

1

Supporting Information for:

Flow and Forced Convection Heat and Mass Transfer

Characteristics of Developed Laminar Flow in Square Channels

with Rounded Corners: A Model for Flow in Washcoated Monolith

Channels1

Timothy C. Watling

Johnson Matthey, Blount’s Court, Sonning Common, Reading RG4 9NH, UK

tim.watling@matthey.com

Contents

S1. Geometric Calculations

S2. Methodology

S3. Convergence Behaviour

S4. The Velocity and Temperature Field

S5. Tabulated Data Characterising Fully Developed Laminar Flow

S6. MATLAB® Program

1 Published in Industrial & Engineering Chemistry Research.

mailto:tim.watling@matthey.com

2

Nomenclature

Matrix variables are indicated in bold.

𝑨 Column matrix whose elements are 𝑎𝑗; defined by Eq. (S23)

𝐴𝐶 Cross-sectional area of the coated channel, m2

𝑎𝑗 Constant in Eq. (S20), m2-jN

𝑪 Column matrix whose elements are 𝑐𝑗; defined by Eq. (S49)

𝑐𝑗 Constant in Eq. (S46), m4-jN

𝐶𝑝 Specific heat capacity of gas at constant pressure, J kg-1 K-1

𝑫 Matrix defined by Eq. (S24)

𝑑 Width of the coated channel, i.e. distance between opposing straight sides of the

channel, m

𝑑𝐻 Hydraulic diameter of coated channel, 4𝐴𝐶/𝑝, m

𝑑𝑈𝐶 Width of the uncoated channel, m

𝑬 Matrix defined by Eq. (S50)

𝐹 Viscous loss coefficient, -

𝑓 (Fanning) friction factor, -

g(𝑧) The z dependant part of the temperature solution, K

ℎ Heat transfer coefficient for heat transfer between gas in the channel and the channel

wall, W m-2 K-1

𝑖 An integer; positive, negative or zero, -

𝑗, 𝑘, 𝑙 Indices in summations, non-negative integers, -

𝐿𝑊𝐶 Washcoat loading, kg m-3

𝑚 Number of points on the channel wall at which the boundary condition is

evaluated, -

𝑁 Order of rotational symmetry, -

𝑛 Upper limit on 𝑗, 𝑘 and 𝑙 in the summations, -

𝑁𝑢 Nusselt number, ℎ 𝑑𝐻/𝜆, -

𝑃 Pressure of gas in the channel, Pa

𝑝 Perimeter of the coated channel, m

𝑟 Radial coordinate in polar coordinates relative to the channel centre, m

𝑟𝐶 Radius of curvature of the channel corners, m

𝑅𝑒 Reynolds number, 𝜌𝑉𝑚  𝑑𝐻/𝜇, -

𝑟Γ Radial coordinate of the channel wall, m

𝑺 Matrix defined by Eq. (S25)

𝑇 Local temperature of the gas in the channel, K

3

𝑇∗ Normalised local temperature, defined by Eq. (S43), m4

𝑇𝑚 Mixing cup temperature of gas in the channel, K

𝑇𝑚
∗ Mixing cup version of temperature T*, m4

𝑇Γ Temperature of the channel wall, K

𝑇𝛤,𝑚𝑎𝑥
∗ The maximum deviation of the normalised temperature at the channel wall from the

intended boundary value of zero, m4

𝑼 Matrix defined by Eq. (S51)

𝑉 Local axial gas velocity, m s-1

𝑉𝑚 Mean axial velocity of gas in the channel, ⟨V⟩, m s-1

𝑉𝑚𝑎𝑥 Maximum gas velocity, m s-1

𝑉Γ,𝑚𝑎𝑥 The maximum deviation of the gas velocity at the channel wall from the intended

boundary value of zero, m s-1

𝑤𝑀𝑎𝑥 Maximum thickness of the washcoat, m

𝑤𝑀𝑖𝑛 Minimum thickness of the washcoat, m

𝑤𝑊 Wall thickness of the monolith, m

𝑧 Axial distance or coordinate, m

𝛼 Momentum flux correction factor, ⟨𝑉2⟩/⟨𝑉⟩2, -

𝛼𝐸 Kinetic energy flux correction factor, ⟨𝑉3⟩/⟨𝑉⟩3, -

𝛾 Channel shape factor, 2𝑟𝐶/𝑑, -

𝜖𝐶 Open frontal area of the coated monolith, i.e. the open cross-sectional area of the face

of the coated monolith divided by the total face area, -

𝜖𝑈𝐶 Open frontal area of the uncoated monolith, i.e. the open cross-sectional area of the

face of the uncoated monolith divided by the total face area, -

𝜃 Angular coordinate in polar coordinates, rad

𝜆 Thermal conductivity of the gas in the channel, W m-1 K-1

𝜇 Gas viscosity, Pa s

𝜌 Gas density, kg m-3

𝜌𝐶𝑒𝑙𝑙 Cell density, i.e. number of channels per unit cross-sectional area of the monolith,

m-2

𝜌𝑊𝐶 Density of the washcoat after coating, kg m-3

𝛹(𝑟, 𝜃) The 𝑟 and 𝜃 dependant part of the temperature solution, K

⟨ ⟩ Average of the bracketed quantity over a cross section

4

S1. Geometric Calculations

The channel shape factor, γ, is defined in the main paper (Eq. (4)) as:

𝛾 =
2𝑟𝐶
𝑑

 (S1)

where 𝑟𝐶 is the radius of curvature of the round corners and 𝑑 is the width of the coated channel

as shown in Fig. S1.

Fig. S1 Geometry of a coated monolith channel, assuming the coated channel is a square with rounded
corners. a) Cross-section of the whole channel: the outer square represents the uncoated channel and
the grey area the washcoat. b) Close up of a corner of the channel used for calculation of 𝑤𝑀𝑎𝑥. This is
a schematic; the washcoat thickness is not intended to be representative.

S1.1. Channel Perimeter and Cross-Sectional Area as a Function of γ

To calculate the perimeter and cross-sectional area of a square channel with rounded corners,

consider the channel as being formed from a square channel by removing a square of side 𝑟𝐶

from each of the four corners and replacing it with a quadrant of radius 𝑟𝐶 (Fig. 1a in the main

paper, Fig. S1). Thus, the cross-sectional area, 𝐴𝐶 , is obtained by taking a square of area 𝑑2

and for each of the four corners subtracting the area of the square removed (𝑟𝐶
2) and adding the

area of the quadrant (𝜋𝑟𝐶
2/4). This gives:

𝐴𝐶 = 𝑑2 − 4𝑟𝐶
2 + 4(𝜋𝑟𝐶

2/4) (S2)

Note the “4”s in this equation which arise from there being four corners. Substitution of Eq.

(S1) gives:

𝐴𝐶 = (1 − [1 − 𝜋/4]𝛾
2)𝑑2 (S3)

which is Eq. (6) in the main paper.

Similarly, the channel perimeter, 𝑝, is obtained by taking the square (perimeter 4𝑑) and for

each of the four corners subtracting the external perimeter of the square removed (2𝑟𝐶) and

adding the curved perimeter of the quadrant (𝜋𝑟𝐶/2). This gives:

𝑝 = 4𝑑 − 4(2𝑟𝐶) + 4(𝜋𝑟𝐶/2) (S4)

Substitution of Eq. (S1) and simplifying gives:

𝑝 = 4(1 − [1 − 𝜋/4]𝛾)𝑑 (S5)

which is Eq. (5) in the main paper.

5

S1.2. Calculation of γ from Channel Perimeter and Cross-Sectional Area

Given that it is probably easier to measure the perimeter and cross-sectional area of a coated

channel than the radius of curvature from an image of the channel, it is useful to have an

equation for calculating 𝛾 from 𝑝 and 𝐴𝐶 .

Eliminating 𝑑 between Eq. (S3) and (S5) gives:

𝐴𝐶 =
(1 − [1 − 𝜋/4]𝛾2)𝑝2

16(1 − [1 − 𝜋/4]𝛾)2
 (S6)

This rearranges to give a quadratic in 𝛾:

(16𝐴𝐶[1 − 𝜋/4]
2 + 𝑝2[1 − 𝜋/4])𝛾2 − 32𝐴𝐶[1 − 𝜋/4]𝛾 + (16𝐴𝐶 − 𝑝

2) = 0 (S7)

which can be solved using the usual equation. The required solution is:

𝛾 =
16𝐴𝐶[1 − 𝜋/4] − √16

2𝐴𝐶
2 [1 − 𝜋/4]2 − (16𝐴𝐶[1 − 𝜋/4]

2 + 𝑝2[1 − 𝜋/4])(16𝐴𝐶 − 𝑝
2)

16𝐴𝐶[1 − 𝜋/4]
2 + 𝑝2[1 − 𝜋/4]

 (S8)

This equation enables 𝛾 to be determined from the values of 𝑝 and 𝐴𝐶 for a square channel with

rounded corners (or a square or circular channel).

S1.3. Calculation of Geometric Parameters for Uncoated Monoliths

Figure S1 depicts the geometry of a coated monolith channel. The width of the uncoated

channel, 𝑑𝑈𝐶, is given by:

dUC =
1

√𝜌𝐶𝑒𝑙𝑙
− 𝑤𝑊 (S9)

where 𝜌𝐶𝑒𝑙𝑙 is the cell density of the monolith and 𝑤𝑊 is the thickness of the monolith wall.

