1		SUPPORTING INFORMATION FOR				
2	Significant variability in photocatalytic activity of					
3	natural titanium-containing minerals, implications for					
4	und	lerstanding and predicting atmospheric mineral dust				
5	unu	nhotochemistry				
7		photoenenisery				
/ Q		Maya Abay Chanom 1 Anton O. Olivmyk 12 7 hihao Chan 1 Laura C. Matchatt 1				
o 9		Devon T. McGrath, ³ Michael J. Katz, ³ Andrew J. Locock, ⁴ and Sarah A. Styler ^{1,5*}				
10						
11		* corresponding author.				
12		Email: stylers@mcmaster.ca				
13						
14 15	1 De	epartment of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2				
16	CIIC	10471				
17		³ Department of Chemistry Memorial University of Newfoundland St John's				
18		Newfoundland and Labrador. Canada A1C 5S7				
19	⁴ Department of Earth and Atmospheric Sciences University of Alberta Edmonton Alberta					
20	- 1	Canada T6G 2G2				
21	⁵ Dep	artment of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario,				
22		Canada L8S 4L8				
23						
24						
25	Numb	per of figures: 14				
26	Numb	per of tables: 20				
27	Numb	per of pages: 70				
28						
29	1	Experimental details and sample characterization				
30						
31	1.1	Photochemical coated-wall flow tube reactor				
32	1.2	Determination of NO ₂ photolysis frequency (J_{NO_2}) for the flow tube reactor				
33	1.3 Experimental details					
34		1.3.1 Pyrex insert tube preparation				
35		1.3.1.1 Tube coating procedure for natural minerals				
36		1.3.1.2 Tube coating procedure for TiO_2 samples (natural and				
37		commercial)				
38		1.3.2 Experimental protocol				
39		1.3.3 Considerations in calculations of uptake coefficients				
40		1.3.3.1 Additional considerations for TiO ₂ samples				
41	1.4	Sample treatment, preparation, and characterization				
42		1.4.1 Sample treatment and preparation				

43		1.4.2 Surface area determination				
44		1.4.3 Electron microprobe analysis				
45		1.4.4 X-Ray diffraction analysis				
46		1.4.5 UV-Vis diffuse reflectance spectroscopy				
47		1.4.6 Scanning electron microscopy				
48	1.5	Chemicals				
49						
50	2	Supporting results and discussion				
51						
52	21	Ozone untake by Ti-containing minerals under dark conditions				
53	2.1	2.1.1 Suggested mechanism for ozone untake by Ti and Ti-bearing minerals				
54		2.1.1 Suggested mechanism for ozone uptake by franc from the minerals				
55		2.1.2 Comparison of uptake coefficients to previous increature				
56	22	$\Omega_{2,1,3}$ influence of relative full many off ozone uptake				
57	2.2	2.2.1 Machanistic discussion for photoenhanced even untake by TiO ₂				
58		2.2.1 Mechanistic discussion for photoennanced ozone uptake by 1102				
50		2.2.2 Influence of relative humidity on ozone untake				
59		2.2.5 Influence of relative numberry on ozone uptake				
60	3	References				
61						
62	4	Sunnorting figures				
63	1	Supporting inguies				
64	S1	Photochemical coated-wall flow tube reactor schematic				
65	S2	NO ₂ photolysis frequency (I_{NO}) as a function of number of lamps				
66	53	Representative reaction profiles of ozone with Ti-containing minerals				
67	55 54	Representative reaction profiles of ozone with $Ti O_2$ minerals				
68	S5	Reaction profiles of ozone with titanite 1 and phlogonite as a function of relative				
69	00	humidity				
70	S6	Photographs of natural mineral samples prior to grinding				
71	S7	Powder diffraction data comparison for anatase samples				
72	S8	XRD Sigma purity check for commercial anatase				
73	S9-10	XRD diffractogram fits for mineral samples				
74	S11	UV-Vis diffuse reflectance spectra				
75	S12	Scanning electron microscope images				
76	S13	Influence of relative humidity on light ozone BET uptake coefficients (γ_{BET}) for TiO ₂				
77		minerals				
78	S14	BET uptake coefficients (γ_{BET}) under dark and illuminated conditions for ozone by Ti-				
79		containing minerals				
80						
81	5	Supporting tables				
82						
83	S1	Photochemical coated-wall flow tube parameters				
84	S2	Composition of TiO ₂ /SiO ₂ suspensions (for studies of TiO ₂ photochemistry)				
85	S3	Summary of mineral sample pretreatments				
86	S4	Specific surface areas (BET) of samples				

- Electron microprobe data for natural minerals XRD table for Pawley fit for minerals XRD tables for single crystal diffraction 87 S5-14
- 88 S15
- 89 S16-20

90 **1** Experimental details and sample characterization

91 **1.1 Photochemical coated-wall flow tube reactor**

All experiments were conducted in a newly constructed photochemical coated-wall flow
tube reactor system under ambient temperature and pressure conditions. A schematic of
the system is provided in Figure S1 and the parameters of the flow tube are shown in
Table S1.

