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Core Simulations

Table S1: Core simulation design parameters

ID µlo (µEO) µhi (µEO) NA NB εAB (kBT ) φA γ
1 1.679 1.798 5 33 0.975 0.950 1
2 1.728 2.230 14 36 0.518 0.104 1
3 1.711 2.038 21 29 0.632 0.741 1
4 1.345 1.546 19 34 0.878 0.106 0
5 1.522 1.996 20 32 0.544 0.020 1
6 1.607 2.064 8 25 1.214 0.528 0
7 1.650 2.026 4 36 1.015 0.440 1
8 1.680 2.110 27 40 0.770 0.476 0
9 1.524 2.115 23 40 0.805 0.454 1
10 1.582 2.133 22 29 0.540 0.155 0
11 1.720 2.235 28 31 1.096 0.844 0
12 1.297 1.864 23 39 1.119 0.922 0
13 1.662 2.123 1 34 1.158 0.762 1
14 1.362 2.249 19 22 0.637 0.189 1
15 1.689 1.809 16 27 1.003 0.392 0
16 1.517 1.759 13 38 1.076 0.098 1
17 1.684 2.234 3 37 1.124 0.889 0
18 1.302 1.950 4 29 0.896 0.668 0
19 1.700 1.999 12 39 0.606 0.249 0
20 1.283 1.445 4 15 1.034 0.179 0
21 1.429 2.196 19 39 0.927 0.106 1
22 1.603 1.812 2 37 1.140 0.779 0
23 1.531 1.884 23 32 0.594 0.599 1
24 1.642 2.108 6 18 1.196 0.371 1
25 1.749 2.200 29 34 0.813 0.263 0
26 1.508 1.687 26 29 0.751 0.694 0
27 1.602 2.244 21 28 1.071 0.453 1
28 1.454 1.993 2 38 0.538 0.035 0
29 1.413 1.730 17 28 0.804 0.483 1

As noted in the main text of this work, we simulated 29 core simulations as a training set

with random design parameters. We present those parameters in Table S1. Each simulation
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contained approximately 2000 polymer beads and enough cations and anions to maintain

electroneutrality and a monomer/cation ratio of 16.

Figure S1: (A) Anionic and (B) cationic mean-squared displacements (MSDs) as functions of
time. (C) The dynamic structure factor S(q,t) as a function of time. Each curve corresponds
to a core simulation, whose number is specified in the legend. In panels A and B, the black
dot-dashed line corresponds to a line. Most MSDs and all S(q,t) converge in the short time
frame sampled.

In Figure S1, we plot the mean-squared displacements (MSDs) and dynamic structure

factors S(q,t) of a sample of randomly chosen core simulations. It can be seen that all anionic

MSDs (Figure S1A) and cationic MSDs (Figure S1B) reach linearity (or nearly so), shown

by the black dot-dashed line. In addition, S(q,t) decays to 0 quickly for all core simulations
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shown. For both measures, they approach convergence within the short sampling time

span, which initially suggested that they may serve as proxy measures for conductivity and

viscosity, as discussed in the main text.

Bayesian Optimization

Gaussian Process Regression

Bayesian optimization uses an underlying statistical model to iteratively optimize an ex-

pensive, black-box objective function f(x), where x is a vector of the input parameters for

the objective function. Our chosen function and input parameter vector are described in

the main text of this work. The prior distribution of f(x) is assumed to be described as a

Gaussian process:

f(x) ∼ N (µ(x), k(x,x’)) (S1)

where N is a normal distribution with mean function µ(x) describing the expected value

of fp(x) and k(x,x’) is the kernel describing the covariance of fp(x) between points in the

parameter space x and x’. Without significant loss, the mean function for all optimizations is

assumed to be 0. The covariance function chosen for this work was the Mátern 5/2 covariance

function:

k(x,x′) = σ2

(
1 +
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5r +
5

3
r2
)

exp
(
−
√

5r
)

(S2)

where σ2 is the Mátern scaling parameter. The Mátern 5/2 covariance function was chosen

based on the assumption that the kernel was twice-differentiable on the domain of x. r is

the distance between x and x’ weighted by their corresponding length scales:

r2 = (x− x’)>diag(`)−2(x− x’) (S3)
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where diag(`)−2 is a diagonal matrix containing length scales that set the relative importance

of each parameter in x.1

To ensure that the model learns from training sets to act as a predictive posterior for the

optimization procedure, the prior distribution must be conditioned, according to Bayes’ rule.

Let f = (f(x1), . . . , f(xn)) and f∗ = (f(x∗1), . . . , f(x∗m)) be vectors of training and test sets,

respectively, of function evaluations of f(x). Let X = (x1, . . . ,xn) and X∗ = (x∗1, . . . ,x
∗
m)

be matrices of the input parameters. Finally, let K(X,X) + σ2
nI, K(X,X∗), K(X∗, X) =

K(X,X∗)>, and K(X∗, X∗) be matrices containing the covariances between training and

test sets. It is important to note the σ2
nI term, which is a diagonal matrix that incorporates

measurement uncertainty into the covariance matrix of the training set. Such a term builds in

an assumption of imperfeect measurement of the objective function, slows the convergence

of the Gaussian process via conditioning (see Equations S4–S7 below), and increases the

likelihood of exploration during the optimization process (see S10 and subsequent discussion

below). The posterior (conditional) probability distribution for the test set p(f∗|f , X,X∗)

follows from application of Bayes rule:

p(f∗|f) =
p(f∗, f)

p(f)
(S4)

where p(f∗, f) is the joint probability distribution between f∗ and f and p(f) is the marginal

probability distribution for the training set f . The joint probability distribution is a Gaussian

process of the following form:

 f

f∗

 ∼ N
0,

K(X,X) + σ2
nI K(X,X∗)