Note that 1/√𝜌𝐶𝑒𝑙𝑙 gives the cell pitch (or cell repeat distance) of the monolith. Obviously, this

equation requires that the uncoated channels are square.

The open frontal area (or open area fraction) of the uncoated channel, 𝜖𝑈𝐶, is given by 𝑑𝑈𝐶
2  𝜌𝐶𝑒𝑙𝑙.

Substituting Eq. (S9) into this gives:

ϵUC = 1 − 𝑤𝑊√𝜌𝐶𝑒𝑙𝑙(2 − 𝑤𝑊√𝜌𝐶𝑒𝑙𝑙) (S10)

Thus, 𝜖𝑈𝐶 is a quadratic in 𝑤𝑊√𝜌𝐶𝑒𝑙𝑙. Note that 𝑤𝑊√𝜌𝐶𝑒𝑙𝑙 is the ratio of the wall thickness to

the cell pitch; when this is unity, “the wall fills the channel” and 𝜖𝑈𝐶 is zero. This equation

applies only to square channels.

Figure S2 shows the variation in 𝜖𝑈𝐶 with 𝑤𝑊√𝜌𝐶𝑒𝑙𝑙, cell density (for fixed wall thickness) and

wall thickness (for fixed cell density) according to Eq. (S10); 𝜖𝑈𝐶 decreases with increasing

cell density and wall thickness.

6

Fig. S2 Uncoated channel Open Frontal Area
(OFA) for a square-channelled monolith as a

function of a) 𝑤𝑊√𝜌𝐶𝑒𝑙𝑙, b) cell density (for a

series of fixed wall thicknesses) and c) wall
thickness (for a series of fixed cell densities).
“thou” = thousandths of an inch.

S1.4. Calculation of Geometric Parameters for Coated Monoliths

The cross-sectional area occupied by washcoat per channel can be calculated as follows. The

ratio of the cross-sectional area of washcoat to the total cross-sectional area of the monolith is

𝐿𝑊𝐶/𝜌𝑊𝐶, where 𝐿𝑊𝐶 is the washcoat loading by mass (in kg m-3) and 𝜌𝑊𝐶 is the density of

the washcoat after coating. Multiplying this by the cross-sectional area of the monolith divided

by the number of channels (1/𝜌𝐶𝑒𝑙𝑙) gives the cross-sectional area occupied by washcoat per

channel, as required. The cross-sectional area occupied by washcoat per channel is also given

by the difference in cross-sectional area between the uncoated and coated monolith channels,

i.e. 𝑑𝑈𝐶
2 − 𝐴𝐶, where AC is the cross-sectional area of the open coated channel. Equating these

two gives:

dUC
2 − 𝐴𝐶 =

𝐿𝑊𝐶
𝜌𝑊𝐶  𝜌𝐶𝑒𝑙𝑙

 (S11)

This equation enables AC to be calculated from the washcoat loading. Multiplying this equation

by 𝜌𝐶𝑒𝑙𝑙 and rearranging gives:

ϵC = 𝜖𝑈𝐶 −
𝐿𝑊𝐶
𝜌𝑊𝐶

 (S12)

where 𝜖𝐶 is the open frontal area of the coated monolith (= 𝐴𝐶  𝜌𝐶𝑒𝑙𝑙) and 𝜖𝑈𝐶 is the open frontal

area of the uncoated monolith (= 𝑑𝑈𝐶
2  𝜌𝐶𝑒𝑙𝑙).

Substitution of Eq. (S10) into this gives:

ϵC = 1 − 𝑤𝑊 √𝜌𝐶𝑒𝑙𝑙(2 − 𝑤𝑊 √𝜌𝐶𝑒𝑙𝑙) −
𝐿𝑊𝐶
𝜌𝑊𝐶

 (S13)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

U
n
c
o
a
te

d
 O

F
A

 (
ε U

C
)

wW√ρCell

(a)

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800 1000 1200

U
n
c
o
a
te

d
 O

F
A

 (
ε U

C
)

Cell Density / inch-2

2.0 thou

2.5 thou

4.3 thou

6.5 thou

(b)

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7

U
n
c
o
a
te

d
 O

F
A

 (
ε U

C
)

Wall Thickness / 10-3 inch

50 in⁻²
100 in⁻²
200 in⁻²
300 in⁻²
400 in⁻²
600 in⁻²
900 in⁻²

1200 in⁻²

(c)

7

Note that Eq. (S11) and (S13) apply to any shape of coating in a square channel, while Eq.

(S12) applies to any shape of coating in any shape of channel.

Finally, the geometric surface area of the coated monolith is given by 𝑝 𝜌𝐶𝑒𝑙𝑙. This equation

applies to any shape of coated and uncoated channel.

S1.5. Minimum and Maximum Washcoat Thickness

As can be seen in Fig. S1a, the minimum thickness of the washcoat, 𝑤𝑀𝑖𝑛, is given by:

wMin =
𝑑𝑈𝐶 − 𝑑

2
 (S14)

The maximum washcoat thickness (𝑤𝑀𝑎𝑥) occurs in the corner of the coated channel along the

diagonal (Fig. S1a). From Fig. S1b, it can be seen that:

wMax = 𝐼𝐾 = 𝐻𝐽 + 𝐽𝐾 − 𝐻𝐼 (S15)

Substituting in Eq. (S1) and noting that 𝐻𝐽 = 𝑟𝐶√2, 𝐽𝐾 = 𝑤𝑀𝑖𝑛√2 and 𝐻𝐼 = 𝑟𝐶 (Fig. S1b)

gives:

wMax = 𝑤𝑀𝑖𝑛√2 +
(√2 − 1)𝑑 𝛾

2
 (S16)

Note that the calculation of 𝑤𝑀𝑖𝑛 and 𝑤𝑀𝑎𝑥 applies only to a coated channel that can be

described as a square with rounded corners (or a square or circle).

S1.6. Equation of the Channel Wall

The equation of the channel wall in polar coordinates is derived in the main paper (Eq. (7)),

but is repeated here for convenience:

𝑟𝛤 =

{

𝑑

2 cos 𝜃
0 ≤ 𝜃 ≤ 𝐵�̂�𝐷

𝑑

2
[(1 − 𝛾)√2 cos(𝜋/4 − 𝜃) + √𝛾2 − 2(1 − 𝛾)2 sin2(𝜋/4 − 𝜃)] 𝐵�̂�𝐷 ≤ 𝜃 ≤ 𝜋/4

 (S17)

8

S2. Methodology

With the exception of the channel geometry (Section 2.1 of the main paper), the methodology

used in this work is very similar to that used in previous work by the author [S1] considering

flow in the octagonal channels of octo-square asymmetric particulate filters. Thus, the

description of methodology here will be kept to the main points; for further details and

explanation, the reader is referred to the previous work [S1].

S2.1. The Velocity Problem

S2.1.1. Momentum Balance

In this work, we consider steady-state, fully developed laminar flow of a Newtonian fluid with

constant properties (𝐶𝑝, 𝜆, 𝜇, 𝜌) in a channel of constant cross section. For these assumptions,

the (axial) momentum balance is:

0 = −
𝜕𝑃

𝜕𝑧
+ 𝜇𝛻2𝑉 (S18)

where V is the local gas velocity along the channel (axial velocity). The terms in this equation

can be interpreted as the resultant force applied to the gas per unit volume in the z-direction

due to pressure (first term) and fluid viscosity (second term).

In polar coordinates this becomes:

𝜕2𝑉

𝜕𝑟2
+
1

𝑟

𝜕𝑉

𝜕𝑟
+
1

𝑟2
𝜕2𝑉

𝜕𝜃2
=
1

𝜇

𝜕𝑃

𝜕𝑧

(S19)

Note that since developed flow is assumed, the Laplacian has no term in 𝜕2𝑉/𝜕𝑧2.

This equation (Eq. (S19)) is solved in the next section using the boundary conditions given in

Table S1. The boundary conditions are discussed in more detail elsewhere [S1].

Table S1 Summary of the boundary conditions used for the velocity and temperature problems.

Velocity problem

𝑉(𝑟𝛤, 𝜃) = 0 No-slip at channel wall

𝑉(𝑟, 𝜃) = 𝑉(𝑟, 𝜃 ± 2𝑖𝜋/𝑁) Rotational symmetry

𝜕𝑉

𝜕𝜃
|
𝜃=𝑖𝜋/𝑁

= 0 Reflectional symmetry

Temperature problem

ℎ(𝑇𝑚 − 𝑇𝛤) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Axially constant heat flux

𝑇(𝑟𝛤, 𝜃) = 𝑇𝛤 Constant wall temperature

𝑇∗(𝑟, 𝜃) = 𝑇∗(𝑟, 𝜃 ± 2𝑖𝜋/𝑁) Rotational symmetry

𝜕𝑇∗

𝜕𝜃
|
𝜃=𝑖𝜋/𝑁

= 0 Reflectional symmetry

9

S2.1.2. Solution of the Momentum Balance

A general solution to equations like Eq. (S19) is given in Ref. [S2]. Adapting this to a channel

with N-fold rotational and reflectional symmetry gives a general solution of Eq. (S19):

𝑉 =
1

𝜇

𝜕𝑃

𝜕𝑧
[
𝑟2

4
−∑𝑎𝑗  𝑟

𝑗𝑁 cos 𝑗𝑁𝜃

𝑛

𝑗=0

] (S20)

where 𝑎𝑗 are arbitrary constants. This solution has been previously used for channels with N-

fold rotational (and reflectional) symmetry [S1,S3-S6].

