Supporting Information

Insights into the dynamic catalytic effect of metal sulfide with prominent lithiation process in the application of Li-S batteries

Jin Wang^{a,1}, Ting Zhang^{c,1}, Zijia Xu^a, Guo Ai^{a*}, Wei Yue^b, Kehua Dai^b, Bo Zhang^a, Dejun Li^{a*}, Shaohua Yang^e, Jingbo Zhang^b, Gao Liu^d, Wenfeng Mao^{b*}

a Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China.

b Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China

c Department of physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China

d Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

e Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, No. 5

Electronic Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610,

China

¹ These authors contribute equally to this work

^{*}Corresponding author:

Dr. Guo Ai, E-mail: aiguo_pku@163.com; Tel: +86 22-23766503

Dr. Dejun Li, Email: dli1961@126.com; Tel: +86 22-23766503

Dr. Wenfeng Mao, E-mail: wenfengmao123@gmail.com; Tel: +86 22-23766531

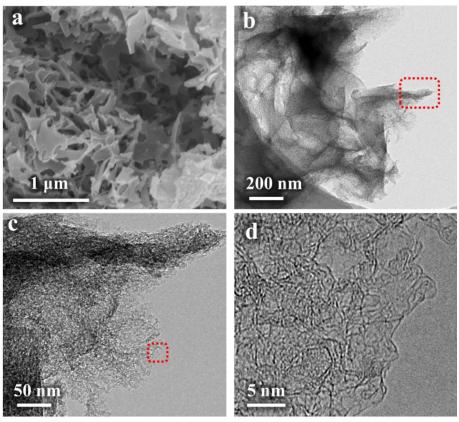


Figure S1 (a) SEM and (b-d) TEM images of HPGC.

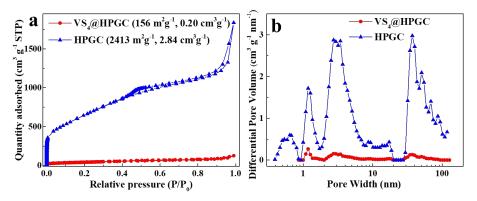


Figure S2 (a) N_2 adsorption/desorption isotherms and (b) pore-size distributions of $VS_4 @HPGC$ and

HPGC.

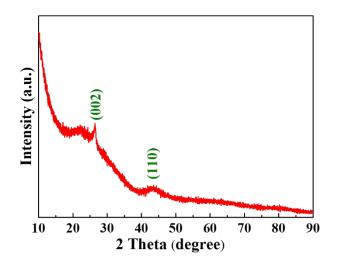


Figure S3 XRD pattern of HPGC.

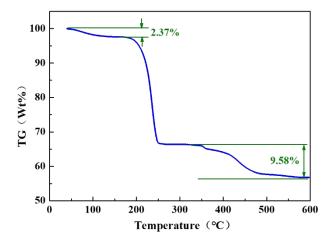


Figure S4 TG curve of VS₄@HPGC.

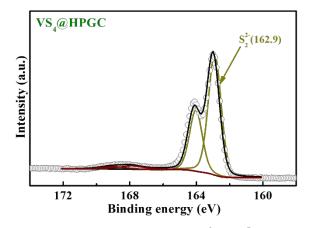


Figure S5 S 2p XPS spectra of VS₄@HPGC.

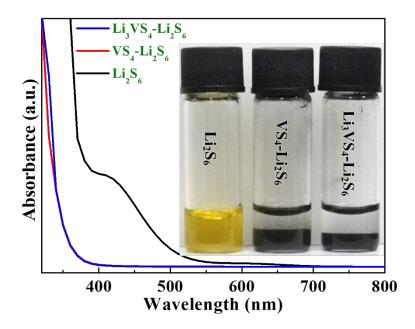


Figure S6 Photo images and UV-vis spectroscopy measurements of Li_2S_6 absorption experiments with VS₄@HPGC and Li_3VS_4 @HPGC.

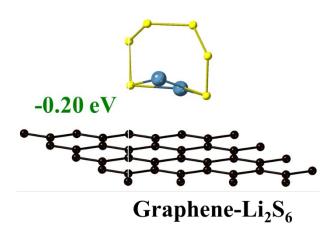


Figure S7 Optimized adsorption configuration for Li_2S_6 on graphene surface by DFT calculation.

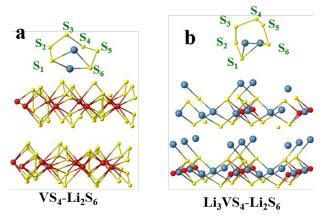
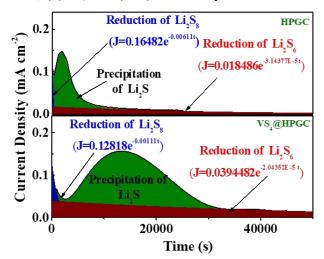



Figure S8 Index of sulfur atoms in Li_2S_6 with optimized adsorption configuration on (a) $VS_4(-111)$

surface, (b) Li_3VS_4 (001) surface by DFT calculation.

