Supporting Information

Achieving Multimodal Emission in Zn₄B₆O₁₃:Tb³⁺,Yb³⁺ for Information Encryption and Anti-counterfeiting

Shanshan Zhao¹, Zhenbin Wang¹, Zhidong Ma², Feiyue Fan³, Weisheng Liu^{1*}

¹Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China. *E-mail: <u>liuws@lzu.edu.cn</u>

²National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China.

³School of Physics and Opto-Electronic Technology, Baoji University of Arts and Science, Baoji 721016, China.

Figure S1. (a) XRD patterns of the $Zn_{3.990}B_6O_{13}$: 0.010Tb³⁺ particles sintered for different time, indicating the formation of pure phase $Zn_4B_6O_{13}$ with high crystallinity. (b) PersL decay curves of the $Zn_{3.990}B_6O_{13}$: 0.010Tb³⁺ sintered for different time, showing the optimized time of 8h.

Figure S2. (a) PersL decay curves of the $Zn_{4-x}B_6O_{13}$: xTb^{3+} particles (10min irradiation of 254nm light). The inset shows the dependence of afterglow intensity on the concentration of the Tb³⁺ dopants, showing the optimal concentration of x=0.007. (b) Emission spectra of $Zn_{4-x}B_6O_{13}$: xTb^{3+} ($\lambda_{ex}=262nm$), showing an increased emission of Tb³⁺ as increasing Tb³⁺ concentration.

Figure S3. XRD patterns of $Zn_{4-x}B_6O_{13}$: xTb^{3+} with different doping contents 0.001, 0.004, 0.007, 0.010 and 0.013.

Figure S4. XRD patterns of the Zn_{3.993-y}B₆O₁₃:0.007Tb³⁺,yYb³⁺ (y=0, 0.001, 0.002, 0.003).

Figure S5. A typical example of anti-counterfeiting design on the banknote in the bright field.

Atom	Coordination	Type of bond	Bond length (pm)
Zn ₁	4	$Zn_1-O_1(\times 1)$	1.9586
		$Zn_1-O_2(\times 3)$	1.9447
\mathbf{B}_1	4	$B_1-O_2(\times 4)$	1.4799

Table S1 The detailed parameters of bond length in the $Zn_4B_6O_{13}$