The N term in Eq. (S20) is required to fulfil the rotational symmetry boundary condition in

Table S1. Potentially, the solution to Eq. (S19) could also contain terms in sin 𝑗𝑁𝜃, in addition

to the terms in cos 𝑗𝑁𝜃, but it does not as these would be inconsistent with the reflectional

symmetry boundary condition (Table S1). Both of these points are discussed in more detail

elsewhere [S1].

It is worth noting that the previous studies on flow in square channels with rounded corners

appear not to have included the impact of symmetry in their methodology [S7,S8]. While this

is not essential, it does mean that i) the whole channel wall, rather than just the unique portion,

needs to be considered when determining the arbitrary constants (𝑎𝑗) from the boundary

condition, which is numerically inefficient, and ii) constants which are definitely zero because

of symmetry may not evaluate to (exactly) zero resulting in numeric error.

Since each term in the summation in Eq. (S20) is individually a general solution of 𝛻2𝑉 = 0,

the number of terms in the summation (𝑛), is somewhat arbitrary, but clearly higher values of

𝑛 give more “flexibility” in fitting the boundary condition. Selection of an appropriate value

of 𝑛, i.e. at what point to truncate the series/summation is discussed in Section S3.

To find the values of 𝑎𝑗, the normal no-slip boundary condition is applied to the channel wall,

i.e. 𝑉(𝑟𝛤, 𝜃) = 0. Thus, at the channel wall, Eq. (S20) becomes:

0 =
𝑟𝛤
2

4
−∑𝑎𝑗  𝑟𝛤

𝑗𝑁
cos 𝑗𝑁𝜃

𝑛

𝑗=0

 (S21)

To determine the values of 𝑎𝑗, it is convenient write this equation in matrix form:

𝑺 𝑨 = 𝑫 (S22)

where:

𝑨 = [𝑎0 𝑎1 𝑎2 … 𝑎𝑛]𝑇 (S23)

𝑫 = [𝑟𝛤
2/4] (S24)

𝑺 = [1 𝑟𝛤
𝑁 cos𝑁𝜃 𝑟𝛤

2𝑁 cos 2𝑁𝜃 … 𝑟𝛤
𝑛𝑁 cos 𝑛𝑁𝜃] (S25)

𝑟Γ in these equations is given by Eq. (S17). If the boundary condition is evaluated at multiple

points on the channel wall, Eq. (S22) can be extended so that each row of 𝑫 and 𝑺 corresponds

to a different point on the channel wall. Thus, if the boundary condition is evaluated at 𝑚

points, then 𝑫 and 𝑺 will each have 𝑚 rows.

The values of 𝑎𝑗 can be determined as the set of values that minimise the sum of the squares of

the residuals of Eq. (S22). Thus, as is shown elsewhere [S9], the values of 𝑎𝑗 are given by:

𝑨 = (𝑺𝑇  𝑺)−1  𝑺𝑇  𝑫 (S26)

10

This is known as the least squares method [S10,S11]. This method requires that the boundary

condition is evaluated at more points that there are unknowns, i.e. 𝑚 > 𝑛 + 1. The rows of 𝑺

and 𝑫 were evaluated for 91 (i.e. 𝑚 = 91) evenly spaced values of 𝜃 over the unique part of

the channel (0 ≤ 𝜃 ≤ 𝜋/4). This corresponds to points on the channel wall at ½° intervals.

Halving the interval to ¼° (i.e. 𝑚 = 181) changed the values of 𝐹 calculated from 𝑉 by no

more than ±0.0001.

The “point matching” method [S3-S6,S11] or “boundary collocation technique” [S6,S11] is an

alternative to the least squares method. Here, the number of points where the boundary

condition is evaluated equals the number of unknowns (i.e. 𝑚 = 𝑛 + 1), so Eq. (S22) becomes

a set of simultaneous equations, which can be solved to give 𝑎𝑗. The least squares method was

used in this work instead of point matching as previous work by the author found that least

squares was the superior method [S1].

In the case of a circular channel (𝛾 = 1), 𝑉 is expected not to vary with 𝜃 so 𝑎𝑗 will be zero for

𝑗 > 0 (Eq. (S20)); 𝑎0 is non-zero since the cos 𝑗𝑁𝜃 term in Eq. (S20) is equal to unity for 𝑗 =
0 and so is independent of 𝜃. Setting 𝑎𝑗 = 0 for 𝑗 > 0 results in Eq. (S20) reducing to the

analytical solution for flow in a circular channel. However, in this work 𝑎𝑗 for 𝑗 > 0 was not

forced to be zero for circular channels (𝛾 = 1), but rather evaluated in the same way as for 𝛾 <
1 (i.e. using Eq. (S26) and assuming the symmetry of a square), as a test of the methodology;

values determined by this method can then be compared with the analytical solution for a

circular channel.

S2.1.3. Mean Velocity and Friction Factor Calculation

The mean gas velocity, 𝑉𝑚, is given by:

𝑉𝑚 =
∫ ∫ 𝑉 𝑟 𝑑𝑟 𝑑𝜃

𝑟𝛤
0

𝜋/𝑁

0

∫ ∫ 𝑟 𝑑𝑟 𝑑𝜃
𝑟𝛤
0

𝜋/𝑁

0

 (S27)

Note that it is only necessary to evaluate the integrals over the one eighth of the channel (0 ≤
𝜃 ≤ 𝜋/4) because of the symmetry. Substituting Eq. (S20) into Eq. (S27) and evaluating the

integral in 𝑟 gives:

𝑉𝑚 =
2𝑁

𝐴𝐶  𝜇

𝜕𝑃

𝜕𝑧
∫ [

𝑟𝛤
4

16
−∑𝑎𝑗

𝑟𝛤
𝑗𝑁+2

  cos 𝑗𝑁𝜃

𝑗𝑁 + 2

𝑛

𝑗=0

] 𝑑𝜃
𝜋/𝑁

0

 (S28)

The integral in this equation was evaluated numerically (after substitution of Eq. (S17)) using

the trapezium rule with values of 𝜃 in the range 0 ≤ 𝜃 ≤ 𝜋/4 at a ½° interval, i.e. over 91

equally spaced points. Halving the interval to ¼° (i.e. numeric integration over 181 points), had

no effect on the values of 𝐹 calculated from 𝑉𝑚 to five decimal places.

Next, an expression for determining the (Fanning) friction factor will be developed. From the

definition of the friction factor [S12], it follows that the axial pressure gradient along the

channel is given by:

−
𝜕𝑃

𝜕𝑧
=
𝑓 𝑝 𝜌 𝑉𝑚

2

2𝐴𝐶
 (S29)

11

The Reynolds number, 𝑅𝑒, is defined as 𝜌𝑉𝑚  𝑑𝐻/𝜇 where 𝑑𝐻 is the hydraulic diameter, defined

as 4𝐴𝐶/𝑝. Substituting these into Eq. (S29) and rearranging gives an expression for calculating

𝑓 𝑅𝑒, viz.:

𝑓 𝑅𝑒 = −
8𝐴𝐶

2

𝑝2
⋅
1

𝑉𝑚  𝜇

𝜕𝑃

𝜕𝑧
 (S30)

where the term to the right of the dot is obtained from Eq. (S28).

In 1-dimensional models of monolith reactors, the viscous losses can be characterised in terms

of the viscous loss coefficient, 𝐹, as in Eq. (1) in the main paper. Hence, an expression for

determining 𝐹 is also required. Applying incompressible flow to Eq. (1), so that 𝜕𝜌𝑉2/𝜕𝑧 =
0, gives such an expression:

𝐹 = −𝐴𝐶 ⋅
1

𝑉𝑚  𝜇

𝜕𝑃

𝜕𝑧
 (S31)

Note that incompressible flow has been applied in this equation as the velocity field was

calculated assuming incompressible flow.