Figure S9 Fitting results of current vs. time curve on HPGC and VS₄@HPGC.

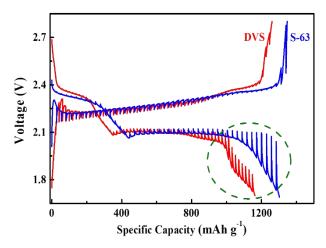


Figure S10 GITT curves of DVS and S-63.

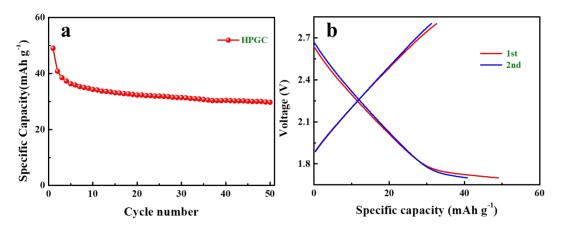


Figure S11 Cycling performance of HPGC and the charge/discharge curves in the first three cycles.

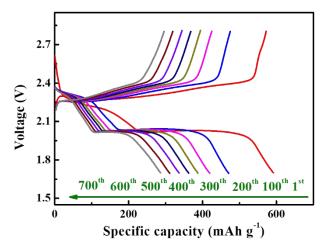


Figure S12 Charge/discharge curves of DVS at different cycles at 3C.

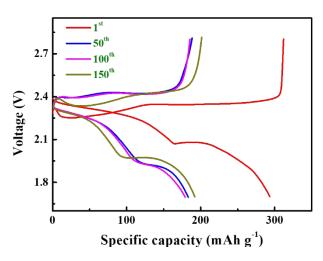


Figure S13 Charge/discharge curves of S-90 at different cycles at 3C.

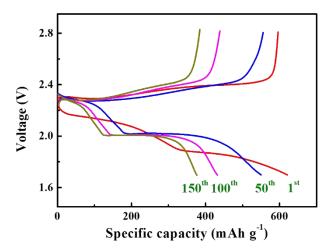


Figure S14 Charge/discharge curves of S-63 at different cycles at 3C.

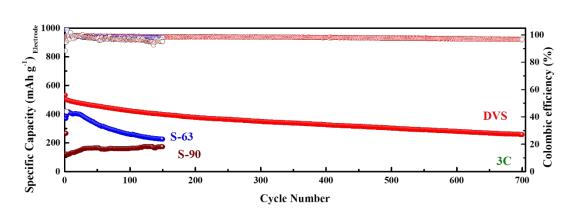
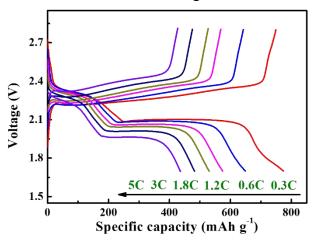



Figure S15 Cycling performances for DVS, S-63, and S-90 at 3C rate, with the specific capacities

calculated based on the weight of electrode.

Figure S16 Charge/discharge curves of DVS at different C-rates.

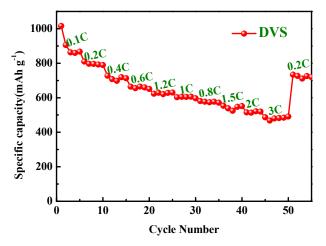
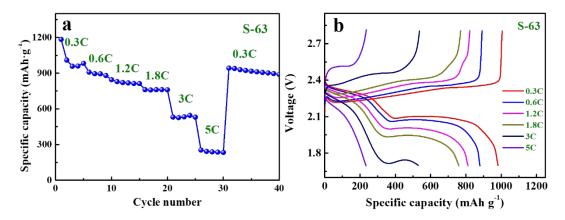



Figure S17 Rate performances of DVS at different C-rates.

Figure S18 (a)Rate performances of S-63 and (b) the corresponding charge/discharge curves at different C-rate.

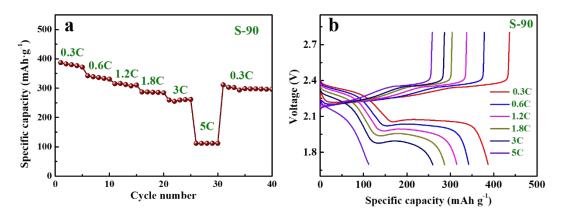


Figure S19 (a)Rate performances of S-90 and (b) the corresponding charge/discharge curves at

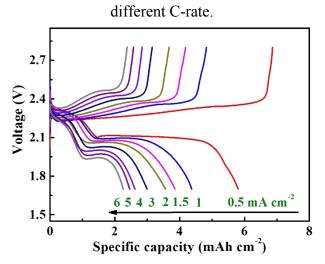


Figure S20 Charge/discharge curves for the high-loading DVS at different currents.