K(X∗, X) K(X∗, X∗)


 (S5)
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and the marginal probability distribution is a Gaussian process of the form:

f ∼ N (0, K(X,X) + σ2
nI) (S6)

It can be shown, using Equations S4–S6, that the posterior distribution is a normal distri-

bution of the form:

f∗|f ∼ N (K(X∗, X)(K(X,X) + σ2
nI)−1f,

K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2
nI)−1K(X,X∗))

(S7)

It can be seen that the new mean function µ = K(X∗, X)(K(X,X) + σ2
nI)−1f and the new

kernel function K = K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2
nI)−1K(X,X∗).

Acquisiton Function

The optimization procedure relies on determining the input parameters x∗ to evaluate via

simulation. The common means by which such a goal is achieved is through the use of an

acquisition function a(x∗):

a(x∗) =

∫ ∞
−∞

u(x∗)p(f ∗|f)df ∗ (S8)

If the goal is to minimize f ∗(x∗), then u(x∗) is called a loss function. In this work, we choose

the expected improvement (EI) loss function:

u(x∗) = max(0, f ′ − f ∗(x∗)) (S9)

where f ′ is the minimum function evaluation in the optimization. Evaluating the Equation

S8 using the EI loss function yields the EI acquisition function:

a(x∗) = (f ′ − µ(x∗))Φ(f ′|f) + k(x∗,x∗) p(f ′|f) (S10)
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where Φ is the cumulative distribution function of the posterior, µ is the mean function

described at the end of the prior paragraph, and k is the kernel described in the prior sec-

tion. Choice of the appropriate x∗ occurs at the maximum of a(x∗). As can be seen, the

EI acquisition function consists of two terms. The first drives the reduction of the mean

function µ(x∗). The second term drives an increase in the variance k(x∗,x∗). As a result,

the optimization will naturally balance between evaluating the objective function at x∗ that

further reduces the objective function itself (exploitation) or reduce its uncertainty (explo-

ration). Advanced sampling of the acquisition function by the method of local penalization

was used in this work.2
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Optimization Results

Panel NA NB
μlo
(μEO)

μhi
(μEO)

εAB
(kBT)

φA γ

A 40 40 1.77 1.77 1.00 1.00 1

B 17 28 1.41 1.73 0.80 0.48 1

C 39 40 2.19 2.22 1.09 0.68 1

(D)

Figure S2: (A–C) Squared radius of gyration of a sample of runs of the optimzation simula-
tions for wD = 0.5 as functions of time. (D) Table of parameters for this sample. Equilibra-
tion step shown in blue and production step in orange.

As discussed in the main text, we calculated the radius of gyration R2
g(t). It can be seen

that R2
g(t) quickly tends to an equilibrium value (see panels A and C) or fluctuates about a

constant value (see panel B), even for electrolytes that are slightly incompatible (panel C).
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Curve NA NB
μlo
(μEO)

μhi
(μEO)

εAB
(kBT)

φA γ

1 1 40 1.25 2.20 0.60 0.62 0

2 40 40 1.84 1.89 0.50 0.68 1

3 40 40 1.81 1.81 1.00 1.00 1

4 1 40 1.29 2.19 0.51 0.19 1

5 1 40 1.77 1.77 1.00 0.00 1

6 40 40 1.79 1.79 1.00 1.00 1

(A) (B)

Figure S3: (A) Energies of random sample of production runs of the optimization simulations
for wD = 0.5. (B) Design parameters corresponding to each curve in (A). One can see a flat
energy profile for each simulation.

As discussed in the main text, we calculated the energies of a sample of the production

runs of the optimization simulations. It can be seen that the energy profiles are relatively flat,

suggesting a steady state from which short-run proxy performance metrics can be reasonably

calculated.

Table S2: Number of simulations run per wD value

wD # Iterations Iteration @ Max. # Sims Run
0.0 15 10 45
0.1 15 6 45
0.3 15 9 45
0.5 20 5 60
0.6 31 20 93
0.7 28 19 84
0.9 15 6 45
1.0 20 12 60

Total (w/o core) 159 N/A 477
Total (w/ core) 160 N/A 506
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As discussed in the main text, Table S2 summarizes the optimization process. It shows

the number of iterations, the iteration at which fp maximized, and number of simulations

run for each wD.

Figure S4: Shear modulus G(t). It can be seen that materials optimized with a mechanical
emphasis have plateau G(t) at intermediate times, suggesting that these materials are at
least viscoelastic.

In Figure S4, it can be seen that polymer electrolytes with high emphasis on their me-

chanical properties (low wD) seem to be viscoelastic (plateau shear moduli G(t) at long

times). In combination with results shown in the main text of this work, these results sug-

gest that the optimization of the proxy performance fp(x) indeed yielded a trade off between

the true performance metrics with a potential increase in shear elasticity at low wD.
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(2) González, J.; Dai, Z.; Hennig, P.; Lawrence, N. Batch bayesian optimization via local

penalization. Proc. 19th Int. Conf. Artif. Intell. Stat. AISTATS 2016 2016, 648–657.

11


