0.937308
0	3.408755	0.759325	-0.081958
Н	2.557818	1.069755	0.359334
С	2.395417	-0.360479	-2.243528
Н	2.208389	-1.325844	-2.715637
Н	1.464322	0.172656	-2.036284
Н	3.067201	0.242544	-2.854489
		L	
$(DMA)_1(MS)_2$	SA) ₄		
N	0.026167	-0.630592	2.089018
Н	0.746038	-0.479507	1.369046
С	0.221572	-1.965532	2.688758
Н	-0.552607	-2.133583	3.438599
Н	1.210948	-2.001349	3.145792
Н	0.151934	-2.708609	1.896438
С	0.082221	0.485292	3.059574
Н	-0.710582	0.348172	3.795832
Н	-0.069883	1.413330	2.511250
Н	1.063360	0.486514	3.533143
S	0.041256	-1.984879	-1.342558
0	0.075014	-0.954781	-2.408429
0	-1.272408	-2.077720	-0.646571
0	1.151001	-1.855426	-0.359225
Н	-0.888070	-0.592142	1.615003
С	0.271582	-3.547605	-2.161141
Н	-0.530692	-3.669701	-2.888814
Н	1.242673	-3.527153	-2.656168
Н	0.236776	-4.333251	-1.406672
S	3.800518	0.191480	0.603332
0	5.113682	-0.080358	1.148083
0	2.641716	0.150932	1.499497
0	3.537328	-0.815969	-0.596385
Н	2.611039	-1.190789	-0.555030
С	3.829208	1.762523	-0.223980
Н	4.000095	2.523335	0.538226
Н	4.647975	1.743844	-0.943195
Н	2.872465	1.921698	-0.720510
S	-0.129650	2.132834	-0.899507
0	0.525503	3.332914	-0.420300

0	-0.474045	1.081043	0.052352
0	0.828654	1.507547	-2.004664
Н	0.579579	0.548602	-2.172720
C	-1.593805	2.556886	-1.807696
Н	-2.315893	2.937631	-1.083657
Н	-1.326620	3.307054	-2.551343
Н	-1.982125	1.647008	-2.266329
S	-3.588982	0.203518	0.619406
0	-3.728118	1.645749	0.560473
0	-2.750481	-0.394937	1.661608
0	-3.125228	-0.322483	-0.793290
Н	-2.361439	-0.990213	-0.731180
C	-5.211037	-0.512533	0.760863
Н	-5.635732	-0.168719	1.704566
Н	-5.811004	-0.163901	-0.079626
Н	-5.111075	-1.597655	0.749990
(DMA) ₂ (M	SA) ₁		
Ν	-1.183310	1.438994	-0.051162
Н	-1.413723	0.380789	-0.065429
C	-2.069824	2.147395	-0.986082
Н	-1.812718	3.208240	-1.014080
Н	-3.108621	2.031709	-0.668325
Н	-1.942813	1.719040	-1.981207
C	-1.231307	1.922101	1.341614
Н	-0.990591	2.987055	1.370414
Н	-0.486994	1.359128	1.907403
Н	-2.231067	1.759655	1.751250
S	1.726664	-0.125634	-0.101316
0	1.273963	-1.314067	-0.858337
0	1.261429	-0.110399	1.305019
0	1.387057	1.160044	-0.799571
Н	-0.182411	1.472259	-0.390083
C	3.510069	-0.186476	-0.069905
Н	3.872926	0.686765	0.472242
Н	3.804865	-1.106193	0.435851
Н	3.870109	-0.180482	-1.098862
N	-1.589054	-1.282982	-0.092113
Н	-0.670231	-1.525275	-0.477959
C	-2.646533	-1.818557	-0.941400
Н	-3.621584	-1.465557	-0.586773

Н	-2.667110	-2.918397	-0.949425
Н	-2.504951	-1.469675	-1.967835
C	-1.649569	-1.771036	1.285435
Н	-2.551318	-1.385147	1.775142
Н	-0.765316	-1.411825	1.817365
Н	-1.675145	-2.869213	1.339415
$(DMA)_2(N$	$(ISA)_2$		
Ν	-0.009660	2.407134	0.078250
Н	-0.898335	1.971089	-0.268909
C	0.078424	3.786551	-0.437290
Н	1.004445	4.243846	-0.085298
Н	-0.781732	4.359412	-0.086794
Н	0.077972	3.752427	-1.526686
C	0.012747	2.304678	1.553237
Н	-0.803680	2.902997	1.962163
Н	0.974982	2.660226	1.923641
Н	-0.123581	1.257521	1.818283
S	2.660513	-0.021154	-0.205486
0	2.230244	-1.213737	-0.989583
0	2.244167	-0.096215	1.210327
0	2.259064	1.261681	-0.851691
Н	0.803769	1.866438	-0.305726
C	4.443701	-0.034082	-0.251167
Н	4.789671	-0.960968	0.206521
Н	4.757848	0.022704	-1.293433
Н	4.804193	0.829593	0.307838
Ν	0.025007	-2.328274	0.162407
Н	0.815946	-1.875659	-0.355779
C	-0.639302	-3.316904	-0.711209
Н	-1.427891	-3.819673	-0.148641
Н	0.099118	-4.043660	-1.054121
Н	-1.087912	-2.787514	-1.551120
C	0.572331	-2.882577	1.417892
Н	-0.246531	-3.267662	2.027973
Н	1.098283	-2.079280	1.935260
Н	1.272056	-3.685350	1.178455
S	-2.684979	0.016284	-0.234525
0	-2.705460	-0.969403	-1.323230
0	-2.424779	1.418997	-0.667397
0	-1.753999	-0.375898	0.875382

Н	-0.655061	-1.567795	0.402970
С	-4.316934	0.042762	0.489165
Н	-5.022735	0.343699	-0.285294
Н	-4.546668	-0.960537	0.848456
Н	-4.319834	0.758083	1.311594
$(DMA)_2(M)$	SA) ₃		
N	-0.272494	-2.391043	-0.295387
Н	0.402145	-1.846048	0.279470
C	0.441249	-2.810178	-1.517114
Н	-0.259143	-3.302933	-2.193701
Н	1.246900	-3.491985	-1.242250
Н	0.871865	-1.926071	-1.985963
C	-0.798582	-3.506954	0.516284
Н	0.037737	-4.103725	0.883708
Н	-1.457865	-4.119154	-0.101642
Н	-1.360618	-3.075173	1.344211
S	-2.924276	-0.240280	0.373976
0	-2.620827	1.213872	0.288378
0	-2.310480	-0.883096	1.559147
0	-2.617811	-0.982290	-0.883687
Н	-1.063133	-1.759061	-0.547660
C	-4.695666	-0.349035	0.573076
Н	-5.166799	0.114049	-0.294074
Н	-4.966738	-1.402686	0.642775
Н	-4.967664	0.179839	1.486809
Ν	-0.225928	1.793095	1.637219
Н	-1.050476	1.538553	1.051113
С	-0.009477	3.253102	1.564388
Н	0.878057	3.508080	2.145496
Н	-0.886935	3.762399	1.965905
Н	0.140527	3.519505	0.518187
C	-0.421590	1.268594	3.004451
Н	0.490880	1.437599	3.577670
Н	-0.643699	0.204921	2.928269
Н	-1.266793	1.781696	3.465962
S	2.816562	-0.426320	0.700362
0	3.100916	-0.440617	-0.767928
0	1.915075	-1.532867	1.114992
0	2.385223	0.896960	1.204877
Н	0.603777	1.323808	1.229568

Supporting Information			
С	4.391466	-0.762883	1.465309
Н	4.753297	-1.722072	1.094839
Н	5.077187	0.039166	1.192396
Н	4.241623	-0.795887	2.544575
S	0.360462	1.198190	-1.879593
0	0.410082	2.632131	-1.645280
0	0.115752	0.329542	-0.729714
0	1.683860	0.692138	-2.579336
Н	2.286460	0.277844	-1.863063
C	-0.857370	0.862880	-3.122357
Н	-0.628116	1.460216	-4.004612
Н	-0.847025	-0.203844	-3.342139
Н	-1.814957	1.141807	-2.680429

206 (DMA)₂(MSA)₄

(2111)2(111)	01-)4		
Ν	-2.006919	-1.932520	-1.260749
Н	-1.128997	-2.076930	-0.723692
С	-1.792266	-2.433303	-2.631849
Н	-2.674264	-2.213791	-3.235321
Н	-1.610439	-3.508369	-2.596078
Н	-0.919040	-1.927586	-3.044247
С	-3.118570	-2.583115	-0.540189
Н	-4.041293	-2.447420	-1.105639
Н	-3.226997	-2.102390	0.431639
Н	-2.896103	-3.644571	-0.419618
S	1.457943	-1.958157	-0.400753
0	1.100985	-0.815603	-1.277162
0	0.336314	-2.911840	-0.209170
0	2.032487	-1.512351	0.909340
Н	-2.212714	-0.912784	-1.307557
С	2.757474	-2.850897	-1.225308
Н	3.044739	-3.688357	-0.588969
Н	2.370429	-3.205746	-2.180918
Н	3.589852	-2.159463	-1.365180
S	-3.524797	1.379878	-0.585849
0	-4.077752	0.551950	0.526829
0	-3.038452	0.543327	-1.719170
0	-2.518037	2.369363	-0.145784
Н	0.542073	0.832202	-0.571913
C	-4.915721	2.302024	-1.209608
Н	-5.679716	1.593874	-1.529869

