Biomimetic Total Synthesis of (\pm)-Carbocyclinone-534 Reveals Its Biosynthetic Pathway

Chunlei $\mathrm{Qu}^{+,[a]][b]}$, Xianwen Long ${ }^{+[[a],[b]}$, Yueqian Sang ${ }^{[\mathrm{c}]}$, Min Zhang ${ }^{[a],[b]}$, Xiaoli Zhao ${ }^{[a]][b]}$, Xiaosong Xue ${ }^{*,[c]}$, Jun Deng*,[a]
[a] State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
[b] University of Chinese Academy of Sciences, Beijing 100049, China
[c] Nankai University
[${ }^{+}$] These authors contributed equally to this work
Email: dengjun@mail.kib.ac.cn

I Experimental Procedures and Spectroscopic Data of Compounds

II DFT calculation

III References
IV Conditions screened for the synthesis of (\pm)-Carbocyclinone-534
V Comparison of the Spectra and Data of Natural and Synthetic (\pm)-Carbocyclinone-534 and duotap-520

VI $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds
VII X-Ray Crystallography Data for compounds 12

I Experimental Procedures and Spectroscopic Data of Compounds

1. General Procedures

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Tetrahydrofuran (THF) and Toluene were distilled immediately before use from sodium-benzophenoneketyl. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, N, N -Dimethylformamide (DMF) were distilled from calcium hydride and stored under an argon atmosphere. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Solvents for chromatography were used as supplied by Titan chemical. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.2 mm Huanghai gel plates (60F-254) using UV light as visualizing agent and aqueous ammonium cerium nitrate/ammonium molybdate or basic aqueous potassium permanganate as developing agent. Huanghai silica gel (60, particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography. For the reactions require heating, dimethicone was used as the heat source.

NMR spectra were recorded on Bruker AV III 400, 500 or 600, The spectra were calibrated by using residual undeuterated solvents (for ${ }^{1} \mathrm{H}$ NMR) and deuterated solvents (for ${ }^{13} \mathrm{C}$ NMR) as internal references: chloroform $\left(\delta_{\mathrm{H}}=7.26 \mathrm{ppm}\right)$ and $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{C}}=77.16 \mathrm{ppm}\right)$; methanol $\left(\delta_{\mathrm{H}}=3.31 \mathrm{ppm}\right)$ and methanol $-\mathrm{d}_{4}\left(\delta_{\mathrm{C}}=49.00 \mathrm{ppm}\right)$; The following abbreviations are used to designate multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, quint $=$ quintet, $\mathrm{br}=$ broad. IR spectra were recorded on a BRUKER Tensor-27 FT-IR spectrometer. High-resolution mass spectra (HRMS) were recorded on Agilent G6230 ESI-FT and the analyzer type was TOF.

2. Synthetic Procedures

Scheme 1. Synthesis of tapinarof (1), 3, duotap-520 (4), S2, S3, and 11
a)

b)

To a stirred solution of $\mathbf{S 1}$, which is commercially available ($6.31 \mathrm{~g}, 27.7 \mathrm{mmol}$) in THF (55 mL) were added $\mathrm{NaH}\left(983 \mathrm{mg}, 60 \%\right.$ dispersion in mineral oil, 24.6 mmol) at $0^{\circ} \mathrm{C}$. The mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 30 min before $\mathbf{8}^{[1]}(3.2 \mathrm{~g}, 15.37 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added. The resultant mixture was allowed to stir at $70^{\circ} \mathrm{C}$ for 1 h before it was quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The
mixture so obtained was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (20:1) to give $\mathbf{S 2}(3.73 \mathrm{~g}, 86 \%)$ as a pale yellow solid. $\mathbf{S 2}: R_{\mathrm{f}}=0.85$ (silica, petroleum ether: $\mathrm{EtOAc}=30: 1$); IR (film): $v_{\max }=2989,2744,2835,1598,1497,1235,1141,838,724 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H})$, $6.72(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=158.8,137.4,135.9,129.1,128.7,128.0,127.5,126.5,124.5,103.0,55.8,24.2,20.7$ ppm; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2}{ }^{+}$283.1693, found 283.1691. Melting point: $68-70^{\circ} \mathrm{C}$.

To a stirred solution of $\mathbf{S} 2(1.6 \mathrm{~g}, 5.67 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{~mL})$ were added $\mathrm{BBr}_{3}(34 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 34 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 3 h before the resultant mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ The mixture so obtained was extracted with $\mathrm{EtOAc}(3 \times$ 100 mL). The combined organic phases were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (10:1) to give tapinarof (1) (1.14 g, 79\%) as a white solid. tapinarof (1): $R_{\mathrm{f}}=0.34$ (silica, petroleum ether: $\mathrm{EtOAc}=6: 1$); IR (film): $v_{\max }=3510,2873$, $2717,1494,1424,1269,1194,864,752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 2H), $7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR
(101 MHz, CDCl_{3}): $\delta=155.1,137.3,136.4,128.8,127.9,127.8,126.6,120.5,107.0,24.8,20.9 \mathrm{ppm} ;$ HRMS (m/z): [M-H] calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2}^{-}$253.1234, found 253.1237.

To a stirred solution of $\mathbf{S} 1(9.31 \mathrm{~g}, 40.8 \mathrm{mmol})$ in THF (82 mL) were added $\mathrm{NaH}(1.45 \mathrm{~g}, 60 \%$ dispersion in mineral oil, 36.3 mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 min before $\mathbf{1 0}{ }^{[2]}(5.4 \mathrm{~g}, 22.7 \mathrm{mmol})$ in THF $(23 \mathrm{~mL})$ was added. The resultant mixture was allowed to stir at $70{ }^{\circ} \mathrm{C}$ for 1 h before it was quenched with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (20:1) to give $\mathbf{S 3}(6.09 \mathrm{~g}, 86 \%)$ as a pale yellow solid. S3: $R_{\mathrm{f}}=0.52$ (silica, petroleum ether: $\mathrm{EtOAc}=15: 1$); IR (film): $v_{\max }=2936,2872$, 2834, 1464, 1407, 1220, 1192, 857, $719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.55(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H}), 3.66(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=154.9,152.2,145.6,137.8,130.7,128.9,128.7,128.6,127.6$, 126.6, 123.2, 103.0, 61.1, 61.0, 55.7, 25.4, 21.3 ppm ; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3}{ }^{+}$ 313.1798, found 313.1787 . Melting point: $58-69^{\circ} \mathrm{C}$.

To a stirred solution of $\mathbf{S 3}(2.0 \mathrm{~g}, 6.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL})$ were added $\mathrm{BBr}_{3}(57.6 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 57.6 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 3 h before the resultant mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The mixture so obtained was extracted with $\mathrm{EtOAc}(3 \times$
$100 \mathrm{~mL})$. The combined organic phases were washed with brine $(100 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum to give $\mathbf{1 1}(1.68 \mathrm{~g}, 97 \%)$ as an orange oil was used in next step without further purification. 11: $R_{\mathrm{f}}=0.31$ (silica, petroleum ether:EtOAc $=3: 1$); IR (film): $v_{\max }=3439,2873,1634,1447,1393,1231,1030,848,749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, methanol-d 4): $\delta=7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , methanol- d_{4}): $\delta=150.5,146.7,139.1,136.8,129.5,128.6,128.0$, 127.1, 124.4, 124.1, 123.0, 26.2, 21.0 ppm ; HRMS (m/z): $[\mathrm{M}-\mathrm{H}]{ }^{-}$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{-}$269.1183, found 269.1183.