Combining Eq. (S30) and (S31) to eliminate the terms to the right of the dot gives:

𝐹 =
𝑝2

8𝐴𝑐
𝑓 𝑅𝑒 (S32)

From symmetry, it is clear that maximum gas velocity occurs at the centre of the channel. Thus,

an expression for the maximum velocity, 𝑉𝑀𝑎𝑥, is obtained by substituting 𝑟 = 0 into Eq. (S20):

𝑉𝑀𝑎𝑥 = −
𝑎0
𝜇

𝜕𝑃

𝜕𝑧
 (S33)

S2.1.4. Momentum Flux and Kinetic Energy Flux Correction Factors

The momentum flux (𝛼) and kinetic energy flux (𝛼𝐸) correction factors are defined [S11] as:

𝛼 =
⟨𝑉2⟩

⟨𝑉⟩2
=
⟨𝑉2⟩

𝑉𝑚2
 (S34)

𝛼𝐸 =
⟨𝑉3⟩

⟨𝑉⟩3
=
⟨𝑉3⟩

𝑉𝑚
3 (S35)

Writing Eq. (S34) in integral form gives:

𝛼 =
1

𝑉𝑚2
∫ ∫ 𝑉2  𝑟 𝑑𝑟 𝑑𝜃

𝑟𝛤
0

𝜋/𝑁

0

∫ ∫ 𝑟 𝑑𝑟 𝑑𝜃
𝑟𝛤
0

𝜋/𝑁

0

 (S36)

Substituting Eq. (S20) into this and evaluating the integral in r gives:

12

𝛼 =
2𝑁

𝐴𝐶
(
1

𝑉𝑚  𝜇

𝜕𝑃

𝜕𝑧
)
2

∫ [
𝑟𝛤
6

96

𝜋/𝑁

0

−
1

2
∑

𝑎𝑗  𝑟𝛤
𝑗𝑁+4

cos 𝑗𝑁𝜃

𝑗𝑁 + 4

𝑛

𝑗=0

+∑∑
𝑎𝑗  𝑎𝑘  𝑟𝛤

[𝑗+𝑘]𝑁+2
cos 𝑗𝑁𝜃 cos 𝑘𝑁𝜃

[𝑗 + 𝑘]𝑁 + 2

𝑛

𝑘=0

𝑛

𝑗=0

] 𝑑𝜃

(S37)

Applying the same procedure to Eq. (S35) gives:

𝛼𝐸 =
2𝑁

𝐴𝐶
(
1

𝑉𝑚  𝜇

𝜕𝑃

𝜕𝑧
)
3

∫ [
𝑟𝛤
8

512

𝜋/𝑁

0

−
3

16
∑

𝑎𝑗  𝑟𝛤
𝑗𝑁+6

cos 𝑗𝑁𝜃

𝑗𝑁 + 6

𝑛

𝑗=0

+
3

4
∑∑

𝑎𝑗  𝑎𝑘  𝑟𝛤
[𝑗+𝑘]𝑁+4

cos 𝑗𝑁𝜃 cos 𝑘𝑁𝜃

[𝑗 + 𝑘]𝑁 + 4

𝑛

𝑘=0

𝑛

𝑗=0

−∑∑∑
𝑎𝑗  𝑎𝑘  𝑎𝑙  𝑟𝛤

[𝑗+𝑘+𝑙]𝑁+2
cos 𝑗𝑁𝜃 cos 𝑘𝑁𝜃 cos 𝑙𝑁𝜃

[𝑗 + 𝑘 + 𝑙]𝑁 + 2

𝑛

𝑙=0

𝑛

𝑘=0

𝑛

𝑗=0

] 𝑑𝜃

(S38)

The integrals in Eq. (S37) and (S38) were evaluated numerically (after substitution of Eq.

(S17)) using the trapezium rule with values of 𝜃 in the range 0 ≤ 𝜃 ≤ 𝜋/4 at a ½° interval, i.e.

over 91 equally spaced points. Halving the interval to ¼° (i.e. numeric integration over 181

points), had no effect on the values of 𝛼 and 𝛼𝐸 calculated to at least six decimal places.

S2.2. The Temperature Problem

S2.2.1. Energy Balance

In addition to the assumptions already mentioned for the velocity problem (Section S2.1.1), we

assume thermally developed flow, no axial heat conduction (or rather that axial heat transport

by conduction is negligible compared to that by convection), no viscous dissipation and no heat

sources within the fluid. For these assumptions, the fluid energy balance is:

0 = −𝜌 𝐶𝑝  𝑉
𝜕𝑇

𝜕𝑧
+ 𝜆𝛻2𝑇 (S39)

where 𝑇 is the local thermodynamic temperature of the gas. The first term in this equation

represents heat transport by forced convection along the channel and the second term heat

transport by thermal conduction.

This equation will be solved for the combined boundary conditions of (i) axially constant wall

heat flux and (ii) constant peripheral wall temperature, which is the “H1” boundary condition

of Shah and London [S11]; these boundary conditions will be applied later in the derivation.

The full set of boundary conditions is summarised in Table S1.

Eliminating, (𝜕𝑃/𝜕𝑧)/𝜇 between Eq. (S20) and (S30) and substituting the result into Eq. (S39)

gives:

13

0 = 𝜌 𝐶𝑝  
𝑓 𝑅𝑒 𝑝2  𝑉𝑚

8𝐴𝐶
2 [

𝑟2

4
−∑𝑎𝑗  𝑟

𝑗𝑁 cos 𝑗𝑁𝜃

𝑛

𝑗=0

]
𝜕𝑇

𝜕𝑧
+ 𝜆𝛻2𝑇 (S40)

For thermally developed flow and the first thermal boundary condition (axially constant wall

heat flux), it can be shown that [S1]:

𝜕𝑇

𝜕𝑧
=
𝜕𝑇𝑚
𝜕𝑧

 (S41)

One way of looking at Eq. (S41) is that axially constant heat flux at the channel wall requires

that the derivative of the temperature at the channel wall in the direction normal to the wall

(which is proportional to the heat flux at the wall) must be independent of 𝑧. This suggests a

temperature solution of the form 𝑇 = g(𝑧) + 𝛹(𝑟, 𝜃), i.e. where the part of the solution

dependant on 𝑟 and 𝜃 is independent of 𝑧. Here g(𝑧) is a function of 𝑧 only and 𝛹(𝑟, 𝜃) a

function of 𝑟 and 𝜃. For this solution, it is clear that 𝜕𝑇/𝜕𝑧 is independent of 𝑟 and 𝜃 and hence

that Eq. (S41) is correct. This is discussed in more detail elsewhere [S1].

Substituting Eq. (2) (from the main paper) and (S41) into Eq. (S40) to eliminate 𝜕𝑇/𝜕𝑧 gives:

𝜆 𝑑𝐻
3

8𝑓 𝑅𝑒 ℎ(𝑇𝑚 − 𝑇𝛤)
𝛻2𝑇 =

𝑟2

4
−∑𝑎𝑗  𝑟

𝑗𝑁 cos 𝑗𝑁𝜃

𝑛

𝑗=0

 (S42)

where 𝑑𝐻 (= 4𝐴𝐶/𝑝) is the hydraulic diameter of the channel.

The normalised temperature2, 𝑇∗, is defined as:

𝑇∗ =
𝜆 𝑑𝐻

3

8𝑓 𝑅𝑒 ℎ
⋅
𝑇 − 𝑇𝛤
𝑇𝑚 − 𝑇𝛤

 (S43)

Rearranging this to give T and substituting the result into Eq. (S42) gives:

𝛻2𝑇∗ =
𝑟2

4
−∑𝑎𝑗  𝑟

𝑗𝑁 cos 𝑗𝑁𝜃

𝑛

𝑗=0

 (S44)

Since no axial heat conduction in the gas has been assumed, the Laplacian in this equation has

no term in 𝜕2𝑇∗/𝜕𝑧2. This means that the 𝑇𝛤 term in the numerator of Eq. (S43) has no impact

on Eq. (S44) as it goes to zero when operated on by the Laplacian, but it is included as it

simplifies determination of the arbitrary constants in the solution of Eq. (S44) from the

boundary condition (Section S2.2.2).

Expressing the Laplacian in polar coordinates, Eq. (S44) becomes:

𝜕2𝑇∗

𝜕𝑟2
+
1

𝑟

𝜕𝑇∗

𝜕𝑟
+
1

𝑟2
𝜕2𝑇∗

𝜕𝜃2
=
𝑟2

4
−∑𝑎𝑗  𝑟

𝑗𝑁 cos 𝑗𝑁𝜃

𝑛

𝑗=0

 (S45)

S2.2.2. Solution of the Energy Balance

For a channel with N-fold rotational and reflectional symmetry, a general solution of Eq. (S45)

is [S1,S3,S5,S10]:

2 Since 𝑇∗ has units (m4), it is referred to as “normalised” rather than “non-dimensionalised”.

14

𝑇∗ =
𝑟4

64
−∑

𝑎𝑗  𝑟
𝑗𝑁+2   cos 𝑗𝑁𝜃

4(𝑗𝑁 + 1)

𝑛

𝑗=0

−∑𝑐𝑗  𝑟
𝑗𝑁 cos 𝑗𝑁𝜃

𝑛

𝑗=0

 (S46)

As with the with the velocity solution (Eq. (S20), Section S2.1.2), the N in this equation is

required to fulfil the rotational symmetry boundary condition (Table S1) and the equation has

no terms in sin 𝑗𝑁𝜃 to fulfil the reflectional symmetry boundary condition (Table S1).

To find the values of 𝑐𝑗, the second thermal boundary condition (constant wall temperature) is

applied, i.e. 𝑇(𝑟𝛤, 𝜃) = 𝑇𝛤, where 𝑇𝛤 is the temperature at the channel wall, a constant.