Н	-5.287457	2.934274	-0.403278
Н	-4.571190	2.907412	-2.048110
Ν	0.178674	1.798649	-0.627821
Н	-0.843505	1.746492	-0.469536
С	0.438752	2.310781	-1.989666
Н	1.517314	2.356778	-2.142727
Н	-0.011497	3.299940	-2.084944
Н	-0.016328	1.626472	-2.705421
С	0.731138	2.648988	0.452801
Н	1.799085	2.777143	0.286583
Н	0.542326	2.160120	1.408376
Н	0.213361	3.608872	0.422709
S	-1.212618	-0.280291	2.263160
0	-0.602189	0.796901	3.021274
0	-1.034547	-0.274393	0.808915
0	-2.767682	-0.366178	2.550280
Н	-3.278907	0.061139	1.782303
С	-0.652661	-1.834770	2.903299
Н	0.419961	-1.872541	2.701034
Н	-0.867003	-1.865062	3.971500
Н	-1.158144	-2.635914	2.365142
S	4.256462	0.978116	-0.193803
0	3.640210	1.998827	-1.034532
0	4.705956	-0.259384	-0.818307
0	3.307111	0.663475	1.024192
Н	2.815447	-0.238529	0.942422
С	5.620969	1.728326	0.665401
Н	6.343601	2.036070	-0.090887
Н	5.248401	2.592302	1.215264
Н	6.052956	0.989772	1.339916

207

208 (DMA)₃(MSA)₁

	SA)		
N	-0.266175	1.949987	-0.736490
Н	-0.956759	1.415237	-0.081698
C	-0.957110	2.266729	-1.994481
Н	-0.263714	2.735813	-2.695808
Н	-1.791637	2.943867	-1.796707
Н	-1.335841	1.339780	-2.428625
C	0.275792	3.115323	-0.016957
Н	0.958904	3.668076	-0.666049
Н	0.817341	2.739308	0.852010

Н	-0.544437	3.768510	0.291463
S	2.049161	-0.402607	0.234801
0	1.570331	-1.774967	0.484421
0	1.689479	0.577288	1.285664
0	1.660779	0.107841	-1.126406
Н	0.514843	1.265604	-0.923376
C	3.833397	-0.497489	0.203447
Н	4.231404	0.499315	0.012621
Н	4.166180	-0.865598	1.174414
Н	4.124354	-1.188704	-0.587734
Ν	-1.957174	0.535257	0.850748
Н	-1.734952	-0.413005	0.494332
C	-3.383439	0.777368	0.672486
Н	-3.624893	1.817640	0.920366
Н	-4.005812	0.126549	1.305439
Н	-3.656072	0.600719	-0.372444
C	-1.524650	0.632943	2.244732
Н	-1.689976	1.652159	2.613585
Н	-0.455634	0.412197	2.300933
Н	-2.076705	-0.057960	2.899225
Ν	-1.253559	-2.052794	-0.360293
Н	-0.316854	-2.171217	0.030065
C	-1.127549	-1.839598	-1.794363
Н	-2.077451	-1.472147	-2.205708
Н	-0.857950	-2.756893	-2.343824
Н	-0.342829	-1.098948	-1.974293
C	-2.098321	-3.185315	-0.020379
Н	-3.130985	-2.987781	-0.332559
Н	-2.095535	-3.333843	1.062987
Н	-1.776632	-4.125175	-0.499519

209

210 (DMA)₃(MSA)₂

(2111))(111)	51-)2		
Ν	0.027195	-2.081131	-1.049434
Н	-0.818527	-1.736751	-0.545830
С	0.130717	-3.533024	-0.818079
Н	1.031189	-3.912394	-1.304032
Н	-0.754145	-4.024833	-1.225118
Н	0.188879	-3.691380	0.258394
С	-0.055983	-1.684193	-2.470676
Н	0.852851	-2.006282	-2.980351
Н	-0.146844	-0.599581	-2.517449

Н	-0.938182	-2.144456	-2.917884
S	2.558846	0.553596	-0.546197
0	2.007582	1.016098	0.773171
0	1.942353	1.265781	-1.676674
0	2.516465	-0.926760	-0.658636
Н	0.860260	-1.625093	-0.631341
C	4.290933	0.983381	-0.513855
Н	4.373995	2.065945	-0.415940
Н	4.753752	0.482690	0.336675
Н	4.737822	0.647127	-1.449664
Ν	-0.288610	2.476292	0.587853
Н	0.568229	1.873212	0.573126
C	-0.217101	3.337638	1.782911
Н	-1.126843	3.936361	1.851280
Н	0.655901	3.988254	1.709968
Н	-0.128966	2.703783	2.665516
C	-0.390615	3.209606	-0.692560
Н	-1.260677	3.867837	-0.655280
Н	-0.509659	2.478513	-1.489778
Н	0.523075	3.784277	-0.847819
Ν	0.657026	-1.587335	1.850408
Н	1.023514	-0.659348	1.649566
C	1.755483	-2.416770	2.316568
Н	1.414652	-3.453695	2.433963
Н	2.167811	-2.095335	3.289470
Н	2.557560	-2.396986	1.573431
C	-0.437287	-1.493892	2.804208
Н	-0.914117	-2.474952	2.913700
Н	-1.194350	-0.801021	2.429110
Н	-0.111370	-1.166300	3.808316
S	-2.765226	0.062127	-0.241059
0	-2.436854	-1.374882	-0.045370
0	-2.161606	0.633761	-1.461202
0	-2.462551	0.884079	0.971343
Н	-1.116337	1.838942	0.689908
C	-4.538175	0.130508	-0.431798
Н	-4.807433	-0.460363	-1.307620
Н	-4.995348	-0.281925	0.467645
Н	-4.824861	1.173264	-0.569019

211

212 (DMA)₃(MSA)₃

N	-0.744339	-0.658288	-2.137365
Н	-1.519831	-0.037400	-1.816570
C	-1.334652	-1.836451	-2.800080
Н	-0.538835	-2.536160	-3.058019
Н	-1.868826	-1.514058	-3.695444
Н	-2.025657	-2.297590	-2.094438
С	0.220381	0.095217	-2.962257
Н	1.069498	-0.552348	-3.188439
Н	0.557729	0.960763	-2.390681
Н	-0.270942	0.415800	-3.882841
S	-3.471329	0.026149	-0.105460
0	-2.690886	-1.226550	0.147691
0	-3.072365	0.640433	-1.405136
0	-3.462928	0.947049	1.040857
Н	-0.257677	-0.983832	-1.287307
C	-5.164432	-0.501308	-0.330671
Н	-5.764199	0.381527	-0.553772
Н	-5.201019	-1.210545	-1.157856
Н	-5.501956	-0.969373	0.594359
S	2.133065	-2.007363	0.002786
0	2.950742	-1.214281	-0.958004
0	0.783298	-2.335256	-0.518953
0	2.089578	-1.400595	1.356432
Н	-1.299530	-0.869805	1.203399
C	2.979051	-3.570141	0.175850
Н	3.054182	-4.030230	-0.809544
Н	3.969763	-3.379890	0.589084
Н	2.396454	-4.198483	0.849994
Ν	-0.675255	-1.020947	2.021240
Н	0.293085	-0.893267	1.685961
C	-0.851150	-2.420972	2.450142
Н	-1.887497	-2.569057	2.755670
Н	-0.172503	-2.632586	3.277970
Н	-0.619600	-3.063405	1.600593
C	-0.989448	-0.014721	3.059888
Н	-2.066249	-0.014600	3.231017
Н	-0.672146	0.963888	2.699623
Н	-0.449405	-0.270073	3.973929
S	0.183282	2.296388	0.252103
0	0.581744	2.637835	1.629689
0	-0.098394	0.848028	0.072964
0	1.187284	2.755804	-0.772905

Supporting	Information
------------	-------------

Н	2.552331	1.936488	-0.490512
С	-1.317372	3.176633	-0.116920
Н	-2.085119	2.821939	0.572957
Н	-1.119199	4.241543	0.007005
Н	-1.616071	2.940367	-1.138161
Ν	3.435969	1.398437	-0.257165
Н	3.252883	0.405044	-0.522767
С	3.654941	1.476771	1.203934
Н	3.736389	2.524750	1.494596
Н	4.564945	0.930711	1.459694
Н	2.797504	1.025363	1.700051
С	4.546685	1.928550	-1.067125
Н	4.687118	2.986283	-0.838626
Н	4.299761	1.814013	-2.122898
Н	5.461114	1.375818	-0.843514
$(DMA)_3(N$	ISA) ₄		
S	-2.463919	2.078761	-0.431633
0	-1.495064	1.093456	0.073933
0	-2.029530	3.469310	-0.452225
0	-3.770334	1.992403	0.427364
Н	-3.924359	1.039291	0.796283
С	-2.958276	1.587683	-2.060358
Н	-2.042326	1.523849	-2.652977
Н	-3.444812	0.613318	-1.972198
Н	-3.642970	2.345063	-2.442063
Ν	-0.487963	-1.186437	1.622426
Н	-1.369002	-1.537094	1.187044
С	-0.868310	-0.361872	2.790120
Н	0.038527	0.000811	3.272132
Н	-1.455700	-0.980752	3.469993
Н	-1.481825	0.462898	2.431509
С	0.357398	-2.351754	1.957931
Н	1.279572	-1.994133	2.414691
Н	0.587970	-2.881243	1.033686
Н	-0.197506	-3.004293	2.633748
S	-4.009066	-1.526178	0.504528
0	-4.112193	-0.318719	1.390082
0	-2.827082	-2.356879	0.859430
0	-4.091736	-1.189089	-0.925559
Н	0.006282	-0.632103	0.903587