To a stirred solution of $\mathbf{1 1}(100 \mathrm{mg}, 0.37 \mathrm{mmol})$ in $\mathrm{MeOH}(3.7 \mathrm{~mL})$ was added $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (121.8 $\mathrm{mg}, 0.37 \mathrm{mmol}), \mathrm{KOH}(62.3 \mathrm{mg}, 1.11 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(3.7 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 5 min before it was quenched with $1 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (3:1) to give 3 ($51 \mathrm{mg}, 51 \%$) as a red solid. 3: $R_{\mathrm{f}}=0.34$ (silica, petroleum ether: $\mathrm{EtOAc}=6: 1$); IR (film): $v_{\max }=3391,3083,2874,1494$, $1325,1000,966,751,522 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~m}$, $10 \mathrm{H}), 6.54(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{dd}, J=7.1,5.4 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=185.1,183.2,150.8,141.7,138.6,136.7,135.3,129.7,128.9,127.5$,
126.2, 119.4, 24.7, 20.1, 20.0 ppm ; HRMS (m/z): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{O}_{6}{ }^{-} 533.1970$, found 533.1975. Melting point: $110-124^{\circ} \mathrm{C}$

When the reaction is over 1 mmol scale:

To a stirred solution of $\mathbf{1 1}(363 \mathrm{mg}, 1.34 \mathrm{mmol})$ in $\mathrm{MeOH}(13 \mathrm{~mL})$ was added $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(442.1 \mathrm{mg}$, $1.34 \mathrm{mmol}), \mathrm{KOH}(226.0 \mathrm{mg}, 4.03 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(13 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 5 min before it was quenched with $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The crude product (345 mg , 95\%) was obtained. The residue was purified by flash column chromatography with petroleum ether:EtOAc (3:1) to give $3(179 \mathrm{mg}, 49 \%)$ as a red solid. The crude product is quite pure by checking with NMR, but 3 seems instable during purifying by flash column chromatography.

To a stirred solution of $\mathbf{1 1}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{DCE}(0.2 \mathrm{~mL})$ was added $\mathrm{FeCl}_{2}(1.43 \mathrm{mg}, 0.01$ mmol), DTBP ($16.44 \mathrm{mg}, 0.1 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 2 h before it was quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic phases were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was checked by NMR, and we could not find the signal of compound 3.But we find the signal of compound 12 , the main product was it.

To a stirred solution of $\mathbf{1}(43.24 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{MeOH}(0.13 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was added $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(21.92 \mathrm{mg}, 0.07 \mathrm{mmol}), \mathrm{KOH}(44.83 \mathrm{mg}, 0.80 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 5 min before the resultant mixture was added $\mathbf{1 1}(18 \mathrm{mg}, 0.07 \mathrm{mmol})$ in MeOH $(0.1 \mathrm{~mL})$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 30 min before the resultant mixture was quenched with $1 \mathrm{NHCl}(3 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (6:1) to give duotap-520 (4) (17.9 mg, 52\%) as a red oil. duotap-520 (4): $R_{\mathrm{f}}=0.30$ (silica, petroleum ether: $\mathrm{EtOAc}=6: 1$); IR (film): $v_{\max }=3399,3105,2873,1448,1321$, $1008,960,751,520 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , methanol-d 4$): \delta=7.51(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 7 \mathrm{H}), 6.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=16.4,14.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.53(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz , methanol- d_{4}): $\delta=187.4,184.0,156.9$, 152.7, 141.3, 138.7, 137.5, 137.5, 136.1, 134.5, 129.0, 128.4, 128.3, 128.2, 127.1, 126.5, 126.5, $125.9,125.3,121.6,120.6,113.5,104.3,24.7,24.4,19.6,19.5,19.1,18.9 \mathrm{ppm} ; \quad$ HRMS (m/z): [M-H] calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{O}_{5}^{-} 519.2177$, found 519.2182. Melting point: $92-101^{\circ} \mathrm{C}$.

To a stirred suspension of duotap-520(4) (4.5 mg, 0.009 mmol$)$ and $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.74 \mathrm{mg}$, $0.004 \mathrm{mmol})$ in toluene $(60 \mu \mathrm{~L})$ and $t \mathrm{BuOH}(20 \mu \mathrm{~L})$ was added TBHP $(4.7 \mu \mathrm{~L}, 5.5 \mathrm{~mol} / \mathrm{L}$ in decane, $0.05 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 1 h before the resultant mixture was quenched with brine (10 mL). The mixture so obtained was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$).

The combined organic phases were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum to give $\mathbf{3}(1.05 \mathrm{mg}, 23 \%$, NMR internal standard method, 2 mg 1,3,5-Trimethoxybenzene) as a red solid.

Scheme 2. Total Synthesis of 12, (\pm)-carbocylionone-534

To a stirred suspension of $\mathbf{1 1}(70 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=1: 1(2.6 \mathrm{~mL})$ were added $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(128 \mathrm{mg}, 0.39 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 10 min . The resultant mixture was filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (3:1) to give $\mathbf{1 2}$ as a pale yellow oil. 12: $R_{\mathrm{f}}=$ 0.64 (silica, petroleum ether: $E t O A c=3: 1$); IR (film): $v_{\max }=3401,3030,2876,1452,1330,997,878$, $745,724 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}): $\delta=7.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2H), $7.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{brs}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J$
$=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-$ $3.26(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.0,194.3,192.6$, $181.1,155.7,152.8,137.4,136.7,135.5,133.0,132.5,132.5,131.0,130.0,129.0,128.8,128.1$, 126.9, 56.3, 52.6, 48.0, 42.7, 25.5, 25.2, 20.0, 19.6, 19.6, 18.8 ppm ; HRMS (m/z): [M-H] calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{O}_{6}{ }^{-} 535.2126$, found 535.2127.

12

(\pm)-carbocyclinone-534 (6)

To a stirred solution of $\mathbf{1 2}(43 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\mathrm{I}_{2}(40.68 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{CuBr}_{2}(9.0 \mathrm{mg}, 0.04$ mmol) in DMF (0.16 mL). The mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 3 h before the resultant mixture was quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (6:1) to give (\pm)-carbocyclinone-534 (6) (29.5 $\mathrm{mg}, 69 \%$) as a pale yellow solid. (\pm)-carbocyclinone-534 (6): $R_{\mathrm{f}}=0.40$ (silica, petroleum ether:EtOAc $=3: 1$); IR (film): $v_{\max }=3435,2852,2874,1497,1453,1285,1259,845,722 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, methanol-d 4): $\delta=7.24-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 3 \mathrm{H})$, $6.87-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dt}, J=4.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=4.9,2.5 \mathrm{~Hz}$, 1 H), 3.43 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (brs, 1 H), 2.99 (hept, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$, $1.10(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz , methanol- d_{4}): $\delta=192.2$, $189.2,184.8,180.3,157.1,152.3,143.3,138.5,137.1,134.6,130.3,129.3,128.7,128.4,128.1$,
$[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{O}_{6}^{-} 533.1970$, found 533.1975. Melting point: $128-134{ }^{\circ} \mathrm{C}$.

Scheme 3. Control experiments and Biomimetic transformations

(b)

(c)

To a stirred solution of $\mathbf{S 3}(300 \mathrm{mg}, 0.96 \mathrm{mmol})$ in $\mathrm{MeOH}(1.85 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(207 \mathrm{mg})$ at $25^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 15 min under H_{2} atmosphere. The resultant mixture was filtered and concentrated under vacuum to give $\mathbf{S 4}(287 \mathrm{mg}, 95 \%)$ as a colorless oil. S4: $R_{\mathrm{f}}=0.54$ (silica, petroleum ether: $E t O A c=15: 1$); IR (film): $v_{\max }=3428,3026$, $2871,1479,1285,987,875,750,522 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{p}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 4 \mathrm{H}), 1.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.5$, $151.9,145.5,142.3,132.7,128.6,128.5,128.5,126.0,107.8,60.8,60.6,55.8,37.4,32.4,25.2,21.5$ ppm; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{3}{ }^{+}$315.1955, found 315.1955.

To a stirred solution of $\mathbf{S 4}(200 \mathrm{mg}, 0.64 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.2 \mathrm{~mL})$ were added $\mathrm{BBr}_{3}(5.76 \mathrm{~mL}, 1$ $\mathrm{mol} / \mathrm{L}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.76 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 2 h before the resultant mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with brine $(30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum to give $\mathbf{1 1 a}(168 \mathrm{mg}, 97 \%)$ as a pale yellow oil. 11a: $R_{\mathrm{f}}=0.17$ (silica, petroleum ether: $\mathrm{EtOAc}=6: 1$); IR (film): $v_{\max }=3424,2872,1949$, 1496, 1446, 1208, 1108, 844, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , methanol-d4): $\delta=7.18(\mathrm{~m}, 3 \mathrm{H}), 7.09$ (m, 2H), $6.09(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.63(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, methanol-d 4): $\delta=150.1,146.4,143.5,136.2,129.3,129.1,128.4,126.6,120.6$,
108.2, 37.3, 33.2, 26.1, 21.1 ppm ; HRMS (m/z): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3}^{-}$271.1340, found 271.1345.