Substituting this into Eq. (S43) gives 𝑇∗(𝑟𝛤, 𝜃) = 0. Thus, at the channel wall, Eq. (S46)

becomes:

0 =
𝑟𝛤
4

64
−∑

𝑎𝑗  𝑟𝛤
𝑗𝑁+2

cos 𝑗𝑁𝜃

4(𝑗𝑁 + 1)

𝑛

𝑗=0

−∑𝑐𝑗  𝑟𝛤
𝑗𝑁
cos 𝑗𝑁𝜃

𝑛

𝑗=0

 (S47)

To determine the values of 𝑐𝑗, it is convenient to write this equation in matrix form, in a similar

way to that used for determining 𝑎𝑗 in Section S2.1.2:

𝑺 𝑪 = 𝑬 − 𝑼 𝑨 (S48)

where:

𝑪 = [𝑐0 𝑐1 𝑐2 … 𝑐𝑛]𝑇 (S49)

𝑬 = [𝑟𝛤
4/64] (S50)

𝑼 = [
𝑟𝛤
2

4

𝑟𝛤
𝑁+2 cos𝑁𝜃

4(𝑁 + 1)

𝑟𝛤
2𝑁+2 cos 2𝑁𝜃

4(2𝑁 + 1)
…

𝑟𝛤
𝑛𝑁+2 cos 𝑛𝑁𝜃

4(𝑛𝑁 + 1)
] (S51)

As was done for the velocity problem (Section S2.1.2), Eq. (S48) can be extended, such that if

the boundary condition is evaluated at 𝑚 points on the channel wall, 𝑬, 𝑺 and 𝑼 will have 𝑚

rows with each row corresponding to a different point on the channel wall. The values of 𝑐𝑗

(i.e. the elements of 𝑪) can then be obtained using the least squares method:

𝑪 = (𝑺𝑇  𝑺)−1  𝑺𝑇  (𝑬 − 𝑼 𝑨) (S52)

For a circular channel (𝛾 = 1), 𝑇∗, like 𝑉 (Section S2.1.2), is expected not to vary with 𝜃 so 𝑎𝑗

and 𝑐𝑗 will be zero for 𝑗 > 0 (Eq. (S46)). Setting 𝑎𝑗 = 𝑐𝑗 = 0 for 𝑗 > 0 results in Eq. (S46)

reducing to the analytical solution for a circular channel. As with the velocity problem, 𝑎𝑗 and

𝑐𝑗 were not forced to be zero for circular channels for 𝑗 > 0, but rather evaluated in the same

way as for 𝛾 < 1 (i.e. using Eq. (S52)), as a test of the methodology.

S2.2.3. Nusselt Number Calculation

The normalised mixing cup temperature of the gas in the channel, 𝑇𝑚
∗ , is given by:

𝑇𝑚
∗ =

2𝑁

𝐴𝐶
∫ ∫

𝑉

𝑉𝑚
𝑇∗  𝑟 𝑑𝑟 𝑑𝜃

𝑟𝛤

0

𝜋/𝑁

0

 (S53)

Substituting Eq. (S20) and (S46) into this and evaluating the integral in r gives:

15

𝑇𝑚
∗ =

2𝑁

𝐴𝐶
(
1

𝑉𝑚  𝜇

𝜕𝑃

𝜕𝑧
)∫ [

𝑟𝛤
8

2048
−
1

64
∑

𝑎𝑗  (𝑗𝑁 + 5)𝑟𝛤
𝑗𝑁+6

cos 𝑗𝑁𝜃

(𝑗𝑁 + 1)(𝑗𝑁 + 6)

𝑛

𝑗=0

𝜋/𝑁

0

−
1

4
∑

𝑐𝑗  𝑟𝛤
𝑗𝑁+4

cos 𝑗𝑁𝜃

𝑗𝑁 + 4

𝑛

𝑗=0

+∑∑𝑎𝑗 [
𝑎𝑘  𝑟𝛤

[𝑗+𝑘]𝑁+4

4(𝑗𝑁 + 1)([𝑗 + 𝑘]𝑁 + 4)

𝑛

𝑘=0

𝑛

𝑗=0

+
𝑐𝑘  𝑟𝛤

[𝑗+𝑘]𝑁+2

[𝑗 + 𝑘]𝑁 + 2
] cos 𝑗𝑁𝜃 cos 𝑘𝑁𝜃]𝑑𝜃

(S54)

This integral was evaluated numerically (after substitution of Eq. (S17)) using the trapezium

rule with values of 𝜃 in the range 0 ≤ 𝜃 ≤ 𝜋/4 at a ½° interval, as was done when determining

𝑉𝑚, 𝛼 and 𝛼𝐸 (Section S2.1.3 and S2.1.4). Halving the interval to ¼° had no effect on the values

of 𝑁𝑢 calculated from 𝑇𝑚
∗ to at least seven decimal places.

From Eq. (S43), it follows that 𝑇𝑚
∗ is also given by:

𝑇𝑚
∗ =

𝜆 𝑑𝐻
3

8𝑓 𝑅𝑒 ℎ
 (S55)

Rearranging this gives an expression for the Nusselt number, 𝑁𝑢, viz.:

𝑁𝑢 =
ℎ 𝑑𝐻
𝜆

=
𝑑𝐻
4

8(𝑓 𝑅𝑒)𝑇𝑚∗
 (S56)

Thus, 𝑁𝑢 is calculated by eliminating 𝑇𝑚
∗ between Eq. (S54) and (S56).

The energy balance of a 1-dimensional model of a monolith reactor contains 𝑝 ℎ, not 𝑁𝑢 (Eq.

(2) in the main paper). It is therefore useful to have an expression for this. Combining the

definitions of 𝑁𝑢 (= ℎ 𝑑𝐻/𝜆) and 𝑑𝐻 (= 4𝐴𝐶/𝑝) with 𝑝 ℎ gives such an expression:

𝑝 ℎ

𝜆
=
𝑝2  

4𝐴𝐶
𝑁𝑢 (S57)

S2.3. References

S1. Watling, T. C. Flow and Forced Convection Heat Transfer Characteristics of Developed

Laminar Flow in the Octahedral Channels of Octo-Square Asymmetric Particulate Filters.

Res. in Eng. 2020, 5, 100086, doi:10.1016/j.rineng.2019.100086.

S2. Albright, L.F. (Ed.). Albright’s Chemical Engineering Handbook; CRC Press: Boca

Raton, 2009, pp. 128-130, doi:10.1201/9781420014389.

S3. Cheng, K.C. Laminar Flow and Heat Transfer Characteristics in Regular Polygonal

Ducts. Proceedings of Third International Heat Transfer Conference (7th-12th August,

Chicago, 1966) 1, 64-76, doi:10.1615/IHTC3.1590.

S4. Cheng, K.C. Dirichlet Problem for Laminar Forced Convection with Heat Sources and

Viscous Dissipation in Regular Polygonal Ducts. AIChE J. 1967, 13, 1175-1180,

doi:10.1002/aic.690130626.

https://doi.org/10.1016/j.rineng.2019.100086
https://doi.org/10.1201/9781420014389
https://doi.org/10.1615/IHTC3.1590
https://doi.org/10.1002/aic.690130626

16

S5. Cheng, K.C. Laminar Forced Convection in Regular Polygonal Ducts With Uniform

Peripheral Heat Flux. J Heat Trans. 1969, 91, 156-157, doi:10.1115/1.3580075.

S6. Shih, F.S. Laminar Flow in Axisymmetric Conduits by a Rational Approach. Can. J.

Chem. Eng. 1967, 45, 285-294, doi:10.1002/cjce.5450450507.

S7. Ray, S.; Misra, D. Laminar fully developed flow through square and equilateral triangular

ducts with rounded corners subjected to H1 and H2 boundary conditions. Int. J. Therm.

Sci. 2010, 49, 1763-1775, doi:10.1016/j.ijthermalsci.2010.03.012.

S8. Lorenzi, M.; Morini, G.L. Single-Phase Laminar Forced Convection in Microchannels

With Rounded Corners. Heat Trans. Eng. 2011, 32, 1108-1116,

doi:10.1080/01457632.2011.562457.

S9. Etheridge, J.E.; John, G.; Watling, T.C. Application of Surrogate Modelling to the

Optimisation of Kinetic Parameters in an Emissions Control Catalyst Model Using

Vehicle Drive Cycle Data. Emiss. Control Sci. Technol. 2017, 3, 310-322,

doi:10.1007/s40825-017-0069-z.

S10. Shah, R.K. Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of

Arbitrary Geometry. Int J. Heat Mass Transfer 1975, 18, 849-862, doi:10.1016/0017-

9310(75)90176-3.

S11. Shah, R. K.; London, A.L. Laminar Flow Forced Convection in Ducts; Academic Press:

New York, 1978, pp. 16-31, 43, 65-66, 78, 82-83, 198, 200, doi:10.1016/C2013-0-06152-

X.

S12. Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, Revised Second

Edition. John Wiley & Sons: New York, 2007, pp. 178-179, ISBN: 978-0-470-11539-8.

https://doi.org/10.1115/1.3580075
https://doi.org/10.1002/cjce.5450450507
https://doi.org/10.1016/j.ijthermalsci.2010.03.012
https://doi.org/10.1080/01457632.2011.562457
https://doi.org/10.1007/s40825-017-0069-z
https://doi.org/10.1016/0017-9310(75)90176-3
https://doi.org/10.1016/0017-9310(75)90176-3
https://doi.org/10.1016/C2013-0-06152-X
https://doi.org/10.1016/C2013-0-06152-X

17

S3. Convergence Behaviour

It is necessary to understand the convergence behaviour of Eq. (S20) and (S46) to decide at

what point to truncate the series, i.e. what value of 𝑛 should be used. Tables S2 and S3 show

how the values of 𝐹 and 𝑁𝑢 calculated for different values of 𝛾 vary with 𝑛. Increasing 𝑛

results in convergence of the calculated values, although the change is small, being confined

to the fifth significant figure for both 𝐹 and 𝑁𝑢. In general, the maximum deviation of the

velocity and normalised temperature at the channel wall from the intended boundary value of

zero decrease with increasing 𝑛 (not shown). 𝑛 = 7 was used for calculating the values in Table

S4 and Fig. 2, 3 and 5-10 (in the main paper) as this results in convergence to the required

precision.