С	-5.433406	-2.519576	0.907679
Н	-6.326221	-1.944382	0.661907
Н	-5.386823	-3.433109	0.314562
Н	-5.401012	-2.746724	1.973218
S	3.442652	0.222321	1.685745
0	3.788166	-1.156697	1.240467
0	2.138596	0.310266	2.372637
0	3.582941	1.218439	0.583740
Н	0.386518	1.678883	-0.249533
С	4.685872	0.651365	2.893817
Н	4.630035	-0.072198	3.707375
Н	5.662563	0.612055	2.411290
Н	4.476428	1.657197	3.258453
Ν	1.123680	2.368859	-0.042743
Н	2.005494	1.828613	0.074291
C	0.812234	3.033358	1.242985
Н	-0.148021	3.540489	1.148937
Н	1.606529	3.748085	1.465006
Н	0.784209	2.268542	2.018130
C	1.249483	3.306116	-1.181471
Н	0.314642	3.860257	-1.273853
Н	1.420122	2.723225	-2.085486
Н	2.081562	3.984130	-0.984274
S	0.543745	-0.577325	-2.077349
0	0.204127	0.753419	-2.612865
0	0.998770	-0.526069	-0.653139
0	1.549452	-1.317520	-2.899449
Н	2.893280	-1.505773	-1.969992
C	-0.937182	-1.564008	-2.108946
Н	-1.705373	-1.079891	-1.506108
Н	-1.266228	-1.648800	-3.145109
Н	-0.707098	-2.549422	-1.702722
Ν	3.806846	-1.580152	-1.452523
Н	3.619498	-1.402330	-0.439285
C	4.701003	-0.512963	-1.945392
Н	4.834621	-0.625781	-3.022357
Н	5.661623	-0.583150	-1.432283
Н	4.241035	0.446381	-1.711943
C	4.348028	-2.942031	-1.608877
Н	4.535243	-3.137742	-2.666018
Н	3.616038	-3.655657	-1.230488
Н	5.274995	-3.032133	-1.040187

N	1 614174	-0 863464	2.033169
H	1.665455	0.045420	1.574650
C	2 642336	-0 936294	3 058309
Н	2.662868	-1.942259	3.494104
Н	2.491494	-0.216892	3.881739
Н	3.621890	-0.742669	2.611175
C	0.275487	-1.038749	2.571834
Н	0.168602	-2.052058	2.979019
Н	-0.457973	-0.909546	1.772521
Н	0.028442	-0.321968	3.373397
N	1.627232	-1.012703	-1.318375
Н	0.593284	-1.278756	-1.119317
C	2.503310	-2.108298	-0.869733
Н	3.546626	-1.857584	-1.076186
Н	2.237464	-3.024341	-1.403336
Н	2.352407	-2.224105	0.206478
С	1.748841	-0.665898	-2.745688
Н	2.777983	-0.374860	-2.967591
Н	1.073203	0.167951	-2.940965
Н	1.472983	-1.530475	-3.354214
S	0.466967	2.046793	-0.219031
0	-0.335513	2.067087	1.019179
0	-0.234852	1.476407	-1.393301
0	1.807237	1.399358	-0.018968
Н	1.799428	-0.147491	-0.758581
С	0.826890	3.752673	-0.611573
Н	-0.121876	4.265074	-0.773674
Н	1.360306	4.191576	0.231707
Н	1.438302	3.779494	-1.513823
Ν	-0.992013	-1.718433	-0.959171
Н	-1.425009	-1.034216	-0.316693
C	-1.188416	-3.049687	-0.395716
Н	-0.741902	-3.805177	-1.052612
Н	-2.252558	-3.298806	-0.265173
Н	-0.696386	-3.107710	0.578952
C	-1.638893	-1.552032	-2.258577
Н	-1.186292	-2.227958	-2.994221
Н	-1.498006	-0.520126	-2.589041
Н	-2.717597	-1.766716	-2.220612
N	-2.594033	0.154814	0.736303

ſ	Н	-1.883105	0.818390	1.047153
	С	-3.377616	-0.317208	1.865257
	Н	-4.066702	-1.103876	1.535795
	Н	-3.978137	0.477151	2.340356
	Н	-2.715005	-0.744245	2.623761
	С	-3.403167	0.807869	-0.283723
	Н	-4.074619	0.076922	-0.751142
	Н	-2.737929	1.216623	-1.048517
	Н	-4.024247	1.625987	0.118285
-				
(DMA) ₄ (MS	$SA)_2$		
ſ	N	-1.244997	-2.626934	-0.033456
	Н	-0.327795	-2.290121	-0.404612
	С	-2.068698	-3.114303	-1.157726
	Н	-3.016055	-3.491494	-0.767225
	Н	-1.535257	-3.914625	-1.674608
	Н	-2.261147	-2.274065	-1.824278
	С	-1.002538	-3.631809	1.019990
	Н	-1.953272	-3.894914	1.487041
	Н	-0.318641	-3.199312	1.749653
	Н	-0.549509	-4.519909	0.573996
	Ν	0.825367	0.908861	-2.377923
	Н	0.997421	1.802944	-0.926422
	С	-0.310506	1.326334	-3.195187
	Н	-0.367901	0.774401	-4.146910
	Н	-0.213570	2.392548	-3.432304
	Н	-1.236679	1.166185	-2.639154
	С	2.096979	0.955318	-3.091219
	Н	2.086462	0.360620	-4.017974
	Н	2.883889	0.579432	-2.433214
	Н	2.326095	1.993141	-3.362631
	S	2.143304	-1.528130	0.097842
	0	1.487182	-1.719735	1.411071
	0	2.821944	-0.228798	-0.058945
	0	1.196841	-1.823928	-1.030117
	Н	0.685599	-0.040861	-2.032891
	С	3.416600	-2.777119	-0.025591
	Н	4.138959	-2.604830	0.772837
	Н	2.952453	-3.757777	0.082911
	Н	3.893237	-2.682263	-1.001507
	N	1.144465	2.460334	-0.094030

Н	0.929594	1.907321	0.799960
C	0.203019	3.588084	-0.220960
Н	0.407012	4.125400	-1.151001
Н	0.330331	4.268278	0.625160
Н	-0.811333	3.187534	-0.225910
C	2.559608	2.869565	-0.059360
Н	2.809360	3.398376	-0.982746
Н	3.170701	1.972452	0.034090
Н	2.727049	3.532821	0.793115
N	0.742881	1.108839	2.299878
Н	0.575395	0.138630	2.034955
C	-0.385739	1.618552	3.074052
Н	-0.230203	2.684378	3.278721
Н	-0.501715	1.101383	4.039074
Н	-1.300709	1.507998	2.490369
C	2.007681	1.158756	3.026966
Н	2.271441	2.204090	3.228354
Н	2.788707	0.706093	2.412080
Н	1.962910	0.628795	3.990490
S	-2.897844	0.476908	0.043693
0	-2.675302	-0.049001	-1.321622
0	-2.296202	1.798793	0.296272
0	-2.522319	-0.535108	1.086601
Н	-1.716721	-1.788038	0.399401
C	-4.664434	0.695235	0.223660
Н	-5.152002	-0.265935	0.058515
H	-4.863071	1.059873	1.231768
Н	-4.991399	1.423840	-0.518760

(DMA) ₄ (M	SA) ₃		
Ν	3.042629	1.892771	1.405995
Н	3.267011	1.375420	0.550620
С	4.130176	1.694956	2.355412
Н	3.867926	2.140372	3.322138
Н	5.075365	2.147537	2.018199
Н	4.290111	0.622847	2.497959
С	2.796860	3.295757	1.085602
Н	2.490385	3.830924	1.991955
Н	1.984116	3.363873	0.356872
Н	3.688942	3.797531	0.680091
Ν	-0.201284	-2.319836	-1.046209

Н	0.727068	-1.896355	-1.268976
C	-1.075595	-2.188739	-2.230009
Н	-2.049142	-2.622725	-2.002072
Н	-0.601802	-2.697953	-3.071430
Н	-1.193993	-1.126790	-2.447899
С	0.019253	-3.705695	-0.597034
Н	0.471249	-4.275536	-1.410538
Н	-0.936142	-4.145311	-0.307238
Н	0.696660	-3.678532	0.256639
S	-2.883323	-1.257914	1.198988
0	-3.173989	0.177739	1.497319
0	-1.453753	-1.601381	1.411605
0	-3.390365	-1.673513	-0.125028
Н	-0.601206	-1.783903	-0.259381
C	-3.793848	-2.182681	2.426953
Н	-3.446381	-1.879783	3.414948
Н	-4.853881	-1.958806	2.305896
Н	-3.604999	-3.243661	2.261336
Ν	0.704229	0.587694	2.028956
Н	0.427503	0.151691	1.136465
C	-0.290311	1.630065	2.350717
Н	0.014403	2.138745	3.268779
Н	-1.272691	1.169468	2.471197
Н	-0.315844	2.336644	1.518587
C	0.892224	-0.424693	3.082668
Н	1.635256	-1.139498	2.730540
Н	-0.056345	-0.931067	3.261305
Н	1.242230	0.073234	3.990390
S	3.177516	-1.232484	-0.671327
0	3.697536	0.145525	-0.827365
0	2.340312	-1.678992	-1.822862
0	2.506076	-1.474220	0.628336
Н	1.641000	1.068795	1.814192
C	4.620009	-2.291151	-0.701679
Н	5.121780	-2.154434	-1.659900
Н	5.275434	-1.997721	0.118990
Н	4.293523	-3.324635	-0.581731
S	-0.110543	1.556565	-1.546514
0	-0.004882	0.367592	-0.660331
0	-0.112739	2.830486	-0.794947
0	-1.295736	1.422812	-2.456060
Н	-2.652888	1.426901	-1.494250