To a stirred solution of $\mathbf{1 1 a}(90 \mathrm{mg}, 0.33 \mathrm{mmol})$ in THF (1.65 mL) were added $\mathrm{Ag}_{2} \mathrm{O}(115 \mathrm{mg}, 0.5$ $\mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 10 min . The resultant mixture was filtered, and concentrated under vacuum to give 11b ($87.5 \mathrm{mg}, 98 \%$) as a yellow solid. 11b: $R_{\mathrm{f}}=$ 0.53 (silica, petroleum ether: $\mathrm{EtOAc}=20: 1$); IR (film): $v_{\max }=3451,3085,2874,1454,1303,982$, 895, $750,725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{~s}$, $1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=187.5,184.3,150.9,143.4,140.4,135.4,128.7,128.5,126.6$, 125.6, 33.9, 30.2, 24.2, 20.0 ppm ; H RMS (m/z): [M-H] calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}^{-}$269.1183, found 269.1189. Melting point: $101-103{ }^{\circ} \mathrm{C}$

To a stirred suspension of $\mathbf{1 1 a}(19.65 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{MeOH}(0.1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was added $\mathrm{KOH}(32.38 \mathrm{mg}, 0.58 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 5 min before the resultant mixture was added $\mathbf{1 1 b}(13 \mathrm{mg}, 0.48 \mathrm{mmol})$ in MeOH $(0.1 \mathrm{~mL})$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 30 min before the resultant mixture was quenched with $1 \mathrm{NHCl}(5 \mathrm{~mL})$ The mixture so obtained was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$ The combined organic phases were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (6:1) to give 3a ($24 \mathrm{mg}, 93 \%$) as a yellow oil. 3a: $R_{\mathrm{f}}=0.26$ (silica,
petroleum ether:EtOAc $=20: 1$); IR (film): $v_{\max }=3400,3087,2875,1455,1256,1031,750,680,531$ $\mathrm{cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~m}, 4 \mathrm{H}), 3.23(\mathrm{p}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~d}, J=9.2,3.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{dd}, J=7.1,5.5 \mathrm{~Hz}$, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=185.3,183.3,150.9,141.4,140.8,140.2,128.7,128.3$, 126.6, 125.9, 34.4, 30.7, 24.6, 20.1, 20.0 ppm; HRMS (m/z): [M-H] calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{O}_{6}{ }^{-}$537.2283, found 537.2290. Melting point: $120-135{ }^{\circ} \mathrm{C}$

To a stirred suspension of $\mathbf{1}(23.52 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{MeOH}(0.05 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{~mL})$ was added $\mathrm{KOH}(24.91 \mathrm{mg}, 0.44 \mathrm{mmol})$ at $25{ }^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 5 min before the resultant mixture was added $\mathbf{1 1 b}(10 \mathrm{mg}, 0.37 \mathrm{mmol})$ in MeOH $(0.08 \mathrm{~mL})$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 30 min before the resultant mixture was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$. The mixture so obtained was extracted with $\operatorname{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (6:1) to give $\mathbf{4 a}(10.4 \mathrm{mg}, 54 \%)$ as a red solid. $\mathbf{4 a}: R_{\mathrm{f}}=0.33$ (silica, petroleum ether: $\mathrm{EtOAc}=6: 1$); IR (film): $v_{\max }=3747,3443,2852,1427,1315,1031,750,697,566$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, methanol- d_{4}): $\delta=7.35-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=8.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$, $1.26(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz , methanol- d 4): $\delta=189.0$, 185.1, 158.1, 154.3, 153.7, 144.7, 144.6, 142.9, 138.8, 135.5, 130.1, 129.7, 129.3, 129.2, 128.6, $127.9,127.3,126.9,126.7,123.0,114.70,105.4,35.0,31.1,26.2,25.7,21.1,20.9,20.5,20.3 \mathrm{ppm} ;$

HRMS (m/z): [M-H] calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{O}_{5}^{-5} 521.2333$, found 521.2341 . Melting point: $95-110{ }^{\circ} \mathrm{C}$

To a stirred suspension of 11a ($25 \mathrm{mg}, 0.092 \mathrm{mmol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN}) 6$ (30.22 $\mathrm{mg}, 0.092 \mathrm{mmol}), \mathrm{KOH}(15.45 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 5 min before the resultant mixture was quenched with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$ The combined organic phases were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (20:1) to give $\mathbf{3 a}(3 \mathrm{mg}$, 12%) as yellow solid and $\mathbf{1 1 b}(15.2 \mathrm{mg}, 70 \%)$ as a yellow soild.

To a stirred suspension of $\mathbf{1}(20 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(6.7 \mathrm{mg}, 0.04 \mathrm{mmol})$ in Toluene $(0.3 \mathrm{~mL})$ and $t \mathrm{BuOH}(0.1 \mathrm{~mL})$ was added TBHP $(43 \mu \mathrm{~L}, 5.5 \mathrm{~mol} / \mathrm{L}$ in decane, 0.24 mmol$)$ at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 1 h before the resultant mixture was quenched with brine (10 mL). The mixture so obtained was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum to give crude $\mathbf{1 2}(2.57 \mathrm{mg}, 12 \%$, NMR internal standard method, $5 \mu \mathrm{~L}$ m-xylene) as a red oil.

Figure 1.12 transforms into (\pm)-Carbocyclinone-534(6) in MeOD

To a stirred suspension of $11(10 \mathrm{mg}, 0.037 \mathrm{mmol})$ in $\mathrm{MeOH}(0.09 \mathrm{~mL})$ was added $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ ($12.18 \mathrm{mg}, 0.037 \mathrm{mmol}$), $\mathrm{KOH}(6.23 \mathrm{mg}, 0.11 \mathrm{mmol})$, TEMPO $(8.67 \mathrm{mg}, 0.055 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.09$ $\mathrm{mL})$ and $\mathrm{MeOH}(0.05 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 5 min before the resultant mixture was quenched with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) The combined organic phases were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (3:1) to give $\mathbf{3}(4.7 \mathrm{mg}, 47 \%)$ as a red solid. To a stirred suspension of $\mathbf{1 1}(10 \mathrm{mg}, 0.037 \mathrm{mmol})$ in $\mathrm{MeOH}(0.09 \mathrm{~mL})$ was added $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ ($12.18 \mathrm{mg}, 0.037 \mathrm{mmol}$), $\mathrm{KOH}(6.23 \mathrm{mg}, 0.11 \mathrm{mmol})$, $\mathrm{BHT}(12.23 \mathrm{mg}, 0.055 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.09$ $\mathrm{mL})$ and $\mathrm{MeOH}(0.05 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 5 min before the resultant mixture was quenched with $1 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine $(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (3:1) to give $\mathbf{3}(4.9 \mathrm{mg}, 49 \%)$ as a red solid.

Scheme 4. Synthesis of (\pm)-Carbocylinone- 534 analogue (S9)

To a stirred solution of $\mathbf{S 1}(755.37 \mathrm{mg}, 3.31 \mathrm{mmol})$ in dry THF $(8.5 \mathrm{~mL})$ were added $\mathrm{NaH}(189.11$ $\mathrm{mg}, 60 \%$ dispersion in mineral oil, 4.73 mmol) at $0^{\circ} \mathrm{C}$. The mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 30 min before $\mathbf{S 5}{ }^{[3]}(497 \mathrm{mg}, 2.36 \mathrm{mmol})$ in $\mathrm{THF}(2.4 \mathrm{~mL})$ was added. The resultant mixture was allowed to stir at $70{ }^{\circ} \mathrm{C}$ for 1 h before it was quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (30:1) to give $\mathbf{S 6}$ (550 mg , $82 \%)$ as a pale yellow solid. S6: $R_{\mathrm{f}}=0.4$ (silica, petroleum ether:EtOAc $=30: 1$); IR (film): $v_{\max }=$ 3080, 3043, 2856, 1462, 1403, 1225, 1131, 858, $723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.61(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=16.4,1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=154.4,152.3,145.4,137.8,128.8,128.7,128.4,127.6,126.6,123.3,121.0,102.0,61.4$, 60.5, 55.8, 9.2 ppm ; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3}{ }^{+}$285.1485, found 285.1481. Melting point: $49-53{ }^{\circ} \mathrm{C}$

To a stirred solution of $\mathbf{S 6}(300 \mathrm{mg}, 1.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.3 \mathrm{~mL})$ were added $\mathrm{BBr}_{3}(9.5 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 9.5 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 3 h before the resultant mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The mixture so obtained was extracted with $\mathrm{EtOAc}(3 \times$ 30 mL). The combined organic phases were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum to give $\mathbf{S} 7(245 \mathrm{mg}, 96 \%)$ as a yellow oil. $\mathbf{S 7}: R_{\mathrm{f}}=$ 0.6 (silica, petroleum ether:EtOAc $=1: 1$); IR (film): $v_{\max }=3433,2855,2955,1495,1453,1201$, $1120,878,748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}): $\delta=7.50(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}$, 1H), 2.09 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , methanol- d_{4}): $\delta=150.3,146.3,139.6,137.6,129.6,128.4$, 128.1, 127.8, 127.3, 124.7, 124.0, 113.5, 102.9, 9.3 ppm ; HRMS (m/z): [M-H] calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3}^{-}$ 241.0870, found 241.0870 .