Table S2 Effect of n on the value of F calculated for different γ.

n Viscous Loss Coefficient, F

 γ: 0 0.1 0.2 0.3 0.4 0.6 0.8 1.0

3 28.453 28.338 28.026 27.584 27.080 26.088 25.379 25.133

5 28.454 28.338 28.025 27.585 27.080 26.090 25.378 25.133

7 28.454 28.338 28.025 27.585 27.081 26.090 25.378 25.133

9 28.454 28.338 28.026 27.585 27.081 26.090 25.378 25.133

Table S3 Effect of n on the value of Nu calculated for different γ.

n Nusselt Number, Nu

 γ: 0 0.1 0.2 0.3 0.4 0.6 0.8 1.0

3 3.6082 3.7590 3.8974 4.0171 4.1153 4.2527 4.3318 4.3636

5 3.6080 3.7590 3.8974 4.0170 4.1153 4.2528 4.3319 4.3636

7 3.6080 3.7590 3.8974 4.0170 4.1152 4.2528 4.3319 4.3636

9 3.6080 3.7590 3.8974 4.0170 4.1152 4.2528 4.3319 4.3636

The deviation of the predicted gas velocity at the channel wall from the intended boundary

value of zero is shown in Fig. S3 for 𝛾=½ for four values of 𝑛 (𝑛=3, 5, 7, 9). The dashed vertical

line in this figure indicates the angle where the straight and round sides meet. Deviations from

zero decrease markedly as 𝑛 is increased. Deviations from zero are larger for the round side

(26.6°≤θ≤45°) than the straight side (0°≤θ≤26.6°); for the straight side deviations from zero

tend to be larger in the region close to the round side than in the centre of the straight side

(θ=0°).

18

Fig. S3 Deviation of predicted velocity at the
channel wall from zero for γ=½. The vertical
line indicates the angle where the straight
and round sides meet.

S4. The Velocity and Temperature Field

This section of the Supplementary Material contains more contour plots. Figure S4 shows the

same data as Fig. 2 in the main paper but is plotted such that each “channel” has the same cross-

sectional area; this is equivalent to a comparison of different channel shapes with the same

substrate at constant washcoat loading. Figure S5 shows velocity contour plots for more values

of γ than shown in the main paper. Figure S6 shows contour plots of the non-dimensionalised

temperature. The temperature field resembles the velocity field in terms of the shape of the

contours, but the numbers are different. The figures are stored as vector graphics and so can be

enlarged to any size in a PDF viewer.

Fig. S4 Velocity contour plots for developed laminar flow in channels going from a square (γ=0) to a circle
(γ=1) plotted such that all channels have the same cross-sectional area. This is the same data as shown
in Fig. 2 of the main paper. Only one quadrant of the channel is shown. Velocity field calculated with n=7,
m=91.

-0.008

-0.004

0.000

0.004

0.008

0 10 20 30 40

V
 /
 V

m
a
t

th
e
 C

h
a
n
n
e
l

W
a
ll

θ / °

n=3

n=5

n=7

n=9

19

Fig. S5 Velocity contour plots for developed laminar flow in channels going from square (γ=0) to a circle
(γ=1). Only one quadrant of the channel is shown. Velocity field calculated using the least squares method
with n=7, m=91.

20

Fig. S6 Non-dimensionalised temperature contour plots for fully developed laminar flow in channels going
from square (γ=0) to a circle (γ=1). Only one quadrant of the channel is shown. Temperature field
calculated using the least squares method with n=7, m=91.

21

S5. Tabulated Data Characterising Fully Developed Laminar Flow

Table S4 Flow and heat transfer characteristics for fully developed laminar flow as a function of channel
geometry going from a square channel (γ=0) to a circle (γ=1). The maximum deviation of the velocity
(𝑉𝛤,𝑀𝑎𝑥/𝑉𝑚) and normalised temperature (𝑇𝛤,𝑀𝑎𝑥

∗ /𝑇𝑚
∗) at the channel wall from the intended boundary

values of zero are also given as a measure of accuracy. Values calculated with n=7, m=91.

γ F f Re α αE

𝐕𝐦𝐚𝐱
𝐕𝐦

Nu

𝐩 𝐡

𝛌

𝐕𝚪,𝐦𝐚𝐱

𝐕𝐦
 /%

𝑻𝚪,𝐦𝐚𝐱
∗

𝑻𝒎
∗ /%

0.000 28.454 14.227 1.378 2.154 2.096 3.608 14.432 0.05 0.00

0.025 28.447 14.375 1.378 2.154 2.096 3.646 14.432 0.04 0.01

0.050 28.424 14.514 1.378 2.152 2.095 3.685 14.431 0.12 0.03

0.075 28.388 14.644 1.377 2.149 2.094 3.722 14.431 0.16 0.04

0.100 28.338 14.765 1.376 2.146 2.092 3.759 14.429 0.13 0.04

0.125 28.275 14.878 1.374 2.142 2.090 3.795 14.425 0.10 0.03

0.150 28.202 14.982 1.373 2.137 2.087 3.830 14.420 0.12 0.04

0.175 28.118 15.078 1.371 2.131 2.085 3.864 14.413 0.16 0.06

0.200 28.025 15.166 1.370 2.126 2.081 3.897 14.404 0.17 0.07

0.225 27.925 15.248 1.368 2.120 2.078 3.929 14.392 0.16 0.06

0.250 27.817 15.322 1.366 2.113 2.075 3.960 14.378 0.14 0.05

0.275 27.704 15.390 1.364 2.107 2.071 3.989 14.362 0.12 0.05

0.300 27.585 15.452 1.362 2.101 2.067 4.017 14.343 0.13 0.06

0.325 27.463 15.508 1.360 2.094 2.064 4.044 14.321 0.16 0.07

0.350 27.337 15.559 1.359 2.088 2.060 4.069 14.298 0.17 0.08

0.375 27.210 15.605 1.357 2.082 2.056 4.093 14.273 0.16 0.07

0.400 27.081 15.646 1.355 2.076 2.052 4.115 14.245 0.14 0.07

0.425 26.951 15.684 1.353 2.070 2.049 4.137 14.217 0.12 0.06

0.450 26.822 15.717 1.352 2.064 2.045 4.157 14.186 0.12 0.06

0.475 26.694 15.748 1.350 2.059 2.041 4.175 14.155 0.14 0.07

0.500 26.567 15.775 1.349 2.054 2.038 4.193 14.123 0.15 0.08

0.525 26.443 15.799 1.347 2.049 2.034 4.209 14.091 0.15 0.08

0.550 26.322 15.821 1.346 2.044 2.031 4.225 14.058 0.13 0.07

0.575 26.204 15.840 1.344 2.039 2.028 4.239 14.026 0.11 0.06

0.600 26.090 15.858 1.343 2.035 2.025 4.253 13.994 0.10 0.06

0.625 25.981 15.874 1.342 2.031 2.022 4.265 13.962 0.12 0.06

0.650 25.876 15.889 1.341 2.027 2.019 4.277 13.932 0.13 0.07

0.675 25.777 15.902 1.340 2.023 2.017 4.288 13.902 0.14 0.07

0.700 25.684 15.914 1.339 2.020 2.014 4.298 13.874 0.12 0.07

0.725 25.598 15.925 1.338 2.017 2.012 4.308 13.848 0.11 0.06

0.750 25.517 15.935 1.337 2.014 2.010 4.316 13.824 0.08 0.05

0.775 25.444 15.945 1.337 2.012 2.008 4.324 13.801 0.09 0.05

0.800 25.378 15.954 1.336 2.009 2.007 4.332 13.781 0.11 0.06

0.825 25.320 15.963 1.335 2.007 2.005 4.339 13.764 0.12 0.07

0.850 25.269 15.971 1.335 2.005 2.004 4.345 13.748 0.11 0.06

0.875 25.227 15.978 1.334 2.004 2.003 4.350 13.736 0.09 0.05

0.900 25.192 15.985 1.334 2.002 2.002 4.355 13.726 0.06 0.03

0.925 25.166 15.991 1.334 2.001 2.001 4.358 13.718 0.09 0.05

0.950 25.147 15.996 1.334 2.001 2.000 4.361 13.713 0.11 0.06

0.975 25.136 15.999 1.333 2.000 2.000 4.363 13.710 0.11 0.06

1.000 25.133 16.000 1.333 2.000 2.000 4.364 13.709 0.00 0.00

22

S6. MATLAB® Program

The MATLAB® program below was used in this work for calculating the velocity and temperature fields, producing the tabulated values found in

Table S4 and producing the contour plots appearing in this work. This program was based on one used in a previous study [S1].

In the program, 𝑑 is taken to be unity and hence all quantities depending on 𝑑 (𝐴𝐶 , 𝑎𝑗, 𝑐𝑗, 𝑑𝐻, 𝑝, r and 𝑟𝛤) are relative to 𝑑; this has no impact on

the reported values as they are all dimensionless. Thus, for the purposes of the program/computation, the units of these quantities are different

from that given in the nomenclature.