С	1.320042	1.539544	-2.601928
Н	2.211070	1.551782	-1.971966
Н	1.307676	0.608561	-3.169419
Н	1.268688	2.408809	-3.257897
N	-3.448238	1.607976	-0.828178
Н	-3.239091	1.085373	0.053494
C	-4.704012	1.069162	-1.386961
Н	-4.887143	1.523800	-2.362014
Н	-5.526170	1.298214	-0.706399
Н	-4.594460	-0.012134	-1.475752
C	-3.464723	3.057955	-0.543068
Н	-3.740787	3.596375	-1.451270
Н	-2.458114	3.355397	-0.244048
Н	-4.186206	3.262387	0.249942

221

222 (DMA)₄(MSA)₄

(21)21)4(1)1	S)4		
S	3.986388	1.331959	0.635984
0	3.308647	2.630988	0.504893
0	4.633892	0.818073	-0.586354
0	3.072356	0.284544	1.231018
C	5.276321	1.543974	1.855652
Н	5.982874	2.279044	1.468882
Н	4.821819	1.901814	2.779764
Н	5.768401	0.583783	2.012009
Ν	-1.639877	-1.220199	-1.978814
Н	-1.778770	-2.049048	-1.358598
С	-0.847223	-1.610456	-3.162632
Н	-0.577949	-0.704971	-3.708084
Н	-1.447835	-2.272999	-3.788543
Н	0.037248	-2.141791	-2.813487
C	-2.947001	-0.617980	-2.315248
Н	-2.762850	0.274797	-2.913584
Н	-3.462160	-0.354653	-1.391126
Н	-3.533588	-1.346229	-2.878613
S	-0.466017	-3.734874	0.172062
0	0.570152	-3.381846	-0.849919
0	-1.833102	-3.430507	-0.337943
0	-0.172597	-3.182876	1.503497
Н	-1.082937	-0.555294	-1.415639
C	-0.401024	-5.513491	0.322286
Н	0.590941	-5.786890	0.683018

Н	-1.164474	-5.818397	1.038348
Н	-0.592654	-5.952299	-0.656877
S	0.140768	1.846965	-1.643536
0	-0.854127	1.745222	-2.738480
0	0.569372	0.506419	-1.154536
0	-0.344382	2.721760	-0.531508
Н	1.400052	0.710650	1.462575
C	1.593044	2.647049	-2.285458
Н	2.003060	2.019151	-3.077498
Н	1.290217	3.615803	-2.683994
Н	2.306081	2.760016	-1.464831
Ν	0.480932	0.811863	1.934888
Н	-0.267257	0.651840	1.233827
C	0.375504	2.179275	2.483788
Н	1.163500	2.320498	3.225776
Н	-0.608233	2.286115	2.944351
Н	0.502385	2.884398	1.663856
C	0.373463	-0.252909	2.957666
Н	1.231509	-0.182490	3.628373
Н	0.359366	-1.222004	2.455629
Н	-0.558998	-0.108177	3.505272
S	-2.992397	0.052302	1.465129
0	-2.739632	0.853287	2.679583
0	-1.791652	-0.019534	0.579220
0	-4.170203	0.531401	0.676429
Н	-3.503475	1.971780	-0.074193
C	-3.344639	-1.616503	1.968236
Н	-4.211335	-1.598311	2.629395
Н	-3.525687	-2.214503	1.075076
Н	-2.458277	-2.000886	2.475454
Ν	-3.023064	2.881489	-0.253835
Н	-1.990250	2.686863	-0.312572
C	-3.271564	3.750341	0.916597
Н	-2.996489	3.194162	1.814512
Н	-4.332176	4.003836	0.958885
Н	-2.669279	4.655355	0.822741
C	-3.444843	3.449715	-1.549562
Н	-3.090958	2.788771	-2.341351
Н	-2.978541	4.428088	-1.675839
Н	-4.531718	3.546273	-1.570029
N	2.643035	-1.639342	-0.725128
Н	2.586395	-0.769463	-0.163037

	С	3.689562	-2.480673	-0.109522
	Н	3.744604	-3.429025	-0.646193
	Н	4.638609	-1.946164	-0.164398
	Н	3.422369	-2.656852	0.931974
	C	2.905317	-1.312915	-2.143246
	Н	2.081847	-0.693195	-2.495264
	Н	3.839572	-0.754088	-2.200239
	Н	2.960656	-2.244030	-2.710830
	Н	1.736030	-2.147610	-0.657449
223				
224	$(MA)_1(MSA)$	A) ₁		
	N	2.298093	-0.758447	0.021260
	Н	2.938974	-1.486010	-0.279277
	Н	2.019624	-0.958436	0.980007
	С	2.921434	0.571969	-0.062293
	Н	3.832902	0.655294	0.538320
	Н	3.158893	0.788840	-1.105576
	Н	2.200493	1.315791	0.283201
	S	-0.890703	0.150662	0.070316
	0	-1.060193	1.557941	-0.251222
	0	-0.337175	-0.197506	1.380731
	0	-0.034291	-0.572112	-1.039618
	Н	0.953163	-0.710991	-0.674398
	C	-2.457003	-0.666628	-0.139348
	Н	-3.146694	-0.224836	0.580648
	Н	-2.801545	-0.488885	-1.157944
	Н	-2.324534	-1.730861	0.051848
225				
226	$(MA)_1(MS)_1$	A) ₂		
	Ν	0.591767	2.385102	-0.743496
	Н	-0.287947	1.824653	-0.737457
	Н	0.551870	3.038011	-1.522782
	C	0.769870	3.072394	0.557325
	Н	0.840895	2.298777	1.321138
	Н	1.690115	3.655941	0.534347
	Н	-0.085800	3.719398	0.749534
	S	1.877154	-0.661720	-0.071010
	0	1.167415	-1.708320	-0.812128
	0	1.049753	-0.071216	1.040281
	0	2.429078	0.438926	-0.916216
	H	1.374395	1.689230	-0.902816

Supporting Information				
С	3.281199	-1.415911	0.723332	
Н	2.912565	-2.205864	1.377741	
Н	3.923364	-1.827934	-0.055339	
Н	3.807629	-0.651808	1.294926	
S	-2.298305	-0.208417	0.048922	
0	-1.681313	0.876770	-0.737411	
0	-3.681594	-0.054350	0.439142	
0	-1.452494	-0.438889	1.355310	
Н	-0.448449	-0.343822	1.200196	
C	-2.082357	-1.712589	-0.868832	
Н	-1.012398	-1.856083	-1.042245	
Н	-2.502967	-2.524270	-0.275192	
Н	-2.626272	-1.596483	-1.806942	

228 (MA)₁(MSA)₃

	/5		
N	0.222658	-0.091641	2.281355
Н	-0.511802	-0.575161	1.729763
Н	0.187079	0.910168	1.998131
С	0.002315	-0.279984	3.729836
Н	-0.973876	0.125458	3.993377
Н	0.030318	-1.344336	3.961176
Н	0.782262	0.241725	4.284007
S	-0.513276	2.257865	-0.209346
0	0.180129	1.219952	-1.043753
0	0.124738	2.412099	1.117828
0	-1.968302	1.999240	-0.147917
Н	1.140702	-0.447145	1.966973
С	-0.308324	3.809236	-1.054726
Н	0.758807	4.018638	-1.130014
Н	-0.758741	3.714825	-2.042820
Н	-0.814686	4.577551	-0.470480
S	-2.538866	-1.531460	-0.320884
0	-3.503043	-2.603826	-0.410420
0	-1.847360	-1.328332	0.961718
0	-3.283820	-0.194139	-0.713727
Н	-2.754221	0.622961	-0.473269
С	-1.306084	-1.709274	-1.585693
Н	-0.701211	-2.581488	-1.336692
Н	-1.824667	-1.847353	-2.534402
Н	-0.686988	-0.810335	-1.593223
S	2.788659	-0.873426	-0.344442

0	1.916773	-1.843222	-0.986747
0	2.699710	-0.771101	1.119424
0	2.621653	0.550369	-0.990493
Н	1.641191	0.855440	-0.996091
C	4.481963	-1.190061	-0.765500
Н	4.735726	-2.157025	-0.330400
Н	4.565477	-1.218876	-1.851439
Н	5.098712	-0.399028	-0.340145
(MA) ₁ (MS	$A)_4$		
N	-0.110801	-0.910374	2.032088
Н	0.520044	-0.115989	1.888650
Н	-0.035999	-1.464567	1.158647
C	0.256900	-1.712131	3.215566
Н	1.289702	-2.038327	3.102612
Н	0.158474	-1.099520	4.111337
Н	-0.409644	-2.571708	3.281620
S	-0.010588	-1.498981	-1.662682
0	-1.246052	-0.703033	-1.896634
0	-0.027349	-2.275351	-0.410749
0	1.205585	-0.625528	-1.793601
Н	-1.079530	-0.558821	2.067947
C	0.115002	-2.670021	-2.994432
Н	-0.748031	-3.333827	-2.940492
Н	0.124002	-2.117247	-3.933685
Н	1.042113	-3.228092	-2.862454
S	0.031921	2.429005	-0.367335
0	0.454072	3.697917	0.185192
0	-0.269503	1.316034	0.528466
0	1.194625	1.965701	-1.362911
Н	1.118717	0.989907	-1.559552
C	-1.344107	2.658718	-1.462939
Н	-2.200764	2.940108	-0.850398
Н	-1.078036	3.440389	-2.174079
Н	-1.536402	1.704512	-1.955794
S	-3.693696	-0.079207	0.702852
0	-3.659789	1.295732	0.236673
0	-2.898801	-0.427456	1.883849
0	-3.372850	-1.082302	-0.474322
Н	-2.516899	-0.879270	-0.973858
C	-5.371385	-0.565037	1.019358