To a stirred suspension of $\mathbf{S} 7(42 \mathrm{mg}, 0.17 \mathrm{mmol})$ in THF $(0.87 \mathrm{~mL})$ were added $\mathrm{Ag}_{2} \mathrm{O}(60.26 \mathrm{mg}$, 0.26 mmol) at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 10 min . The resultant mixture was filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (3:1) to give $\mathbf{S 8}(25 \mathrm{mg}, 60 \%)$ as a pale yellow oil. $\mathbf{S 8}: R_{\mathrm{f}}=0.65$ (silica, petroleum ether:EtOAc $=1: 1$); IR (film): $v_{\max }=3400,3084,2855,1451,1352,967,847,746,702$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}): $\delta=7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.42(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$
$\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz , methanol- d_{4}) $\delta=197.0,196.9,196.3,181.5,159.6,158.2,139.3,137.8$, 137.7, 133.3, 132.1, 129.7, 129.2, 129.1, 128.8, 127.8, 58.4, 52.7, 43.7, 30.8, 9.2, 8.4 ppm; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{O}_{6}{ }^{-}$479.1500, found 479.1503.

To a stirred solution of $\mathbf{S 8}(25 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{I}_{2}(26.41 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{CuBr}_{2}(5.81 \mathrm{mg}, 0.03$ mmol) in DMF (0.25 mL). The mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 3 h before the resultant mixture was quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ The mixture so obtained was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography with petroleum ether:EtOAc (2:1) to give $\mathbf{S 9}$ ($16.7 \mathrm{mg}, 67 \%$) as a pale yellow solid. S9: $R_{\mathrm{f}}=0.25$ (silica, petroleum ether: $\mathrm{EtOAc}=2: 1$); IR (film): $v_{\max }=3401,2952,2924$, 1497, 1451, 1282, 1239, 861, $747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , methanol-d 4): $\delta=7.26-7.13(\mathrm{~m}, 5 \mathrm{H})$, $7.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (dd, $J=5.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz , methanol-d4): $\delta=192.4,188.4,185.2,179.7,157.5,152.8,142.3,138.4,137.1,135.3,129.4,129.3$, 128.7, 128.4, 128.1, 127.9, 122.1, 118.7, 47.9, 47.3, 46.2, 43.4, 42.9, 41.1, 9.6, 8.1 ppm; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{O}_{6}{ }^{-}$477.1344, found 477.1346.

Melting point: $158-164{ }^{\circ} \mathrm{C}$

II DFT calculation

(a)
$\dagger \Delta \mathrm{G}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

(1)

Figure 2. Calculated energy profiles for the formation of (a) 19 and 19-exo and (b) the other regioisomers 19'-endo and 19'-exo at the SMD-(THF)-RI-PWPB95-D3-(BJ)/def2-QZVPP//SMD-(THF)- ω B97X-D/6-31G(d) level of theory. Computational Details:

Geometry optimizations and frequency calculations of stationary points were conducted at the SMD-(THF)- ω B97X-D/6-31G(d) level of theory using Gaussian 16 package ${ }^{[4]}$. Computations of single-point energy at the theoretical level of SMD-(THF)-RI-PWPB95-D3-(BJ)/def2-QZVPP ${ }^{[5,6]}$ were performed in ORCA program package ${ }^{[7]}$. PWPB95 is a spin-opposite-scaled double hybrid functional developed by Grimme ${ }^{[8]}$, along with RI approximation, SMD solvation module ${ }^{[5]}$, D3 dispersion correction and Becke-Johnsson damping (BJ) ${ }^{[9]}$ to provide reliable electronic energy. Auxiliary basis set def2/J $\mathrm{J}^{[10]}$ and def2-QZVPP/C ${ }^{[11]}$ were utilized to accelerate SCF and perturbation calculations respectively. Gibbs free energy was provided by Paton's GoodVibes ${ }^{[12]}$ where Grimme's quasi-harmonic approximation ${ }^{[13]}$ was utilized to correct entropy; meanwhile, enthalpy
was corrected by Head-Gordon's method ${ }^{[14]}$. 3D representations of molecular structures were generated by CYLview ${ }^{[15]}$. Electrostatic potential maps were displayed via PyMOL ${ }^{[16]}$.

Coordinates and energy
Single-point energy (hartree): -882.924015

Gibbs free energy corrected by GoodVibes (hartree): -882.675475

C
$-4.64417 \quad-1.34706 \quad 0.00001$

C
$-6.01947 \quad-1.13753 \quad 0.00029$
$-6.52535 \quad 0.159320 .00033$
$\begin{array}{llll}\mathrm{C} & -5.64645 & 1.24301 & 0.00008\end{array}$
$\begin{array}{llll}\text { C } & -4.27356 & 1.03408 & -0.00018\end{array}$

C

C

C
$-1.3142 \quad 0.34628 \quad 0.00001$
$\begin{array}{llll}\text { C } & 0.11033 & 0.01786 & -0.0002\end{array}$

C
$0.65652-1.21291 \quad-0.00053$

C
$2.11956-1.46233-0.00073$

O
$\begin{array}{lll}2.51287 & -2.62229 & -0.00076\end{array}$

C
$3.06421-0.32145-0.00027$

C
$2.52806 \quad 0.91595 \quad 0.00011$

O
$3.25584 \quad 2.03958 \quad 0.00059$

H

C
$1.0532 \quad 1.16829$
0.00006

O
$0.68417 \quad 2.33398 \quad 0.00065$

C
$4.54852-0.61018 \quad-0.00013$

C
$\begin{array}{lll}5.23308 & -0.0818 & -1.26816\end{array}$

H

H
$4.76221-0.48956-2.16938$
$5.18661 \quad 1.01054 \quad-1.32089$

H
$6.28834-0.37784-1.27448$

C
$5.2324-0.083271 .26889$

H
$6.2877 \quad-0.37914 \quad 1.27537$

H
$4.76114 \quad-0.49222 \quad 2.16937$

H
$5.185721 .00899 \quad 1.32294$
H

H

H
$-1.53395 \quad 1.40959 \quad 0.00057$

H
$-2.06232-1.61713-0.00099$

H
H
$-6.03462 \quad 2.2574 \quad 0.00009$

H

H
$-7.598230 .32801 \quad 0.00053$
$-6.69491 \quad-1.98803 \quad 0.00047$
H
$-4.25387-2.36189 \quad-0.00002$

TS-endo

Single-point energy (hartree): -1765.849862
Gibbs free energy corrected by GoodVibes (hartree): -1765.325536
C

$$
\begin{array}{lll}
-5.73137 & 0.77799 & 0.79422
\end{array}
$$

C

C

C

C

C

H

H

H

H

H

C

H

C

H

C

C

C

C

H

C

C

O

O
$-4.51415 \quad 1.47609 \quad 0.78116$
$-4.55055 \quad 2.87017 \quad 0.61872$
$-5.76125 \quad 3.53459 \quad 0.46524$
$-6.96225 \quad 2.82532 \quad 0.47168$
$-6.94293 \quad 1.44278 \quad 0.63839$
$-5.71907 \quad-0.30152 \quad 0.92216$
$\begin{array}{lll}-3.63084 & 3.44781 & 0.61939\end{array}$
$-5.76868 \quad 4.61386 \quad 0.34255$
$-7.90604 \quad 3.34911 \quad 0.35148$
$-7.87221 \quad 0.88046 \quad 0.64914$
$\begin{array}{lll}-3.27503 & 0.70189 & 0.924\end{array}$
$-3.40576-0.3529 \quad 1.13952$
$-2.02143 \quad 1.18505 \quad 0.79958$
$-1.8716 \quad 2.24028 \quad 0.5757$
$-0.78355 \quad 0.43732 \quad 0.92245$
0.442831 .120030 .85944
$-0.72756 \quad-0.98018 \quad 1.26046$
$1.65932 \quad 0.53841 \quad 1.50828$
$0.40535 \quad 2.2049 \quad 0.9268$
$0.61927 \quad-1.61651 \quad 1.48645$
$1.77887-0.92361 \quad 1.59175$
$2.5286 \quad 1.29322 \quad 1.92347$
$-1.69577-1.7252 \quad 1.43308$