The obvious implementation of Eq. (S26) and (S52) in MATLAB® uses left divide [S13], viz.:

 A = (S'*S) \ S'*D;

 C = (S'*S) \ S'*(E - U*A);

However, with high values of 𝑛, MATLAB® warns that 𝑺 is badly scaled or nearly singular. This is because 𝑟Γ
𝑗𝑁
cos 𝑗𝑁𝜃, which forms the elements

of 𝑺, decreases dramatically with increasing 𝑗 and that higher values of 𝑗 are encountered as 𝑛 increases.

MATLAB®’s pinv [S14] avoids this problem by treating elements of 𝑺 that are smaller than a specific tolerance as zero [S14]. Thus, the following

code was used:

 A = pinv(S)*D;

 C = pinv(S)*(E - U*A);

Using pinv instead of left divide had no impact on the calculated values (𝐹, 𝑓 𝑅𝑒, 𝑁𝑢, 𝑉𝑀𝑎𝑥/𝑉𝑚, 𝛼, 𝛼𝐸) to at least 10 decimal places, but could

have a significant effect on values of 𝑎𝑗 and 𝑐𝑗 obtained for higher 𝑗 (which indicates that the effected values of 𝑎𝑗 and 𝑐𝑗 have negligible

contribution to 𝑉 and 𝑇∗).

function out = SquareRoundedCornersChannelFlow

% Runs calculation for a series of different values of gamma. Also makes velocity and temperature contour plots

% Columns of out: gamma, F, fRe, alpha, alphaE, Vmax/Vm, Nu, p*h/lambda, VwMax/Vm as %, TwMax/Tm as %, p^2/Ac, p^2*d^2/Ac^2, d/sqrt(Ac)

% Code written in MATLAB R2020a. Using an earlier version may cause problems

%-Parameters controlling calculation-----

gValues = 0:0.2:1; % Array of values of gamma for which calculation is to be run

S13. MathWorks®, “mldivide, \: Solve systems of linear equations Ax = B for x”, https://uk.mathworks.com/help/matlab/ref/mldivide.html, accessed August 2020.

S14. MathWorks®, “pinv: Moore-Penrose pseudoinverse”, https://uk.mathworks.com/help/matlab/ref/pinv.html, accessed August 2020.

https://uk.mathworks.com/help/matlab/ref/mldivide.html
https://uk.mathworks.com/help/matlab/ref/pinv.html

23

% gValues = 0:0.025:1; % Array of values of gamma for which calculation is to be run

n = 7 ; % Number of terms in algebraic-trigonometric series (excluding zero term)

m = 91 ; % Number of points at which boundary conditions are evaluated. Must have m>n+1

mAng = 91 ; % Number of angles used for numeric integration to obtain Vm, alpha, alphaE and Nu

mG = 200 ; % Number of points along side of Cartesian grid for velocity and temperature contour plots

% Parameters controlling if plots made, whether V or T plot made and number of columns of subplots

Plt = true ; % Creates profile plots if true

vPlt = true ; % Creates velocity plot if true, temperature plot if false (provided Plt true)

nCol = 3 ; % Number of columns for arranging plots

%--

d = 1 ; % Width of channel, arbitrary units. As all calculated values dimensionless, dimensions can be in arbitrary units,

provided they are consistent

nGamma = numel(gValues) ; % Number of values of gamma for running calculation

% Parameters controlling plotting

FntSz = 12 ; % Font size

FntSzC = FntSz*2/3 ; % Font size for contour line labels

Gap = 0.1 ; % Fraction of space allocated to (subplot+gap) that becomes the gap

adjT = 1.1 ; % Title allowance/adjustment - how much extra height to allow for subplot title as fraction of subplot height

% Calculated parameters controlling plotting

nRow = ceil(nGamma/nCol); % Number of rows for arranging plots

wCol = 1/(nCol+0.66) ; % Width of frame for each subplot or for colour bar. Assumes axis units set to 'normalized' so coordinates between 0

and 1. NB Colour bar needs less space than plot, hence 0.66

Edge = wCol*Gap ; % Fractional distance between subplots and left & top of figure

Width = wCol*(1-Gap) ; % Width of subplot

% Loop through requested values of gamma, running calculation and compiling results. Create plots if Plt is true

out = zeros(nGamma,13);

col = 0;

row = 1;

for i = 1:nGamma

 gamma = gValues(i);

 [values,x,y,T,V] = ChannelCalc(d,gamma,n,m,mAng,mG);

 out(i,:) = values;

 % Make plots, if required

 if Plt

 % Calculate row and column for subplot

 col = col + 1;

 if col > nCol

 row = row + 1;

 col = 1 ;

 end

 ax = subplot(nRow,nCol,i);

24

 if i==1 % Only need to calculate these values once

 Pos = ax.Parent.Position; % Position and size of figure

 aRatio = Pos(4)/Pos(3) ; % Aspect ratio of figure, height/width

 Ht = Width/aRatio ; % Height of subfigure. Corrects for aspect ratio of figure, so subplot is square

 hRow = wCol /aRatio ; % Height of frame for each subplot

 end

 if vPlt % Make velocity plot

 cLabel = 'Velocity / Mean Velocity (V/V_m)' ; % Label for colour bar

 tLabels = {'0','0.2','0.4','0.6','0.8','1.0','1.2','1.4','1.6','1.8','2.0','2.2'}; % Tick labels for colour bar

 z = V ; % Quantity to be plotted, V, actually V/Vm

 else % Make temperature plot

 cLabel = '(T - T_\Gamma) / (T_m - T_\Gamma)' ; % Label for colour bar

 tLabels = {'0','0.2','0.4','0.6','0.8','1.0','1.2','1.4','1.6','1.8'}; % Tick labels for colour bar

 z = T ; % Quantity to be plotted, T, actually non-dimensionalised

temperature

 end

 % Make contour plot. Verify no plotted values exceed maximum on colour bar

 Max = str2double(tLabels{end}); % Maximum value on colour bar

 [c,h] = contourf(ax,x,y,z,'LabelSpacing',500,'LevelStep',0.1,'ShowText','on','TextList',0.2:0.2:Max);

 if max(z,[],'all')>Max, error('Maximum on colour bar is less than maximum value of V/Vm or T/Tm.'); end

 % Format subplot, add title, move & resize subplot

 set(ax,'LineWidth',1,'TickDir','both','XTickLabel',[],'YTickLabel',[],'XTick',linspace(0,d/2,11),'YTick',linspace(0,d/2,11),'Zlim',

[0,Max]); % Format subplot axes

 clabel(c,h,'FontSize',FntSzC) ; % Format contour labels

 title(ax,['\gamma = ',sprintf('%.1f',gamma)],'FontSize',FntSz,'FontWeight','normal'); % Add title

 ax.Position = [wCol*(col-1)+Edge,1-(hRow*(row-1)+Ht)*adjT-Edge/aRatio,Width,Ht] ; % Move and resize plot

 % If last subplot, add colour bar

 if i==nGamma, AddColourBar(ax,FntSz,cLabel,tLabels,Max,wCol*nCol+Edge); end

 end % Plots

end % Loop on gamma values

end

%--

function [values,x,y,T,V] = ChannelCalc(d,gamma,n,m,mAng,mG)

% Calculation, for a single set of parameters, of flow profile, friction factor, Nu, etc for flow a square channel with rounded corners

% Constant

N = 4; % Rotational symmetry of channel

% Geometric calculations

[Ac,BOD,dH,p2_divAc] = GeoCalc(d,gamma);

% Determine constants in algebraic-trigonometric series from boundary conditions

[A,C] = EvalConstants(BOD,d,gamma,n,N,m);

25

% Write A and C to Command Window

WriteConsts(gamma,A,'A');

WriteConsts(gamma,C,'C');

fprintf('\n');

% Determine momentum and kinetic energy flux correction factors, mean velocity & normalised mixing cup temperature

[alpha,alphaE,Tsm,Vm] = VelocityTempCalc(A,Ac,BOD,C,d,gamma,mAng,N,n);

% Determine velocity & temperature profiles

[T,V,x,y] = VelocityTempField(A,BOD,C,d,gamma,mG,N,n,Tsm,Vm);

% Evaluate largest deviation of velocity & temperature at channel edge from BC of V=0 and T*=0 as measure of accuracy of V & T solution

[TwMax,VwMax] = BoundaryCheck(A,BOD,C,d,gamma,N,n,Tsm,Vm);

% Calculate F, fRe, Nu and (p*h/lambda)

F = Ac/Vm ; % NB Vm is actually (mean velocity)(viscosity)/(-dP/dz)

fRe = 8*F/p2_divAc ;

Nu = dH^4/(8*fRe*Tsm);

ph_divLamda = p2_divAc*Nu/4 ;

% Compile numeric output into an array

values = [gamma,F,fRe,alpha,alphaE,A(1)/Vm,Nu,ph_divLamda,VwMax*100,TwMax*100,p2_divAc,p2_divAc*d^2/Ac,d/sqrt(Ac)];

end

%--

function AddColourBar(ax,FntSz,Text,tLabels,Max,xBar)