	Н	-5.386050	-1.625422	1.269162
	Н	-5.716228	0.036972	1.860530
	Н	-5.961087	-0.359023	0.126760
	S	3.786233	-0.270643	0.760770
	0	4.982144	-0.846414	1.334563
	0	2.529055	-0.345718	1.503681
	0	3.583473	-0.956494	-0.659915
	Н	2.651303	-0.871219	-0.997724
	C	4.088564	1.432993	0.351457
	Н	4.982399	1.473413	-0.270976
	Н	3.219183	1.835034	-0.171193
	Н	4.249683	1.960711	1.292238
231				
232	(MSA) ₂ (MS	$SA)_1$		
	Ν	1.935662	-1.308589	0.691361
	Н	0.958870	-1.538729	0.906822
	Н	2.522032	-1.792369	1.364255
	C	2.233565	-1.757971	-0.677073
	Н	1.506445	-1.296358	-1.349507
	Н	3.240771	-1.438802	-0.962563
	Н	2.166156	-2.845698	-0.795421
	N	1.578322	1.424116	0.683739
	Н	1.835316	0.376527	0.754840
	Н	2.040610	1.940471	1.427663
	C	1.912298	1.949017	-0.659117
	Н	1.296249	1.403449	-1.375601
	Н	1.676446	3.012462	-0.710936
	Н	2.972270	1.791181	-0.863664
	S	-1.292638	-0.073954	0.008314
	0	-1.027050	-1.309490	0.777176
	0	-0.554035	-0.004097	-1.273485
	0	-1.072252	1.166917	0.828518
	Н	0.523980	1.448730	0.830078
	C	-3.034508	-0.072611	-0.378394
	Н	-3.244838	-0.957766	-0.979101
	Н	-3.590051	-0.102570	0.559039
	Н	-3.261372	0.836788	-0.934793

233

234 (MA)₂(MSA)₂

Ν	-0.015895	2.147765	-0.053651
Н	0.856613	1.966477	0.489032

Н	-0.861262	1.955282	0.525039
C	-0.040535	3.496146	-0.648694
Н	0.828575	3.618113	-1.294828
Н	-0.955529	3.613408	-1.229079
Н	-0.013464	4.240413	0.146672
Ν	0.015310	-2.147625	-0.053273
Н	0.031453	-1.413036	-0.773378
Н	-0.858257	-1.967984	0.487971
C	0.043632	-3.495629	-0.649113
Н	0.961180	-3.611572	-1.225704
Н	0.013999	-4.240427	0.145662
Н	-0.822627	-3.617962	-1.298997
S	2.570295	0.013201	0.176028
0	2.391552	1.269316	0.952631
0	1.717858	-0.004056	-1.045174
0	2.392888	-1.220135	0.988024
Н	0.859363	-1.954197	0.526947
C	4.269693	0.007113	-0.363346
Н	4.439107	0.895033	-0.972423
Н	4.903396	0.022019	0.523692
Н	4.441366	-0.899766	-0.943210
S	-2.570789	-0.013416	0.175988
0	-2.393225	-1.269696	0.952498
0	-1.717497	0.003719	-1.044626
0	-2.393292	1.219777	0.988215
Н	-0.031667	1.413592	-0.774204
C	-4.269847	-0.006508	-0.364468
Н	-4.904031	-0.021546	0.522227
Н	-4.440931	0.900647	-0.944068
Н	-4.439215	-0.894155	-0.973960

235

236 (MA)₂(MSA)₃

(1111)2(110)	-)3		
Ν	-0.768399	-0.611296	1.946672
Н	-0.640749	0.266717	1.432693
Н	-0.107333	-1.302911	1.534918
C	-0.492534	-0.423536	3.383463
Н	0.528932	-0.063503	3.502494
Н	-1.195218	0.302841	3.791805
Н	-0.610355	-1.378569	3.894590
N	-0.579340	0.586190	-1.922658
Н	0.088799	1.367938	-1.917407