O

0.52311	-2.93334	1.66394
-0.44298	-3.11519	1.63526

C
$-2.22524-2.83358-1.38723$

C

C

C
C
C

H

H
H
H

H
C
H
C
H
C

C

C

C
$2.35963 \quad 2.06244 \quad-0.97307$
H
C
$0.26461 \quad 1.7377 \quad-1.37198$
$3.8077 \quad 0.14476-1.24492$

C
$3.70668 \quad 1.45644 \quad-0.93747$

O
$2.19016 \quad 3.2705 \quad-0.90355$
O
$2.8742 \quad-1.85788 \quad-1.97188$

O
$4.96946-0.51671-1.2909$

H
$4.74259-1.42291 \quad-1.58484$

C
$3.12238-1.4908 \quad 2.00071$

C

C
$3.48349 \quad-2.82061 \quad 1.33212$
$3.2036-1.60364 \quad 3.53042$

H

H

H

H

H

H

H

C

C

C

H

H

H
H
H
H
$6.15924 \quad 0.87991$
0.39883
H
$6.43756 \quad 2.56012 \quad 0.88971$

TS-exo

Single-point energy (hartree): -1765.846837

Gibbs free energy corrected by GoodVibes (hartree): -1765.321653
C
3.835281 .805271 .42026

C
$2.4655 \quad 2.11006 \quad 1.37859$

C
$2.08098 \quad 3.45568 \quad 1.26019$

C
$3.03866 \quad 4.45946 \quad 1.20754$

C
$4.39634 \quad 4.14236 \quad 1.26166$

C
$4.79271 \quad 2.8112 \quad 1.3665$

H
$4.14548 \quad 0.76644 \quad 1.49936$

H
$1.02974 \quad 3.72099 \quad 1.19898$

H
$2.72645 \quad 5.49556 \quad 1.11585$

H
$5.14129 \quad 4.93126 \quad 1.2155$

H
$5.84759 \quad 2.55602 \quad 1.40397$

C
$1.510231 .0087 \quad 1.40425$

H

C
$1.96151 \quad 0.01963 \quad 1.35643$
$0.15953 \quad 1.11129 \quad 1.51894$

H
$-0.31155 \quad 2.07893 \quad 1.66739$

C
$-0.72523 \quad 0.01214 \quad 1.3303$

C
$-0.28488 \quad-1.27529 \quad 0.99612$

C
$-2.16647 \quad 0.25487 \quad 1.40707$

C
H

C

C

O
O

O

H

C

C

C

H

H

H

H

H

H

H

C

C

C
C
$-1.26155-2.41574 \quad 1.03164$
$0.70646-1.57481 \quad 1.32744$
$\begin{array}{lll}-3.10239 & -0.86317 & 1.05652\end{array}$
$\begin{array}{lll}-2.69754 & -2.13178 & 0.82814\end{array}$
$-0.84756-3.54615 \quad 1.2317$
$-2.67691 \quad 1.31798 \quad 1.75164$
$-4.38226-0.47538 \quad 1.03009$
$-4.36747 \quad 0.47352 \quad 1.27808$
$\begin{array}{lll}-3.62624 & -3.28484 & 0.51741\end{array}$
-4.41338 -3.04394 -0.7773
$-4.5593 \quad-3.59942 \quad 1.6946$
$\begin{array}{lll}-2.98294 & -4.15677 & 0.36478\end{array}$
$-3.73894 \quad-2.83847-1.61658$
$-5.00292 \quad-3.9328 \quad-1.02906$
$-5.10161 \quad-2.19898 \quad-0.67439$
$-3.98479-3.81424 \quad 2.60209$
$\begin{array}{lll}-5.23159 & -2.76088 & 1.90325\end{array}$
$-5.17226 \quad-4.47862 \quad 1.46506$
$-2.08099 \quad 3.45569-1.26025$
$-2.4655 \quad 2.11007 \quad-1.37858$
$-3.83528 \quad 1.80527-1.42019$
$-4.79271 \quad 2.81121 \quad-1.36644$

C
$-4.39634 \quad 4.14236 \quad-1.26167$

C
$-3.03866 \quad 4.45947 \quad-1.20761$
H

H

H
H
H

C

H

C
H

C

C

C
C

H

C
$3.10239-0.86316-1.05651$
C
O

O

O
H
C
$\begin{array}{llll}\mathrm{C} & 4.55931 & -3.5994 & -1.69464\end{array}$

C
4.41338 -3.04396 0.77727

H
$2.98295-4.15677-0.36483$

H
$3.98479-3.81419-2.60214$

H
$\begin{array}{lll}5.17226 & -4.4786 & -1.46512\end{array}$

H
$5.2316 \quad-2.76085 \quad-1.90327$

H
$3.73895-2.838521 .61656$

H
$\begin{array}{lll}5.10161 & -2.199 & 0.67438\end{array}$

H
$5.00293-3.93282 \quad 1.02901$

TS-endo'

Single-point energy (hartree): - 1765.839387

Gibbs free energy corrected by GoodVibes (hartree): -1765.315438
C

C

C

C
$\begin{array}{llll} & -4.7464 & -4.34082 & 0.23465\end{array}$

C
$\begin{array}{llll}-6.08106 & -3.94838 & 0.33289\end{array}$

C
$-6.39186 \quad-2.60418 \quad 0.52508$

H

H
$\begin{array}{lll}-2.69523 & -3.71605 & 0.22454\end{array}$
H
$\begin{array}{llll}-4.49744 & -5.38479 & 0.06737\end{array}$

H
$-5.37375 \quad-1.66194 \quad 0.62632$
$\begin{array}{lll}-4.02761 & -2.04586 & 0.54898\end{array}$
$-3.72839 \quad-3.40041 \quad 0.33658$
$-5.61976-0.61363 \quad 0.77859$
$-6.87394 \quad-4.68598 \quad 0.24983$

H

C
H

C

H

C

C

C

C

H

C

C

O

O

O

H

C

C

C

H

H

H

H
$\begin{array}{lll}-7.42866 & -2.28813 & 0.59523\end{array}$
$-2.98534 \quad-1.02003 \quad 0.68174$
$-3.323830 .00313 \quad 0.51958$
$-1.70215-1.25778 \quad 1.0092$
$-1.3687 \quad-2.27152 \quad 1.21237$
$-0.64933-0.25585 \quad 1.05605$
$-0.88574 \quad 1.12621 \quad 0.88392$
$0.66641-0.66989 \quad 1.53704$
$0.12531 \quad 2.11876 \quad 1.37374$
$-1.902661 .470881 .05243$
$1.748720 .36112 \quad 1.62574$
$1.52956 \quad 1.6925 \quad 1.52086$
$-0.23495 \quad 3.25665 \quad 1.63872$
$0.95771 \quad-1.80882 \quad 1.90644$
$2.94463-0.16582 \quad 1.90438$
$2.78283-1.12674 \quad 2.01337$
$2.58379 \quad 2.75285 \quad 1.75614$
$3.75403 \quad 2.64596 \quad 0.77221$
$3.06803 \quad 2.7395 \quad 3.21314$
$2.08611 \quad 3.71253 \quad 1.58576$
$3.41008 \quad 2.73823-0.26234$
$4.47327 \quad 3.45096 \quad 0.96255$
$4.27971 \quad 1.69120 .87309$

