Supporting Information

Walnut consumption induces tissue-specific omega-6/omega-3 decrease in high fructose-fed Wistar rats

Manja M. Zec^{1*}, Irena Krga^{1*}, Marija Takić¹, Jasmina Debeljak-Martačić¹, Goran Korićanac², Slavica Ranković¹, Tamara Popović¹, Marija Pantelić², Maria Glibetic¹

¹Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
²Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia

Table S1. Absolute organ weights

	Fructose-naïve		Fructose-fed		F^{a}	W^b	$F \ge W^c$
	Control	Walnuts	Fructose	Fructose+ Walnuts			
Liver (g)	12.07±0.33	13.15±0.44	13.84±0.41	15.29±0.30	<0.001	0.002	0.622
Adipose Tissue*(g)	2.54 ± 0.29	3.43±0.31	2.94 ± 0.17	4.42 ± 0.47	0.040	0.001	0.369
Kidney (g)	2.96 ± 0.14	2.92 ± 0.11	2.83 ± 0.10	2.98 ± 0.09	0.786	0.614	0.409

Data are presented as Mean \pm SEM, n=8-9. *epididymal adipose tissue.^{*a, b, c*} Probabilities upon two-way ANOVA for fructose effect (*F*), walnuts effect (*W*), and interaction between fructose and walnuts (*FxW*), respectively, upon 6-weeks.

	Degree Liver Adings Tigue Kidney						
	Flasina	Liver	Aurpose Tissue	Klulley			
Control							
TC	-0.04	0.18	-0.35	0.25			
LDL	-0.33	0.03	-0.13	0.32			
TAG	0.34	0.27	-0.43	-0.05			
Walnuts							
TC	0.39	0.26	0.32	0.67*			
LDL	0.27	0.25	0.21	0.54			
TAG	0.49	-0.06	-0.11	0.05			
Fructose							
TC	0.84**	0.63	0.66	0.50			
LDL	0.38	0.53	0.22	-0.16			
TAG	0.22	-0.15	0.21	0.22			
Fructose+Walnuts							
TC	-0.12	-0.13	0.16	-0.07			
LDL	-0.36	0.05	0.06	0.25			
TAG	0.30	0.10	-0.28	-0.16			

Table S2. Correlations between serum lipids and n-6/n-3 ratio across the tissues

Pearson correlation coefficients are presented, bolded text denotes statistical significance. ** Correlation is significant at the 0.01 level; * Correlation is significant at the 0.05 level. LDL-c, low-density lipoprotein cholesterol; TAG, triglycerides; TC, total cholesterol.

Diet component					
Protein, not less than (%)	20				
Moisture, not more than (%)	13.5				
Ash, not more than (%)	10				
Cellulose, not more than (%)	8				
Ca, not less than (%)	1				
Na (%)	0.15-0.25				
P, not less than (%)	0.5				
Lys, not less than (%)	0.9				
Met + Cys, not less than (%)	0.75				
Vitamin A, not less than (IJ/kg)	10000				
Vitamin D3, not less than (IJ/kg)	1600				
Vitamin E, not less than (mg/kg)	25				
Vitamin B12, not less than (mg/kg)	0.02				
Zn, not less than (mg/kg)	100				
Fe, not less than (mg/kg)	100				
Mn, not less than (mg/kg)	30				
Cu, not less than (mg/kg)	20				
I, not less than (mg/kg)	0.5				
Se, not less than (mg/kg)	0.1				
Antioxidant, not less than (mg/kg)	100				

 Table S3. Composition of a standard diet

Ca, calcium; Na, sodium; P, phosphorus; Lys, lysine; Met, methionine; Cys, cysteine; Zn, zinc; Fe, iron; Mn, manganese; Cu, copper; I, iodine; Se, selenium.

Figure S1. Feeding behavior parameters. Food (A), liquid (B), and caloric (C) intakes of studied animals.