H -1.297073 0.775260 -1.181723 C -1.219836 0.370590 -3.237990 H -0.463218 0.068906 -3.962168 H -1.980560 -0.400885 -3.122285 H -1.694871 1.297618 -3.558939 S 1.957282 -2.039008 -0.185178 O 1.087130 -2.392069 0.957992 O 3.142830 -1.220325 0.231501 O 1.230906 -1.424439 -1.319555 H -0.028992 -0.242834 -1.633008 C 2.645873 -3.3567449 -0.780222 H 3.304254 -3.33848 -1.618076 H 3.200936 -4.028445 0.036656 H 1.819440 -4.204686 -1.095190 S -3.490726 -0.066170 0.016363 O -2.398761 0.967936 0.079926 O -3.63851 -1.019662 1.152455 H -				
C -1.219836 0.370590 -3.237990 H -0.463218 0.068906 -3.962168 H -1.980560 -0.400885 -3.122285 H -1.694871 1.297618 -3.558939 S 1.957282 -2.039008 -0.185178 O 1.087130 -2.392069 0.957992 O 3.142830 -1.220325 0.231501 O 1.230906 -1.424439 -1.319555 H -0.028992 -0.242834 -1.633005 C 2.645873 -3.567449 -0.780222 H 3.304254 -3.33848 -1.618076 H 3.200936 -4.028445 0.036656 H 1.819440 -4.204686 -1.095190 S -3.490726 -0.066170 0.016363 O -2.398761 0.967936 0.079926 O -3.363851 -1.019662 1.152545 H -1.752427 -0.907833 1.757549 C -	Н	-1.297073	0.775260	-1.181723
H -0.463218 0.068906 -3.962168 H -1.980560 -0.400885 -3.122285 H -1.694871 1.297618 -3.558939 S 1.957282 -2.039008 -0.185178 O 1.087130 -2.392069 0.957992 O 3.142830 -1.220325 0.231501 O 1.230906 -1.424439 -1.319555 H -0.028992 -0.242834 -1.6300222 H 3.04254 -3.3567449 -0.780222 H 3.304254 -3.338848 -1.618076 H 3.200936 -4.028445 0.036656 H 1.819440 -4.204686 -1.095190 S -3.490726 -0.066170 0.016363 O -2.398761 0.967936 0.079926 O -3.363851 -1.019662 1.152545 H -1.752427 -0.907833 1.757549 C -5.014651 0.818686 0.296604 H	C	-1.219836	0.370590	-3.237990
H -1.980560 -0.400885 -3.122285 H -1.694871 1.297618 -3.558939 S 1.957282 -2.039008 -0.185178 O 1.087130 -2.392069 0.957992 O 3.142830 -1.220325 0.231501 O 1.230906 -1.424439 -1.319555 H -0.028992 -0.242834 -1.633008 C 2.645873 -3.567449 -0.780222 H 3.304254 -3.338848 -1.618076 H 3.200936 -4.028445 0.036656 H 1.819440 -4.204686 -1.095190 S -3.490726 -0.066170 0.016363 O -2.398761 0.967936 0.079926 O -3.363851 -1.019662 1.152545 H -1.752427 -0.907833 1.757549 C -5.014651 0.818686 0.296604 H -5.137179 1.551338 -0.501284 H -	Н	-0.463218	0.068906	-3.962168
H-1.6948711.297618-3.558939S1.957282-2.039008-0.185178O1.087130-2.3920690.957992O3.142830-1.2203250.231501O1.230906-1.424439-1.319555H-0.028992-0.242834-1.633008C2.645873-3.567449-0.780222H3.304254-3.338848-1.618076H3.200936-4.0284450.036656H1.819440-4.204686-1.095190S-3.490726-0.0661700.016363O-2.3987610.9679360.079926O-3.363851-1.0196621.152545H-1.752427-0.9078331.757549C-5.0146510.8186860.296604H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	Н	-1.980560	-0.400885	-3.122285
S 1.957282 -2.039008 -0.185178 O 1.087130 -2.392069 0.957992 O 3.142830 -1.220325 0.231501 O 1.230906 -1.424439 -1.319555 H -0.028992 -0.242834 -1.633008 C 2.645873 -3.567449 -0.780222 H 3.304254 -3.338848 -1.618076 H 3.200936 -4.028445 0.036656 H 1.819440 -4.204686 -1.095190 S -3.490726 -0.066170 0.016363 O -2.398761 0.967936 0.079926 O -3.363851 -1.019662 1.152545 H -1.752427 -0.907833 1.757549 C -5.014651 0.818686 0.296604 H -5.827426 0.092289 0.280060 H -5.827426 0.092289 0.280060 H -4.956264 1.309699 1.267888 S 2.009	Н	-1.694871	1.297618	-3.558939
O 1.087130 -2.392069 0.957992 O 3.142830 -1.220325 0.231501 O 1.230906 -1.424439 -1.319555 H -0.028992 -0.242834 -1.633008 C 2.645873 -3.567449 -0.780222 H 3.304254 -3.338848 -1.618076 H 3.200936 -4.028445 0.036656 H 1.819440 -4.204686 -1.095190 S -3.490726 -0.066170 0.016363 O -3.583216 -0.688552 -1.311328 O -2.398761 0.967936 0.079926 O -3.363851 -1.019662 1.152545 H -1.752427 -0.907833 1.757549 C -5.014651 0.818686 0.296604 H -5.827426 0.092289 0.280060 H -5.827426 0.092289 0.280060 H -4.956264 1.309699 1.267888 S 2.00	S	1.957282	-2.039008	-0.185178
O 3.142830 -1.220325 0.231501 O 1.230906 -1.424439 -1.319555 H -0.028992 -0.242834 -1.633008 C 2.645873 -3.567449 -0.780222 H 3.304254 -3.33848 -1.618076 H 3.200936 -4.028445 0.036656 H 1.819440 -4.204686 -1.095190 S -3.490726 -0.066170 0.016363 O -3.583216 -0.688552 -1.311328 O -2.398761 0.967936 0.079926 O -3.363851 -1.019662 1.152545 H -1.752427 -0.907833 1.757549 C -5.014651 0.818686 0.296604 H -5.827426 0.092289 0.280060 H -4.956264 1.309699 1.267888 S 2.009127 2.049893 0.086402 O 1.067792 1.372449 0.981007 O 1.48918	0	1.087130	-2.392069	0.957992
O 1.230906 -1.424439 -1.319555 H -0.028992 -0.242834 -1.633008 C 2.645873 -3.567449 -0.780222 H 3.304254 -3.338848 -1.618076 H 3.200936 -4.028445 0.036656 H 1.819440 -4.204686 -1.095190 S -3.490726 -0.066170 0.016363 O -3.583216 -0.688552 -1.311328 O -2.398761 0.967936 0.079926 O -3.363851 -1.019662 1.152545 H -1.752427 -0.907833 1.757549 C -5.014651 0.818686 0.296604 H -5.827426 0.092289 0.280060 H -5.827426 0.092289 0.280060 H -4.956264 1.309699 1.267888 S 2.009127 2.049893 0.086402 O 1.067792 1.372449 0.981007 O 1.4891	0	3.142830	-1.220325	0.231501
H-0.028992-0.242834-1.633008C2.645873-3.567449-0.780222H3.304254-3.338848-1.618076H3.200936-4.0284450.036656H1.819440-4.204686-1.095190S-3.490726-0.0661700.016363O-3.583216-0.688552-1.311328O-2.3987610.9679360.079926O-3.363851-1.0196621.152545H-1.752427-0.9078331.757549C-5.0146510.8186860.296604H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	0	1.230906	-1.424439	-1.319555
C2.645873-3.567449-0.780222H3.304254-3.338848-1.618076H3.200936-4.0284450.036656H1.819440-4.204686-1.095190S-3.490726-0.0661700.016363O-3.583216-0.688552-1.311328O-2.3987610.9679360.079926O-3.363851-1.0196621.152545H-1.752427-0.9078331.757549C-5.0146510.8186860.296604H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	Н	-0.028992	-0.242834	-1.633008
H3.304254-3.338848-1.618076H3.200936-4.0284450.036656H1.819440-4.204686-1.095190S-3.490726-0.0661700.016363O-3.583216-0.688552-1.311328O-2.3987610.9679360.079926O-3.363851-1.0196621.152545H-1.752427-0.9078331.757549C-5.0146510.8186860.296604H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	C	2.645873	-3.567449	-0.780222
H3.200936-4.0284450.036656H1.819440-4.204686-1.095190S-3.490726-0.0661700.016363O-3.583216-0.688552-1.311328O-2.3987610.9679360.079926O-3.363851-1.0196621.152545H-1.752427-0.9078331.757549C-5.0146510.8186860.296604H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	Н	3.304254	-3.338848	-1.618076
H1.819440-4.204686-1.095190S-3.490726-0.0661700.016363O-3.583216-0.688552-1.311328O-2.3987610.9679360.079926O-3.363851-1.0196621.152545H-1.752427-0.9078331.757549C-5.0146510.8186860.296604H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	Н	3.200936	-4.028445	0.036656
S-3.490726-0.0661700.016363O-3.583216-0.688552-1.311328O-2.3987610.9679360.079926O-3.363851-1.0196621.152545H-1.752427-0.9078331.757549C-5.0146510.8186860.296604H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	Н	1.819440	-4.204686	-1.095190
O-3.583216-0.688552-1.311328O-2.3987610.9679360.079926O-3.363851-1.0196621.152545H-1.752427-0.9078331.757549C-5.0146510.8186860.296604H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	S	-3.490726	-0.066170	0.016363
O-2.3987610.9679360.079926O-3.363851-1.0196621.152545H-1.752427-0.9078331.757549C-5.0146510.8186860.296604H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	0	-3.583216	-0.688552	-1.311328
O-3.363851-1.0196621.152545H-1.752427-0.9078331.757549C-5.0146510.8186860.296604H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	0	-2.398761	0.967936	0.079926
H-1.752427-0.9078331.757549C-5.0146510.8186860.296604H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	0	-3.363851	-1.019662	1.152545
C-5.0146510.8186860.296604H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	Н	-1.752427	-0.907833	1.757549
H-5.1371791.551338-0.501284H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	C	-5.014651	0.818686	0.296604
H-5.8274260.0922890.280060H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	Н	-5.137179	1.551338	-0.501284
H-4.9562641.3096991.267888S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	Н	-5.827426	0.092289	0.280060
S2.0091272.0498930.086402O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	Н	-4.956264	1.309699	1.267888
O1.0677921.3724490.981007O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	S	2.009127	2.049893	0.086402
O1.4891812.441553-1.226134O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	0	1.067792	1.372449	0.981007
O3.3143441.221923-0.060121H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	0	1.489181	2.441553	-1.226134
H3.1866950.1749590.050766C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	0	3.314344	1.221923	-0.060121
C2.6270533.5136650.877196H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	Н	3.186695	0.174959	0.050766
H3.0474223.2328551.842242H3.3874873.9508210.230312H1.7846944.1953240.997648	C	2.627053	3.513665	0.877196
H3.3874873.9508210.230312H1.7846944.1953240.997648	Н	3.047422	3.232855	1.842242
H 1.784694 4.195324 0.997648	H	3.387487	3.950821	0.230312
	Н	1.784694	4.195324	0.997648

237

238 (MA)₂(MSA)₄

	<i>A</i>)4		
N	0.063308	-0.470507	-2.138049
Н	-0.769665	-0.998268	-1.796738
Н	0.906407	-0.845427	-1.678157
С	0.170476	-0.569641	-3.607583
Н	0.283319	-1.617039	-3.885230
Н	-0.737694	-0.163793	-4.051983
Н	1.036494	-0.000275	-3.944272

N	-2.395675	1.671227	1.124106
Н	-2.100570	0.931259	1.779138
Н	-2.506501	1.234902	0.180528
C	-3.674656	2.272407	1.551627
Н	-3.556567	2.717253	2.539510
Н	-3.965599	3.037267	0.832132
Н	-4.427838	1.485483	1.580984
S	0.943774	2.636489	-0.148316
0	0.523395	2.265937	-1.511358
0	1.554094	1.440449	0.569596
0	-0.104573	3.257351	0.680230
Н	-1.625290	2.358400	1.055588
C	2.275810	3.805826	-0.287204
Н	3.077946	3.346164	-0.865672
Н	1.886270	4.687028	-0.797092
Н	2.612268	4.056042	0.718812
S	-3.255970	-0.898358	-1.027726
0	-3.620798	-1.059529	0.394610
0	-2.234167	-1.870921	-1.502141
0	-2.852095	0.506498	-1.343690
Н	-0.023342	0.517429	-1.852561
C	-4.725359	-1.228865	-1.983452
Н	-5.502546	-0.533554	-1.665899
Н	-4.491062	-1.088113	-3.038685
Н	-5.027180	-2.258343	-1.789838
S	-0.325606	-1.117102	2.228621
0	-1.230019	-0.241277	2.977491
0	0.975839	-1.407399	2.812528
0	-0.130796	-0.493642	0.775820
Н	0.560789	0.243951	0.782986
C	-1.171865	-2.611225	1.806506
Н	-1.350957	-3.130553	2.749075
Н	-2.109188	-2.339452	1.314831
Н	-0.526777	-3.196157	1.151687
S	3.738749	-1.167196	-0.451235
0	4.902458	-1.523415	-1.231676
0	2.407381	-1.515927	-0.958774
0	3.800514	0.399534	-0.213879
Н	2.917198	0.776472	0.083143
C	3.876816	-1.838487	1.187669
Н	3.900753	-2.923987	1.082968
Н	4.806961	-1.473197	1.622662

		8	
Н	3.006607	-1.531219	1.772732
$(MA)_{\alpha}(MSA)_{\alpha}$			
	-2 411523	-1 148501	-1 033960
H	-1 466878	-1 518990	-1.055500
H	-2.934517	-1 267933	-1.894809
C	-3.034384	-1.891280	0.066081
н	-2 395661	-1 800899	0.949168
н	-4 014466	-1 463250	0.299271
н	-3 162232	-2 960811	-0 140525
N	0 581027	2 589168	-1 078385
Н	0.593779	3 246053	-1 851045
Н	1 053641	1 730716	-1 375920
C	1 304772	3 124965	0.080366
н	2 344210	3 397272	-0 139766
Н	0 788780	4 008798	0.468720
Н	1 321099	2 356795	0.858933
N	-1 444117	1 165755	0.0000000
Н	-1 926441	0 433642	-0.375620
Н	-0.864685	1 801678	-0 398844
C	-2.377082	1 909517	1 074455
Н	-2.938635	1 213329	1 699091
H	-1 818003	2 593655	1 714435
H	-3 072009	2 480962	0 457370
S	1 250383	-0 990360	0.058315
0	0.644541	-0.267717	1.225317
0	1.810298	-0.056913	-0.944406
0	0.329615	-1.998622	-0.511985
Н	-0.726098	0.632240	0.763637
C	2.633943	-1.893233	0.736511
Н	2.257332	-2.586359	1.488775
Н	3.112552	-2.433248	-0.080865
Н	3.325281	-1.176651	1.180364
	I		
$(MA)_3(MSA)_2$			
N	-0.080626	-1.884237	1.751796
H	-0.855642	-1.218633	1.721293
H	0.761076	-1.327724	1.892123
C	-0.268284	-2.876148	2.807629
Н	-1.187191	-3.438025	2.618725
H	0.563553	-3.586308	2.801261