H

H

H

C

C

C

C

C

C

H

H

H

H

H
C

H

C

H
C

C

C

C

H
$3.58226 \quad 1.80275 \quad 3.45103$
$3.76801 \quad 3.56536 \quad 3.38453$
$-1.12667 \quad 4.11839-1.1409$
$-1.7639 \quad 2.87293-1.16302$
$-3.15904 \quad 2.82913-1.26979$
$-3.90234 \quad 4.00015 \quad-1.36808$
$-3.25737 \quad 5.23476-1.35588$
$-1.86968 \quad 5.28923-1.24154$
$-0.04891 \quad 4.18347 \quad-1.03297$
$-3.663 \quad 1.86531 \quad-1.28458$
$-4.98345 \quad 3.94825 \quad-1.45636$
$-3.83385 \quad 6.15201 \quad-1.43178$
$\begin{array}{lll}-1.36231 & 6.24914 & -1.2237\end{array}$
$-1.02689 \quad 1.58897 \quad-1.07248$
$-1.67578 \quad 0.72461 \quad-1.22117$
$0.29879 \quad 1.46337-1.52142$
$0.89171 \quad 2.34563-1.74117$
$0.94353 \quad 0.22447-1.53574$
$0.30669-0.95691 \quad-1.20887$
$2.41238 \quad 0.18437-1.71193$
$\begin{array}{lll}1.03547 & -2.23799 & -1.05693\end{array}$
$-0.76518 \quad-1.06649-1.30729$

C	3.13977	-1.07477	-1.36404
C	2.51599	-2.23362	-1.05246
O	0.38961	-3.26974	-0.92101
O	3.07438	1.1295	-2.11555
O	4.46891	-0.94485	-1.42294
H	4.63751	-0.02504	-1.71002
C	3.23453	-3.52371	-0.72743
C	4.17183	-3.97712	-1.85441
C	3.96961	-3.42414	0.61667
H	2.45225	-4.28081	-0.62231
H	3.63712	-4.04264	-2.8084
H	4.57318	-4.97034	-1.62354
H	5.01419	-3.29089	-1.97983
H	3.25975	-3.24567	1.43147
H	4.71205	-2.61919	0.60915
H	4.49071	-4.36398	0.83181

C
$4.81439 \quad 1.94222-1.46614$

C

C

H

H

H

H

H

C
H
C

H

C

C

C

C

H

C
C

O

O
O

H
$-1.98308 \quad-3.72688 \quad-0.92841$
$-1.06087 \quad-3.97286-1.14988$

C
$-4.48454-2.23945 \quad-0.41425$

C

C

H

H

H

H

H

H

H
C

C

C

C

C

C

H

H

H

H

H

C

H
$\begin{array}{lll}-4.44877 & -2.98461 & 0.92654\end{array}$
$-5.03993-3.12563-1.53716$
$-5.15863-1.38378-0.30817$
$\begin{array}{lll}-4.08822 & -2.33315 & 1.7312\end{array}$
$-5.45507 \quad-3.32603 \quad 1.19519$
$\begin{array}{lll}-3.79466 & -3.86087 & 0.87842\end{array}$
$-5.09545 \quad-2.57158 \quad-2.48049$
$-4.41295 \quad-4.00911 \quad-1.69377$
$-6.05056-3.46609-1.28364$
$-2.14432 \quad 3.52276 \quad 0.46583$
$-2.56479 \quad 2.28342 \quad 0.96154$
$-3.85806 \quad 2.162 \quad 1.47555$
$-4.70738 \quad 3.26351 \quad 1.51996$
$-4.27764 \quad 4.49574 \quad 1.0346$
$-2.99468 \quad 4.62175 \quad 0.50328$
$-1.1484 \quad 3.627660 .04095$
$-4.19771 \quad 1.1988 \quad 1.84708$
$-5.70773 \quad 3.15656 \quad 1.92892$
$-4.94131 \quad 5.35492 \quad 1.06385$
$-2.65722 \quad 5.57809 \quad 0.11469$
$-1.66548 \quad 1.10102 \quad 0.95518$
$-2.14069 \quad 0.18609 \quad 1.31136$

C $-0.31617 \quad 1.26267 \quad 1.31642$

H
$0.10121 \quad 2.25812 \quad 1.42899$

C
$0.55327 \quad 0.16801 \quad 1.45229$

C
$0.17373-1.13601 \quad 1.2515$

C
$2.00286 \quad 0.4521 \quad 1.58596$

C
$\begin{array}{lll}1.14237 & -2.2357 & 1.11305\end{array}$

H

C
$-0.86472 \quad-1.44374 \quad 1.30024$
$2.97039-0.652291 .31748$

C
$2.59214-1.92576 \quad 1.07085$

O
O
$2.45544 \quad 1.54921 \quad 1.87666$

O
$4.24806-0.25359 \quad 1.34742$

H

C

C

C

H

H

H

H

H

H

H

III References

(1) (a) Gao, J.; Zhang, Y.; Zheng, H.; Wang, C.; Liu, H.; Zhao, S. Advanced Materials Research 2011, 236-238, 2378-2382. (b) Zhang, Y.; Du, M.; Xie, H.; Song, H.; Song, Y.; Qu, H.; Yang, J. J. Chem. Res. 2015, 39, 154-158.
(2) (a) Majetich, G.; Zhang, Y.; Tian, X.; Britton, J. E.; Li, Y.; Phillips, R. Tetrahedron 2011, 67, 10129-10146. (b) Deng, J.; Li, R.; Luo, Y.; Li, J.; Zhou, S.; Li, Y.; Hu, J.; Li, A. Org. Lett. 2013, 15, 2022-2025.
(3) Srinivasarao, T.; Souvagya, B.; Cox, G. A.; Mans, D. J.; Lim, H. J.; RajanBabu, T. V. J. Am. Chem. Soc. 2018, 140, 9868-9881.
(4) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. T.; Morokuma, K.; Farkas, O.; Foresman, J. B.; and Fox, D. J. Gaussian 16, revision A.03; Gaussian, Inc.: Wallingford CT, 2016.
(5) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.
(6) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
(7) Neese, F.; WIREs Comput. Mol. Sci. 2012, 2: 73-78.
(8) Goerigk, L.; Grimme, S. J. Chem. Theory Comput. 2011, 7, 291-309.
(9) (a) Grimme, S.;. Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104-154122. (b).

Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456-1465.
(10) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
(11) Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W. Theor. Chem. Acc. 2007, 117, 587-597.
(12) Luchini, G.; Alegre-Requena, J. V.; Guan, Y.; Funes-Ardoiz, I.; Paton, R. S.; GoodVibes: GoodVibes 3.0.1, 2019; http://doi.org/10.5281/zenodo.595246.
(13) Grimme, S. Chem. Eur. J. 2012, 18, 9955-9964.
(14) Li, Y.; Gomes, J.; Sharada, S. M.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. C 2015, 119, 1840-1850.
(15) Legault, C. Y.; CYLview, 1.0b; Université de Sherbrooke: Sherbrooke (Québec) Canada, 2009; http://www.cylview.org.
(16) The PyMOL Molecular Graphics System, Version 1.7.2.1, Schrödinger, LLC.

IV. Conditions screened for the synthesis of (\pm)-carbocyclinone-534 (6)

1. 6π electrocyclization and Diels-Alder approachs

Entry	Condition	Product (\%)
1	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{DCM}, 0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	Decomposed
2	Toluene, $80^{\circ} \mathrm{C}-170^{\circ} \mathrm{C}$	Decomposed
3	$\mathrm{pH}=8$ buffer, THF, $60^{\circ} \mathrm{C}$	Decomposed
4	Hg lamp (250W), 5 min	Decomposed
5	Benzene, sunlight, 2h	Decomposed
6	Neat, $80^{\circ} \mathrm{C}$	Decomposed

2. The base stability test of compound $\mathbf{1 2}$

Entry	Condition	Solvent	Temperature	Product (\%)
1	$\mathrm{KOH}(1 \mathrm{eq})$	$\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=1: 1$	$25^{\circ} \mathrm{C}$	Decomposed
2	$\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{eq})$	THF	$25^{\circ} \mathrm{C}$	Decomposed
3	$\mathrm{NaOMe}(1 \mathrm{eq})$	MeOH	$25^{\circ} \mathrm{C}$	Decomposed

3. Dehydrogenation and Diels-Alder approachs

(\pm)-carbocyclinone-534 (6)