% Adds colour bar, moves it to the right of the subplots and resizes to occupy the full height of the used part of the figure

c = colorbar(ax,'FontSize',FntSz,'Limits',[0,Max],'TickDirection','Both','TickLabels',tLabels,'Ticks',0:0.2:Max);

br = ax.Position; % Position of bottom right plot. Arguments are [left, bottom, width, height]

tl = ax.Parent.Children(end).Position; % Position of top left plot

cP = c.Position; % Position of colour bar

c.Position = [xBar, br(2), 2*cP(3), tl(2)+tl(4)-br(2)]; % Change position of colour bar, so to right of plots and full height

c.LineWidth = 1 ;

c.Label.String = Text ;

c.Label.FontSize = FntSz;

end

%--

function [TwMax,VwMax] = BoundaryCheck(A,BOD,C,d,gamma,N,n,Tsm,Vm)

% Evaluate V/Vm and T/Tm around the channel edge to see how close they to the boundary condition of zero

% Determine coordinates of channel edge to a 0.1 deg resolution

theta = (0:(1/N)/450:1/N)' ; % Angle/pi rad

r = ChannelEdge(BOD,d,gamma,N,theta);

% Calculate V/Vm and T/Tm around channel edge

j = 0:n;

26

S = r.^(j*N).*cospi(j*N.*theta); % NB Notice the use of 'cospi' - angle supplied as multiple of pi rad

Vw = (r.^2/4 - S*A)/Vm; % Actually, -V/Vw, but as only want maximum deviation from zero, this does not matter

Tw = (r.^4/64 - (r.^(j*N+2).*cospi(j*N.*theta)./(4*j*N+4))*A - S*C)/Tsm;

% Maximum deviation of V/Vm and T/Tm on channel edge from zero

VwMax = max(abs(Vw));

TwMax = max(abs(Tw));

end

%--

function r = ChannelEdge(BOD,d,gamma,N,theta)

% Returns r coordinate of edge of channel for required angular coordinate (theta)

% NB theta is angle as multiple of pi, i.e. angle in radians divided by pi, while BOD is in rad

IsStraight = theta*pi <= BOD; % True if boundary point lies on straight side, false if on round side

r = IsStraight.* d./(2*cospi(theta)) + ~IsStraight.* d/2.*((1-gamma)*sqrt(2).*cospi(1/N-theta) + sqrt(gamma.^2 - 2*(1-

gamma)^2.*sinpi(1/N-theta).^2)); % NB Notice the use of 'cospi' - angle supplied as multiple of pi rad

end

%--

function [A,C] = EvalConstants(BOD,d,gamma,n,N,m)

% Evaluate constants in algebraic-trigonometric series from boundary conditions using the least squares method

% Validate input

if m<=(n+1), error('Number of boundary points (m) must be greater than number of terms in series (n+1).'); end

% Determine angles for boundary points, i.e. points where evaluate BC. BCs are located at equal angle interval

theta = (0:(1/N)/(m-1):1/N)'; % Angle/pi rad. Angles are evenly spaced

% Determine r for points on channel wall where evaluate boundary condition

r = ChannelEdge(BOD,d,gamma,N,theta);

% Set up matrices

D = r.^2/4 ; % Matrix containing r^2/4 terms

E = r.^4/64 ; % Matrix containing r^4/64 terms

j = 0:n ;

S = r.^(j*N).*cospi(j*N.*theta) ; % Matrix containing terms for summation for each boundary point. NB1 Used for momentum and energy

balance. NB2 Notice the use of 'cospi' - angle supplied as multiple of pi rad

U = r.^(j*N+2).*cospi(j*N.*theta)./(4*j*N+4); % Matrix containing terms for summation for each boundary point for energy balance

% Solve for constants in matrices A and C

% A = (S'*S) \ S'*D ; % This is the obvious implementation using left divide. However, it results in 'matrix is close to singular or badly

scaled' warnings with high values of n

% C = (S'*S) \ S'*(E - U*A);

A = pinv(S)*D ; % Use of pinv avoids any warnings

C = pinv(S)*(E - U*A);

end

27

%--

function [Ac,BOD,dH,p2_divAc] = GeoCalc(d,gamma)

% Geometric calculations for square channel with rounded corner

% Angle BOD: value of theta at which straight side stops and the round side starts

BOD = atan(1 - gamma); % Angle in radians

% Cross-sectional area of channel

Ac = d^2 *(1 - (1 - pi/4)*gamma^2);

% (Channel perimeter)^2/(Channel cross section)

p2_divAc = (4 - (4 - pi)*gamma)^2/(1 - (1 - pi/4)*gamma^2);

% Calculate hydraulic diameter

dH = d*(1 - (1 - pi/4)*gamma^2)/(1 - (1 - pi/4)*gamma);

end

%--

function [alpha,alphaE,Tsm,Vm] = VelocityTempCalc(A,Ac,BOD,C,d,gamma,mAng,N,n)

% Calculate mean velocity (Vm), momentum flux correction factor (alpha), kinetic energy flux correction factor (alphaE), & normalised mixing cup

temperature (Tsm)

% Calculate mean velocity (Vm), alpha (<V^2>/<V>^2), alphaE (<V^3>/<V>^3) and Tsm (T*m in paper)

% Actually, Vm is not mean velocity, but (mean velocity)(viscosity)/(-dP/dz)

theta = (0:(1/N)/(mAng-1):1/N)' ; % Angles used for numeric integration. Actually, angle/pi rad

r = ChannelEdge(BOD,d,gamma,N,theta); % r values for channel edge

j = 0:n;

aV = r.^4/16 - (r.^(j*N+2).*cospi(j*N.*theta)./(j*N+2))*A; % NB Notice the use of 'cospi' - angle supplied as multiple of pi

rad

aS = r.^6/96 - 1/2 *(r.^(j*N+4).*cospi(j*N.*theta)./(j*N+4))*A;

eS = r.^8/512 - 3/16*(r.^(j*N+6).*cospi(j*N.*theta)./(j*N+6))*A;

TS = r.^8/2048 - 1/64*((j*N+5).*r.^(j*N+6).*cospi(j*N.*theta)./((j*N+1).*(j*N+6)))*A - 1/4*(r.^(j*N+4).*cospi(j*N.*theta)./(j*N+4))*C;

for k = 0:n

 aS = aS + A(k+1)*cospi(k*N*theta) .*(r.^((j+k)*N+2).*cospi(j*N.*theta)./((j+k)*N+2))*A;

 eS = eS + 3/4*A(k+1)*cospi(k*N*theta) .*(r.^((j+k)*N+4).*cospi(j*N.*theta)./((j+k)*N+4))*A;

 TS = TS + ((A(k+1)*r.^((j+k)*N+4)./(4*(j*N+1).*((j+k)*N+4)) + C(k+1)*r.^((j+k)*N+2)./((j+k)*N+2)).*cospi(j*N.*theta).*cospi(k*N*theta))*A;

 for l = 0:n

 eS = eS - A(k+1)*A(l+1)*cospi(k*N*theta).*cospi(l*N*theta) .*(r.^((j+k+l)*N+2).*cospi(j*N.*theta)./((j+k+l)*N+2))*A;

 end

end

Vm = trapz(theta,-aV)*pi *2*N/(Ac); % trapz does trapezium rule integration. Actually, Vm is not mean velocity, but (mean

velocity)(viscosity)/(-dP/dz)

alpha = trapz(theta, aS)*pi *2*N/(Ac*Vm^2);

alphaE = trapz(theta,-eS)*pi *2*N/(Ac*Vm^3);

Tsm = trapz(theta,-TS)*pi *2*N/(Ac*Vm);

end

28

%--

function [T,V,x,y] = VelocityTempField(A,BOD,C,d,gamma,mG,N,n,Tsm,Vm)

% Calculate velocity (V) and temperature (T) profiles over Cartesian grid

% Calculate V/Vm and T* as a function of position with Cartesian coordinates

[x,y] = meshgrid(linspace(0,d/2,mG)); % Create x-y grid for 1/4 of channel

r = sqrt(x.^2 + y.^2) ; % Convert to polar coordinates - r

theta = atan(y./x) ; % Convert to polar coordinates - angle in rad

theta(1,1) = 0 ; % Replace nan value - actual value not important as r=0 at this point

V = -r.^2/4 ; % When calculated, this is not actually velocity, but (velocity)(viscosity)/(-dP/dz)

T = r.^4/64 ;

for j = 0:n

 S = r.^(j*N).*cos(j*N.*theta);

 V = V + A(j+1).*S;

 T = T - A(j+1).*r.^(j*N+2).*cos(j*N.*theta)./(4*j*N+4) - C(j+1).*S;

end

V = V/Vm ; % Calculate: velocity/(mean velocity)

T = T/Tsm; % Non-dimensionalised temperature, i.e. (T - Tw)/(Tm - Tw)

% Set velocities and temperatures outside of channel to nan

IsRound = theta>BOD & theta<(pi/2-BOD); % True if angle corresponds to round/curved side

ii = IsRound & r>(d/2.*((1-gamma)*sqrt(2).*cos(pi/N-theta) + sqrt(gamma.^2 - 2*(1-gamma)^2.*sin(pi/N-theta).^2)));

V(ii) = nan; % If r larger than distance to channel edge at this angle, set to nan. NB Only need to do this for round sides; straight sides lie

on side of plot

T(ii) = nan;

end

%--

function WriteConsts(gamma,X,Xstr)

% Writes out constants (i.e. elements of A or C) to Command Window

fprintf('g = %.3f\t%s =',gamma,Xstr);

fprintf('\t%f',X);

fprintf('\n');

end

%--