Н	-0.338669	-2.440574	3.813280
N	0.070609	2.354549	0.271942
Н	0.912872	2.519574	-0.305276
Н	0.310513	1.489315	0.778506
C	-0.249483	3.452796	1.200865
Н	-0.475912	4.353360	0.630335
Н	-1.120105	3.162612	1.788857
Н	0.601265	3.634874	1.857701
N	0.091909	-2.073882	-1.003711
Н	-0.765782	-1.541461	-1.246507
Н	0.055269	-2.167112	0.059828
C	0.123910	-3.381426	-1.679585
Н	1.008962	-3.931903	-1.358786
Н	-0.773642	-3.943279	-1.418725
Н	0.160436	-3.238044	-2.759791
S	2.688530	0.420236	-0.312571
0	2.519148	1.771725	-0.901149
0	2.497956	-0.684704	-1.284744
0	1.848416	0.244747	0.910217
Н	0.939337	-1.511855	-1.217669
C	4.388282	0.314431	0.219434
Н	4.570346	1.108128	0.944124
Н	4.545157	-0.665133	0.671456
Н	5.023042	0.439891	-0.657889
S	-2.625191	0.371402	-0.370481
0	-2.049149	0.271870	0.994596
0	-2.392099	-0.840588	-1.194631
0	-2.195281	1.627910	-1.050079
Н	-0.752457	2.132732	-0.338954
C	-4.394898	0.496865	-0.185868
Н	-4.614099	1.377211	0.418519
Н	-4.833695	0.592605	-1.179118
Н	-4.750401	-0.408258	0.306824
(MA) ₃ (MSA	A) ₃		
N	2.858667	1.836976	-0.427026
Н	3.197687	1.125635	0.257008
Н	2.688603	2.740639	0.026538
C	3.761987	1.916745	-1.590874
H	3.835254	0.919328	-2.024405
Н	3.352339	2.617286	-2.318688

Н	4.746182	2.254089	-1.265755
Ν	-0.184252	-1.028599	-1.742362
Н	-0.282821	-0.046760	-1.425065
Н	-0.854890	-1.560331	-1.153012
C	-0.501885	-1.173335	-3.177092
Н	0.172175	-0.544705	-3.759356
Н	-0.372337	-2.215793	-3.468795
Н	-1.536199	-0.863502	-3.324052
Ν	-0.633957	-0.737189	1.992379
Н	-0.580347	0.294249	1.845231
Н	0.295984	-1.143946	1.794942
C	-1.113025	-1.028064	3.356593
Н	-2.096526	-0.574758	3.478754
Н	-1.181202	-2.107131	3.495822
Н	-0.417918	-0.604315	4.081390
S	-0.234017	2.526322	0.379513
0	-3.385407	0.209830	0.755664
0	0.730790	3.639840	0.285701
0	-0.403854	1.993410	1.750810
Н	-1.286142	-1.128549	1.283353
C	-1.827338	3.096408	-0.161220
Н	-2.120645	3.914090	0.498060
Н	-1.736054	3.441214	-1.191119
Н	-2.525021	2.259541	-0.078078
S	2.860925	-1.533176	0.303311
0	1.665129	-2.017100	1.032553
0	3.559133	-0.408335	0.978110
0	2.558616	-1.219330	-1.124850
Н	0.793405	-1.291601	-1.521003
C	4.012107	-2.894316	0.292572
Н	3.532562	-3.742285	-0.196494
Н	4.904345	-2.585439	-0.252173
Н	4.256137	-3.134032	1.327614
S	-3.299760	-0.777053	-0.335413
0	-2.228419	-1.807991	-0.039310
0	-3.133107	-0.212493	-1.686637
0	0.156294	1.421283	-0.579493
Н	1.898669	1.526969	-0.693332
C	-4.829212	-1.698422	-0.337060
Н	-4.772747	-2.460495	-1.114359
Н	-4.959273	-2.155109	0.644129
Н	-5.637985	-0.997091	-0.544580

N	_1 369710	-2 111858	0.815309
H	-2 308560	-2.444030	0.81000
	-2.506500	2 511002	1 706067
	-1.034137	3 705065	0.054562
	-1.540075	-3.705005	0.034302
	-1.017542	-3.490244	-0.977280
	-0.552044	-4.110911	0.097983
II N	-2.032970	-4.403383	0.490374
	-0.295505	0.239242	-1.990030
	0.502591	-0.437802	-1.300097
П	-0.148308	1.133243	-1.302170
	-0.013110	0.400000	-3.433377
	-0.143905	-0.301811	-3.931208
Н	-0./08/15	1.128034	-3.834801
H	1.011692	0.746066	-3.551698
	-1.441053	2.528568	0.977030
H	-1.0/31/8	2.005001	1.811355
H	-2.136850	1.928387	0.496619
C	-2.031425	3.823865	1.359536
H	-1.26/04/	4.438111	1.835636
H	-2.412771	4.327957	0.4/1263
H	-2.847653	3.650699	2.060696
S	0.228926	-0.103496	2.448711
0	2.380142	2.561011	0.769984
0	-0.286664	-1.351166	3.055987
0	-0.384127	1.127019	3.019230
Н	-0.641612	2.648957	0.333376
C	1.962761	-0.023812	2.828204
H	2.054201	0.044819	3.912646
Н	2.426894	-0.934968	2.452482
Н	2.372143	0.860097	2.337379
S	-3.665594	-0.277146	-0.705568
0	-3.339047	1.164760	-0.566939
0	-3.763471	-1.000597	0.582945
0	-2.738285	-0.964335	-1.655505
Н	-1.258881	-0.122854	-1.836638
C	-5.284113	-0.349962	-1.449267
Н	-5.247666	0.175772	-2.403379
H	-5.541600	-1.399141	-1.594371
Н	-5.988593	0.129352	-0.769336
S	2.045381	2.430221	-0.645360

Supporting Information			
0	0.608276	2.706837	-0.969645
0	2.460167	1.124940	-1.268495
0	0.109243	-0.111286	0.949264
Н	-0.721743	-1.729522	0.445942
C	2.969298	3.666251	-1.539677
Н	2.740806	3.574447	-2.601364
Н	2.671041	4.644093	-1.161073
Н	4.029084	3.490208	-1.354336
S	2.373104	-2.264424	-0.475033
0	1.367606	-1.964989	-1.504433
0	1.916405	-2.950153	0.722080
0	3.159978	-0.971371	-0.091589
Н	2.818179	-0.094883	-0.528514
C	3.649927	-3.245442	-1.229496
Н	3.204441	-4.200458	-1.509436
Н	4.021890	-2.715710	-2.106043
Н	4.441089	-3.390878	-0.493959
(MA) ₄ (MS	A) ₁		
N	0.904431	0.277943	-2.413754
Н	1.004801	0.831315	-3.258021
Н	-0.095254	0.199414	-2.203337
C	1.480776	-1.059381	-2.588461
Н	2.570615	-0.987700	-2.669151
Н	1.221995	-1.655761	-1.709939
Н	1.102707	-1.586418	-3.473735
N	1.716946	-1.233135	1.632375
Н	0.873978	-1.612243	1.188785
Н	1.522944	-1.173759	2.626603
C	2.865362	-2.098516	1.367879
Н	3.016008	-2.167676	0.286534
Н	3.770736	-1.666158	1.805171
Н	2.750020	-3.119425	1.755131
N	-0.669272	2.669210	1.084458
Н	-0.658910	3.298313	1.880136
Н	-1.149836	1.809255	1.365899
C	-1.361751	3.274101	-0.057717
Н	-2.369014	3.638413	0.182749
Н	-0.776508	4.113291	-0.447515
Н	-1.458049	2.513003	-0.835767
N	1.560703	1.188938	0.179503

Supporting	Information
-------------------	-------------

Н	1.609370	0.309883	0.766427
Н	0.770333	1.789419	0.544975
С	2.841253	1.907816	0.231967
Н	3.637506	1.270336	-0.156783
Н	2.783422	2.816416	-0.369905
Н	3.071174	2.176481	1.264484
S	-1.586396	-0.827850	0.101052
0	-1.690249	0.120467	-1.037798
0	-1.446748	-0.144566	1.412164
0	-0.546147	-1.867964	-0.110056
Н	1.331374	0.905068	-0.813351
C	-3.147846	-1.698579	0.156655
Н	-3.940004	-0.966764	0.317593
Н	-3.286132	-2.210766	-0.795837
Н	-3.112205	-2.415164	0.977522
$(MA)_4(MS)_4$	A) ₂	I	
N	0.002840	-1.864247	1.835058
Н	-0.817525	-1.260977	1.762733
Н	0.822704	-1.260305	1.762068
C	0.003757	-2.629935	3.078548
Н	-0.879191	-3.274483	3.113006
Н	0.887575	-3.273324	3.112331
Н	0.003686	-2.004979	3.981971
N	-0.001006	1.866961	1.834254
Н	0.820033	1.264532	1.762791
Н	-0.820269	1.262160	1.761891
C	-0.002946	2.634830	3.076334
Н	0.878978	3.280853	3.109556
Н	-0.887776	3.276881	3.109113
Н	-0.001798	2.011579	3.980945
N	0.001607	-2.523835	-0.846144
Н	-0.848224	-2.005291	-1.145610
Н	0.001613	-2.463110	0.218681
C	-0.005259	-3.913126	-1.331562
H	-0.006905	-3.924874	-2.421905
H	0.884545	-4.426811	-0.965962
H	-0.898626	-4.418780	-0.963478
N	-0.002390	2.522703	-0.847965
Н	0.847407	2.003603	-1.146746
H	-0.002308	2.463247	0.216981