Entry	Condition	Solvent	Concentrations	Product (\%)
1	$\mathrm{SeO}_{2}(2 \mathrm{eq}), 80^{\circ} \mathrm{C}, 3 \mathrm{~h}$	1,4-dioxane: $\mathrm{THF}=1: 1$	$0.2 \mathrm{~mol} / \mathrm{L}$	Decomposed
2	$\operatorname{IBX}(1.5 \mathrm{eq}), 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$	Toluene: $\mathrm{DMSO}=2: 1$	$0.2 \mathrm{~mol} / \mathrm{L}$	Decomposed
3	$\mathrm{Sc}(\mathrm{OTf})_{3}(1 \mathrm{eq}), 25^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}, 3 \mathrm{~h}$	DCM	$0.1 \mathrm{~mol} / \mathrm{L}$	Decomposed
4	DBU, air, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}$	-	$0.1 \mathrm{~mol} / \mathrm{L}$	Decomposed
5	$\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{eq}), 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$	DCM	$0.2 \mathrm{~mol} / \mathrm{L}$	Decomposed
6	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1 \mathrm{eq}), 0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}, 4 \mathrm{~h}$	DCM	$0.2 \mathrm{~mol} / \mathrm{L}$	Decomposed
7	$\mathrm{MnO}_{2}(2 \mathrm{eq}), 25^{\circ} \mathrm{C}, 30 \mathrm{~min}$	THF	$0.1 \mathrm{~mol} / \mathrm{L}$	Decomposed
8	$\operatorname{DDQ}(2 \mathrm{eq}), 25^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}, 8 \mathrm{~h}$	DCM	$0.2 \mathrm{~mol} / \mathrm{L}$	No reaction
9	Neat, air, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$	-	-	No reaction
10	$\mathrm{Pd}(\mathrm{OAc})_{2}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$	THF	$0.2 \mathrm{~mol} / \mathrm{L}$	No reaction
11	$\operatorname{DDQ}(2 \mathrm{eq}), 120^{\circ} \mathrm{C}, 3 \mathrm{~h}$	Toluene	$0.2 \mathrm{~mol} / \mathrm{L}$	No reaction

V. Comparison of the Spectra and Data of Natural and Synthetic (\pm)-carbocyclinone-534 and duotap-520.

1. Comparison of the Spectra Natural and Synthetic (\pm)-carbocyclinone-534 and duotap-520

Natural duotap-520
${ }^{13}$ C NMR spectrum
(methanol-d4, 151 MHz)

2. Comparison of the Data of Natural and Synthetic Carbocyclinone-534 and Duotap-520

Table 1. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectroscopic data (methanol- d_{4}) of natural and synthetic (\pm)-Carbocyclinone-534.

(\pm)-carbocyclinone-534 (6)

$\begin{gathered} \text { Natural } \\ \delta_{\mathrm{H}}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 600 \mathrm{MHz} \end{gathered}$		Synthetic$\delta_{\mathrm{H}}[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$400 MHz		$\begin{gathered} \text { Err } \\ \text { (Natural-Synthetic) } \\ \Delta \delta_{\mathrm{H}}(\mathrm{ppm}) \end{gathered}$
7.22-7.16	$2 \mathrm{H}, \mathrm{m}$	7.22-7.17	$2 \mathrm{H}, \mathrm{m}$	-
7.22-7.16	$2 \mathrm{H}, \mathrm{m}$	7.22-7.17	$2 \mathrm{H}, \mathrm{m}$	-
7.15-7.11	$1 \mathrm{H}, \mathrm{m}$	7.15-7.11	$1 \mathrm{H}, \mathrm{m}$	-
7.09-7.03	$3 \mathrm{H}, \mathrm{m}$	7.09-7.02	$3 \mathrm{H}, \mathrm{m}$	-
6.86-6.81	$2 \mathrm{H}, \mathrm{m}$	6.85-6.83	$2 \mathrm{H}, \mathrm{m}$	-
4.44	$1 \mathrm{H}, \mathrm{d}, 4.5$	4.44	$1 \mathrm{H}, \mathrm{d}, 4.5$	0
4.09	$1 \mathrm{H}, \mathrm{dt}, 4.81 .0$	4.09	$1 \mathrm{H}, \mathrm{m}$	0
3.95	$1 \mathrm{H}, \mathrm{dd}, 4.72 .3$	3.96	$1 \mathrm{H}, \mathrm{dd}, 4.92 .5$	-0.01
3.42	$1 \mathrm{H}, \mathrm{h}, 7.0$	3.41	$1 \mathrm{H}, \mathrm{h}, 6.9$	+0.01
3.12	1 H , brs	3.14	1 H , brs	-0.02
2.97	$1 \mathrm{H}, \mathrm{h}, 7.0$	2.97	$1 \mathrm{H}, \mathrm{h}, 7.1$	0
1.38	$6 \mathrm{H}, \mathrm{d}, 7.0$	1.37	$6 \mathrm{H}, \mathrm{d}, 7.0$	+0.01
1.09	$3 \mathrm{H}, \mathrm{d}, 7.0$	1.08	$3 \mathrm{H}, \mathrm{d}, 7.1$	+0.01
1.02	$3 \mathrm{H}, \mathrm{d}, 7.0$	1.02	$3 \mathrm{H}, \mathrm{d}, 7.0$	0

Table 2. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectroscopic data (methanol-d4) of natural and synthetic (\pm)-Carbocyclinone-534

(\pm)-carbocyclinone-534 (6)

	Synthetic δ_{C} (ppm) 126 MHz	Err (Natural-Synthetic) $\Delta \delta_{\mathrm{C}}$ (ppm)
190.7	190.8	-0.1
187.9	187.8	+0.1
183.4	183.4	0
178.9	178.9	0
155.8	155.7	+0.1
150.9	150.9	0
141.9	141.9	0
137.0	137.0	0
135.7	135.7	0
133.2	133.2	0
128.8	128.9	-0.1
127.9	127.9	0
127.7	127.8	-0.1
127.3	127.3	0
127.0	127.0	0
126.6	126.7	-0.1
126.5	126.5	0
125.7	125.8	-0.1
46.7	46.7	0
45.6	45.6	0
44.5	44.6	-0.1

41.9	41.9	0
41.6	41.6	0
40.0	40.3	-0.3
24.7	24.8	-0.1
24.5	24.5	0
18.8	18.9	-0.1
18.8	18.8	0
18.7	18.7	0
18.3	18.3	0

Table 3. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectroscopic data (methanol- d_{4}) of natural and synthetic Duotap- 520 (4).

Table 4. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectroscopic data (methanol- d_{4}) of natural and synthetic Duotap- 520 (4).

Natural	Synthetic	Err
$\delta_{\mathrm{C}}(\mathrm{ppm})$	$\delta_{\mathrm{C}}(\mathrm{ppm})$	(Natural-Synthetic)
151 MHz	126 MHz	$\Delta \delta_{\mathrm{C}}(\mathrm{ppm})$
187.3	187.4	-0.1
183.8	184.0	-0.2
156.9	157.0	-0.1
152.6	152.7	-0.1
141.1	141.2	-0.1
138.7	138.7	0
137.4	137.5	-0.1
136.1	136.1	0
134.5	134.5	0
129.0	129.0	0
128.2	128.4	-0.2
128.2	128.3	-0.1
128.2	128.2	0
127.1	127.1	0
126.5	126.5	0
126.5	126.5	0
126.4	126.5	-0.1
125.8	125.9	-0.1
125.4	125.3	+0.1
121.6	121.6	0
120.5	120.6	-0.1
113.4	113.5	-0.1
104.3	104.3	0

24.6	24.7	-0.1
24.4	24.4	0
19.5	19.6	-0.1
19.5	19.5	0
19.0	19.1	-0.1
19.0	18.9	+0.1

VI ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds

${ }^{1} \mathrm{H}$ NMR Spectrum of $1\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

$\stackrel{ \pm}{\stackrel{+}{+}}$
$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\dot{\sim}} \underset{\sim}{\dot{\sim}} \underset{\sim}{\underset{\sim}{f}} \underset{\sim}{q}$
$\stackrel{\infty}{\sim}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\circ}{6}$
$\stackrel{\circ}{\square}$

tapinarof(1)

${ }^{1} H$ NMR Spectrum of $3\left(400 \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

```
N~
N^N人NへN
```

$\underset{\sim}{\sim}$
$\xrightarrow{\sim}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

m	
\cdots	
∞	
∞	
\cdots	∞
1	

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										(p										

${ }^{1} H$ NMR Spectrum of $S 2\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underbrace{n}_{n} \underset{\sim}{m}$

s2

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathrm{S} 2\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\circ}{i}$
i
$\underset{N}{N}$
$\underset{\sim}{N}$
N
$\stackrel{1}{1}$