Element	Atomic fraction	Mass fraction
С	26.47	11.79
S	55.72	62.80
V	13.96	23.09
0	3.85	2.33

Table S1 The EDS results of $VS_4@HPGC$

Table S2 The electrochemical comparison of different metal sulfides in the voltage of $1.7 \sim 2.8 \text{ V}$

Matal	Specific		
Metal sulfides	(mA	Reference	
	First cycle	10 th cycle	
VS ₄	433.7	249.4	Our work
C09S8	36	25	[1]
TiS ₂	215	167	[2]
VS ₂	54	22	[3]
MoS ₂	6	92	[4]
SnS ₂	50	5	[5]
Mo ₆ S ₈	128		[6]
CoS ₂	126	75	[7]
$\mathbf{Sb}_2\mathbf{S}_3$	40		[8]
SnS ₂	70		[9]

Band	Li ₂ S ₆	VS ₄ -Li ₂ S ₆	Li_3VS_4 - Li_2S_6
	(Å)	(Å)	(Å)
S ₁ —S ₂	2.058	2.055	2.076
S ₂ —S ₃	2.045	2.041	2.052
S ₃ —S ₄	2.191	2.189	2.242
S ₄ —S ₅	2.048	2.044	2.043
S ₅ —S ₆	2.057	2.064	2.072

Table S3 The length change of S-S bonds for $\rm Li_2S_6$ b interact with VS_4 and $\rm Li_3VS_4$

Table S4 The fitting results of EIS for DVS and S-63

	R _L (ohm)	Rint (ohm)	Rct (ohm)
DVS	3.80	4.65	13.69
S-63	5.55	8.17	15.99

References

1. Pang, Q.; Kundu, D.; Nazar, L. F., A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. *Mater. Horiz.* **2016**, *3* (2), 130-136.

2. Su, Y.-S.; Manthiram, A., Sulfur/lithium-insertion compound composite cathodes for Li–S batteries. *J. Power Sources* **2014**, *270*, 101-105.

3. Qi, H.; Wang, L.; Zuo, T.; Deng, S.; Li, Q.; Liu, Z.-H.; Hu, P.; He, X., Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium-Ion Battery Performance. *ChemElectroChem* **2020**, *7* (1), 78-85.

4. Li, S.; Liu, P.; Huang, X.; Tang, Y.; Wang, H., Reviving bulky MoS2 as an advanced anode for lithium-ion batteries. *J. Mater. Chem. A* **2019**, *7* (18), 10988-10997.

5. Gao, X.; Yang, X.; Li, M.; Sun, Q.; Liang, J.; Luo, J.; Wang, J.; Li, W.; Liang, J.; Liu, Y.; Wang, S.; Hu, Y.; Xiao, Q.; Li, R.; Sham, T.-K.; Sun, X., Cobalt-Doped SnS2 with Dual Active Centers of Synergistic Absorption-Catalysis Effect for High-S Loading Li-S Batteries. *Adv. Funct. Mater.* **2019**, *29* (8), 1806724.

Xue, W.; Shi, Z.; Suo, L.; Wang, C.; Wang, Z.; Wang, H.; So, K. P.; Maurano, A.; Yu, D.; Chen, Y.; Qie, L.; Zhu, Z.; Xu, G.; Kong, J.; Li, J., Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. *Nat. Energy* 2019, *4* (5), 374-382.

 Ai, G.; Hu, Q.; Zhang, L.; Dai, K.; Wang, J.; Xu, Z.; Huang, Y.; Zhang, B.; Li, D.; Zhang, T.; Liu,
G.; Mao, W., Investigation of the Nanocrystal CoS2 Embedded in 3D Honeycomb-like Graphitic
Carbon with a Synergistic Effect for High-Performance Lithium Sulfur Batteries. *ACS Appl. Mater. Interfaces* 2019, *11* (37), 33987-33999.

8. Adachi, K.; Kajino, M.; Zaizen, Y.; Igarashi, Y., Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. *Scientific Reports* **2013**, *3* (1), 2554.

9. Xie, R.; Cui, Y.; Zhou, T.; Ren, J.; Zhuo, L.; Luo, J.; Li, C.; Liu, X., Unveiling the structural evolution of 1T SnS2 anode upon lithiation/delithiation by TEM. *Chemical Communications* **2019**, *55* (54), 7800-7803.