С	0.004805	3.911353	-1.335193
Н	-0.884908	4.425770	-0.970402
Н	0.898248	4.417306	-0.967703
Н	0.006577	3.921610	-2.425552
S	-2.738417	0.001099	-0.516828
0	-2.405399	-1.231986	-1.276226
0	-2.420247	1.245241	-1.264506
0	-2.179122	-0.002155	0.859747
Н	-0.857407	2.012040	-1.145934
С	-4.514630	-0.010296	-0.338807
Н	-4.956017	-0.007767	-1.335438
Н	-4.795827	-0.911839	0.205842
Н	-4.806351	0.882341	0.214922
S	2.738135	-0.002156	-0.516989
0	2.181030	0.004199	0.860429
0	2.402672	1.228519	-1.279222
0	2.420054	-1.248592	-1.260945
Н	0.856832	-2.013488	-1.144258
С	4.514600	0.011498	-0.341734
Н	4.808055	-0.879377	0.213911
Н	4.954536	0.006821	-1.338999
Н	4.795636	0.914749	0.200158

251

252 (MA)₄(MSA)₃

(14111)4(1415)	1)3		
N	4.332279	-2.160901	0.355586
Н	5.284982	-2.467717	0.190338
Н	3.699098	-2.825998	-0.093040
C	4.038500	-2.114483	1.794135
Н	4.603674	-1.303149	2.262155
Н	2.971013	-1.917691	1.922631
Н	4.271791	-3.051003	2.315230
Ν	3.125675	0.088612	-0.807830
Н	3.699218	-0.699064	-0.386837
Н	2.983194	0.842038	-0.108345
C	3.730107	0.632605	-2.038354
Н	4.733770	0.997922	-1.817704
Н	3.784565	-0.155234	-2.790394
Н	3.109188	1.455115	-2.394527
Ν	-1.094547	0.993375	-1.710341
Н	-1.865318	1.216545	-1.042962
Н	-0.628544	0.126422	-1.383845

C	-1.648211	0.781303	-3.062274
Н	-2.401901	-0.003286	-2.994546
Н	-2.103546	1.706774	-3.415068
Н	-0.847448	0.479497	-3.737824
N	-0.744942	0.051274	2.084044
Н	-0.200523	-0.738680	1.678761
Н	-1.754064	-0.168454	1.919577
C	-0.450676	0.207400	3.521289
Н	0.606090	0.443585	3.647498
Н	-1.057740	1.017454	3.924925
Н	-0.685800	-0.723124	4.037742
S	1.222225	2.838917	0.218535
0	1.190071	2.616674	-1.255230
0	2.408046	2.212366	0.857217
0	-0.060306	2.455546	0.860658
Н	-0.504615	0.922227	1.573599
C	1.390296	4.596205	0.465471
Н	0.523524	5.085479	0.021197
Н	1.431866	4.784168	1.538393
Н	2.310876	4.921942	-0.018964
S	-3.729269	-0.236001	0.142483
0	-3.258829	-1.149625	-0.921943
0	-3.336968	1.178539	-0.120659
0	-3.337002	-0.673768	1.510819
Н	-0.370765	1.730300	-1.671854
C	-5.512701	-0.272979	0.119898
Н	-5.847238	0.043709	-0.868207
Н	-5.831587	-1.294832	0.326128
Н	-5.877544	0.408953	0.887978
S	0.657450	-2.418800	-0.370480
0	0.601596	-2.153463	1.093467
0	1.815841	-3.233016	-0.773070
0	0.596075	-1.121876	-1.139362
Н	2.185259	-0.305540	-1.004442
C	-0.817954	-3.310252	-0.805386
Н	-0.835962	-4.223757	-0.210120
Н	-1.688069	-2.679990	-0.601971
Н	-0.757562	-3.546809	-1.868194

254 (MA)₄(MSA)₄

S	-1.999725	1.999725	-1.999725

0	-0.868279	1.552909	-2.852771
0	-1.552909	2.852771	-0.868279
C	-3.029223	3.029223	-3.029223
Н	-3.883900	3.356007	-2.436684
Н	-2.436684	3.883900	-3.356007
Н	-3.356007	2.436684	-3.883900
0	-2.852771	0.868279	-1.552909
Н	-1.532658	2.075110	0.703473
Ν	-1.643150	1.643150	1.643150
Н	-2.075110	0.703473	1.532658
Н	-0.703473	1.532658	2.075110
C	-2.495068	2.495068	2.495068
Н	-2.018733	3.467830	2.615615
Н	-3.467830	2.615615	2.018733
Н	-2.615615	2.018733	3.467830
S	1.999725	-1.999725	-1.999725
0	2.852771	-0.868279	-1.552909
0	0.868279	-1.552909	-2.852771
C	3.029223	-3.029223	-3.029223
Н	2.436684	-3.883900	-3.356007
Н	3.356007	-2.436684	-3.883900
Н	3.883900	-3.356007	-2.436684
0	1.552909	-2.852771	-0.868279
Н	-0.703473	-1.532658	-2.075110
Ν	-1.643150	-1.643150	-1.643150
Н	-1.532658	-2.075110	-0.703473
Н	-2.075110	-0.703473	-1.532658
C	-2.495068	-2.495068	-2.495068
Н	-2.615615	-2.018733	-3.467830
Н	-2.018733	-3.467830	-2.615615
Н	-3.467830	-2.615615	-2.018733
S	-1.999725	-1.999725	1.999725
0	-0.868279	-1.552909	2.852771
0	-1.552909	-2.852771	0.868279
C	-3.029223	-3.029223	3.029223
Н	-3.883900	-3.356007	2.436684
Н	-2.436684	-3.883900	3.356007
Н	-3.356007	-2.436684	3.883900
0	-2.852771	-0.868279	1.552909
Н	2.075110	0.703473	-1.532658
N	1.643150	1.643150	-1.643150
Н	0.703473	1.532658	-2.075110

Н	1.532658	2.075110	-0.703473
C	2.495068	2.495068	-2.495068
Н	3.467830	2.615615	-2.018733
Н	2.615615	2.018733	-3.467830
Н	2.018733	3.467830	-2.615615
S	1.999725	1.999725	1.999725
0	1.552909	2.852771	0.868279
0	2.852771	0.868279	1.552909
C	3.029223	3.029223	3.029223
Н	3.356007	2.436684	3.883900
Н	3.883900	3.356007	2.436684
Н	2.436684	3.883900	3.356007
0	0.868279	1.552909	2.852771
Н	1.532658	-2.075110	0.703473
N	1.643150	-1.643150	1.643150
Н	2.075110	-0.703473	1.532658
Н	0.703473	-1.532658	2.075110
C	2.495068	-2.495068	2.495068
Н	2.018733	-3.467830	2.615615
Н	3.467830	-2.615615	2.018733
Н	2.615615	-2.018733	3.467830

255

257 **REFERENCE**

- (1) Lu, T.; Chen, F. W. Multiwfn: A Multifunctional Wavefunction Analyzer. J. *Comput. Chem.* 2012, 33 (5), 580-592.
- 260 (2) Zhan, K.; Li, Z.; Chen, J.; Hou, Y.; Zhang, J.; Sun, R.; Bu, Z.; Wang, L.; Wang, M.;
- 261 Chen, X.; Hou, X. Tannic Acid Modified Single Nanopore with Multivalent Metal Ions
- 262 Recognition and Ultra-trace Level Detection. *Nano Today* **2020**, *33*, 100868.
- 263 (3) Chen, Z. Q.; Han, R. L.; Zhong, C. P. Adsorption of Fluoroquinolone by Carbon
- Nanotubes: A Combined Experimental and Density Functional Theory Study. *Chem.*
- 265 Pap. **2020**, *74*, 3847–3856
- 266 (4) Zhu, S. F.; Gan, Q.; Feng, C. G. Multimolecular Complexes of CL-20 with
- 267 Nitropyrazole Derivatives: Geometric, Electronic Structure, and Stability. *Acs Omega*
- **268 2019,** *4* (8), 13408-13417.
- 269 (5) Zheng, A. B.; Ren, M.; Zhang, Y. Y.; Cai, Y. H.; Zhang, J.; Yuan, Y.; Lei, M.;
- 270 Wang, P. A Thioxanthenothioxanthene-based Hole Transporter with 2D Molecular
- 271 Stacking for Efficient and Thermostable Perovskite Solar Cells. *ACS Mater. Lett.* **2020**,
- *2*72 *2* (7), 691-698.
- 273 (6) Elm, J. An Atmospheric Cluster Database Consisting of Sulfuric Acid, Bases,
- 274 Organics, and Water. ACS Omega 2019, 4 (6), 10965-10974.
- 275