S2

s3

$\stackrel{\infty}{\stackrel{\circ}{i}}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathrm{S} 3\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1}$ ($\mathbf{4 0 0} \mathbf{~ M H z}$, methanol- d_{4})

$\stackrel{\infty}{\sim}$

$\underbrace{n \times m}$

11

${ }^{13}$ C NMR Spectrum of 11 (101 MHz , methanol- d_{4})

11

${ }^{1} \mathrm{H}$ NMR Spectrum of 12 ($\mathbf{4 0 0} \mathbf{~ M H z}$, methanol-d 4)

${ }^{1}$ H NMR Spectrum of (\pm)-Carbocyclinone-534 (6) (400 MHz, methanol- d_{4})

${ }^{13}$ C NMR Spectrum of (\pm)-Carbocyclinone-534 (6) (126 MHz , methanol-d $\mathbf{4}_{4}$)

(\pm)-carbocyclinone-534 (6)

${ }^{1} H$ NMR Spectrum of duotap-520 (4) (400 MHz, methanol-d 4)

${ }^{13} \mathrm{C}$ NMR Spectrum of duotap-520 (4) ($\mathbf{1 2 6} \mathrm{MHz}$, methanol-d \mathbf{d}_{4}

120	210	200	190	180	${ }_{170}$	160	150	140	130	120		100	${ }_{90}$	${ }_{80}$	70	60	50	10	30	20	10	
220	210	200	190	180	170	160	150	140	130	120	$\mathrm{f}_{1}{ }^{110}$	100	90	80	70	60	50	40	30	20	10	o

11b

${ }^{13}$ C NMR Spectrum of $11 \mathrm{~b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\underset{\sim}{\infty}$
$\underset{\sim}{\infty}$
$\underset{\sim}{\infty}$
$\underset{\sim}{\infty}$

11b

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 a}\left(400 \mathrm{MHz}\right.$, methanol- $\left.\mathrm{d}_{4}\right)$

${ }^{13}$ C NMR Spectrum of 4 a (126 MHz , methanol- d_{4})

4a

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{S 4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{ \pm}{2}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{S} 4\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{2}{\stackrel{2}{0}}$

$$
\left.\begin{array}{l}
\text { I8.ç } \\
\varepsilon 9 \cdot 09 \\
18.09
\end{array}\right\}
$$

s4

		1	1	1		1	1	11	10	1	80	1	1	1	1		1	1
190	180	170	160	150	140	130	120	110	100 f1	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR Spectrum of $11 \mathrm{a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $11 \mathrm{a}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

S6

No
N
N
N $\underbrace{}_{\substack{\mathrm{N} \\ \text { Nu }}}$ $\underbrace{}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathrm{S} 6\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{aligned}
& \stackrel{n}{a}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR Spectrum of S7 (400 MHz , methanol-d $\left.\mathbf{d}_{4}\right)$

```
い
\(\stackrel{8}{0}\)


\section*{\({ }^{13}\) C NMR Spectrum of S7 ( 126 MHz , methanol-d4)}
\begin{tabular}{|c|c|}
\hline ก ก & ¢n¢ \\
\hline \% &  \\
\hline T & ノノ \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 170 & \({ }_{160}\) & 150 & 140 & 130 & 120 & 110 & \({ }_{100}\) & \({ }_{90}\) & \({ }_{80}\) & 70 & 60 & 50 & 40 & 30 & \({ }^{1}\) & 10 \\
\hline
\end{tabular}

\section*{\({ }^{1} \mathrm{H}\) NMR Spectrum of S8 ( 400 MHz , methanol-d \(\left.\mathbf{d}_{4}\right)\)}



S8

\({ }^{13}\) C NMR Spectrum of \(\mathbf{S 8}\) ( 126 MHz , methanol- \(\mathrm{d}_{4}\) )



S8



\section*{\({ }^{1}\) H NMR Spectrum of S9 (400 MHz, methanol-d \({ }_{4}\) )}
\[
\begin{aligned}
& \stackrel{\infty}{\infty} \underset{\substack{\infty \\
i}}{\stackrel{\rightharpoonup}{i}}
\end{aligned}
\]

s9

\({ }^{13}\) C NMR Spectrum of S9 ( 126 MHz , methanol-d 4 )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & , & 1 & 1 & 1 & & 1 & 1 & & 1 & 1 & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

\section*{VII X-Ray Crystallography Data for compounds 12(CCDC 2014357)}

The method for culturing the crystal: dissolving 3 mg of the compound in a solution of \(D C M / n\)-hexane \(=1: 2\), and volatilizing at room temperature for two days.

Crystal data for d19131: \(\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{6}, M=536.59, a=18.7778(6) \AA, b=16.0317(5) \AA, c=\) \(20.4129(7) \AA, \alpha=90^{\circ}, \beta=116.347(2)^{\circ}, \gamma=90^{\circ}, V=5506.8(3) \AA^{3}, T=100 .(2) \mathrm{K}\), space group \(C 12 / c 1, Z=8, \mu(\mathrm{Cu} \mathrm{K} \alpha)=0.712 \mathrm{~mm}^{-1}, 34913\) reflections measured, 5444 independent reflections ( \(R_{\text {int }}=0.1338\) ). The final \(R_{I}\) values were \(0.0957\left(I>2 \sigma(I)\right.\) ). The final \(w R\left(F^{2}\right)\) values were \(0.2509(I>\) \(2 \sigma(I)\) ). The final \(R_{l}\) values were 0.1278 (all data). The final \(w R\left(F^{2}\right)\) values were 0.2914 (all data). The goodness of fit on \(F^{2}\) was 1.027.


View of the molecules in an asymmetric unit.
Displacement ellipsoids are drawn at the \(30 \%\) probability level.


View of a molecule of dl9131 with the atom-labelling scheme.
Displacement ellipsoids are drawn at the \(30 \%\) probability level.


View of the pack drawing of d19131.
Hydrogen-bonds are shown as dashed lines.
Table 1. Crystal data and structure refinement for d19131_0m.
\begin{tabular}{lll} 
Identification code & global & \\
Empirical formula & C 34 H 32 O 6 & \\
Formula weight & 536.59 & \\
Temperature & \(100(2) \mathrm{K}\) & \\
Wavelength & \(1.54178 \AA\) & \\
Crystal system & Monoclinic & \\
Space group & \(\mathrm{C} 12 / \mathrm{c} 1\) & \(\alpha=90^{\circ}\).
\end{tabular}
\begin{tabular}{lll}
\hline & \(\mathrm{b}=16.0317(5) \AA\) & \(\beta=116.347(2)^{\circ}\). \\
& \(\mathrm{c}=20.4129(7) \AA\) & \(\gamma=90^{\circ}\). \\
Volume & \(5506.8(3) \AA^{3}\) \\
Z & 8 \\
Density (calculated) & \(1.294 \mathrm{Mg} / \mathrm{m}^{3}\) \\
Absorption coefficient & \(0.712 \mathrm{~mm}^{-1}\) \\
F(000) & 2272 \\
Crystal size & \(0.450 \times 0.060 \times 0.050 \mathrm{~mm}^{3}\) \\
Theta range for data collection & 3.81 to \(72.38^{\circ}\). \\
Index ranges & \(-23<=\mathrm{h}<=20,-19<=\mathrm{k}<=19,-23<=1<=25\) \\
Reflections collected & 34913 \\
Independent reflections & \(5444[\mathrm{R}(\) int \()=0.1338]\) \\
Completeness to theta \(=72.38^{\circ}\) & \(99.9 \%\) \\
Absorption correction & Semi-empirical from equivalents \\
Max. and min. transmission & 0.96 and 0.48 \\
Refinement method & Full-matrix least-squares on \(\mathrm{F}^{2}\) \\
Data / restraints / parameters & \(5444 / 490 / 481\) \\
Goodness-of-fit on \(\mathrm{F}^{2}\) & 1.027 \\
Final R indices [I>2sigma(I)] & \(\mathrm{R} 1=0.0957, \mathrm{wR} 2=0.2509\) \\
R indices (all data) & \(\mathrm{R} 1=0.1278, \mathrm{wR} 2=0.2914\) \\
Extinction coefficient & \(0.0010(2)\) \\
Largest diff. peak and hole & 0.388 and -0.330 e. \(\AA^{-3}\) \\
\hline
\end{tabular}```