96 The flow tube itself is constructed of Pyrex 7740 (34.4 cm length, 1.6 cm id, 0.7 cm

97 thickness water jacket). Insert tubes, also constructed from Pyrex 7740 (20.0 cm length,

98 1.05 cm id), were coated with the mineral sample of interest and placed inside the flow

99 tube. Mounted in the center of a black plastic box, the flow tube is surrounded by four

100 Sylvania 25W BL UV-A lamps (300–410 nm, λ_{max} : 356 nm). To verify that the light intensity

101 inside the flow tube was atmospherically relevant, the photolysis frequency of NO₂ (J_{NO_2})

102 was investigated and found to be $0.0045 \pm 0.0001 \text{ s}^{-1}$ (see **Section 1.2**), which is in the

103 range of the photolysis rate constants found in the atmosphere^{1,2}.

104 The temperature inside the reactor was controlled by a recirculating chiller (RTE-140,

105 Neslab), which was set to 296.5 K. To avoid any microbial growth inside the chiller that

106 could potentially absorb UV radiation in the water jacket layer, the common biocide

107 chloramine-T was added to the chiller water. The chiller water was frequently monitored

- 108 to verify that its absorbance spectrum in the UV-A range matched that of deionized water.
- 109 Dry, purified zero air for experiments was produced using a commercial zero air generator
- 110 (747-30 reactor type A, Aadco Instruments). Ozone was generated in the dry air flow using

a commercial ozone generator (97-0066-01, UVP) and monitored at the exit of the flow
tube using a photometric ozone analyzer (T400, Teledyne). Acquisition of the ozone data
was accomplished by connecting the ozone analyzer to an analog-to-digital converter (U6,
LabJack) and collecting the data using a custom-built LabVIEW program at 5 s intervals.

115 The flow tube system contains 4 mass flow controllers (MFCs; MC-2SLPM-D/5M, Alicat), 3 of which were used to control the flows of ozone in dry air, dry air, and wet air prior to the 116 117 flow tube. The flow of dry air through the ozone generator was held constant at 100 sccm, 118 and the relative humidity (RH) in the flow tube was varied by changing the flow ratio 119 between the dry and wet MFCs. Wet air was generated by passing dry air through a water 120 bubbler. RH in the system was monitored by 3 in-line humidity/temperature sensors 121 (SHT75, Sensirion), which were placed directly after the zero air generator in order to 122 make sure the zero air was dry (RH reading of 0.1%), prior to the flow tube, and at the exit 123 of the flow tube; RH values prior to and at the exit of the flow tube were always $\pm 1\%$ of the 124 values reported in our figures and text. A customized Arduino was employed to convert RH 125 analog signals into a digital output that was collected using a custom-built LabVIEW 126 program at 5 s intervals.

127 The total flow upstream of the flow tube was set equal to 400 sccm for all experiments.
128 Since the ozone analyzer requires a flow rate of 750 sccm, a fourth MFC was placed at the
129 outlet of the flow tube to add an additional mass flow of 500 sccm, with excess flow
130 directed to exhaust; all reported ozone concentrations were corrected for this dilution.
131 When experiments were not being conducted, the coated-wall flow tube reactor was

132 continuously flushed with zero air (400 sccm); in addition, the RH of the zero air flow was

adjusted as described above at the end of each day to reflect the desired RH for thesubsequent day's experiments.

135 **1.2** Determination of NO₂ photolysis frequency (J_{NO_2}) for the flow tube reactor 136 Irradiance inside the flow tube was quantified using NO₂ actinometry^{1,2}, in which the 137 magnitude of production of NO from NO₂ upon illumination is used to determine the 138 photolysis frequency for NO₂, J_{NO_2} .

139 In these experiments, which were conducted at ambient temperature and pressure, NO₂ 140 $(4.93 \text{ ppm} \pm 5\% \text{ in } N_2, \text{ Certified Standard, Praxair})$ was diluted with N_2 (5.0 grade, Praxair) 141 upstream of the flow tube to lead to a final concentration of \sim 370 ppb. A Na₂CO₃ denuder 142 was placed upstream of the flow tube to remove any HONO formed in the cylinder 143 regulator or wetted parts of the MFCs. The denuder consisted of a sandblasted Pyrex tube 144 (37.5 cm length, 0.635 cm outer diameter), the interior surface of which was coated with 145 Na₂CO₃ solution previously prepared by adding 1 g of glycerol and 1 g of Na₂CO₃ to 50 mL 146 of methanol. The coating solution was dripped into the Pyrex tube, which was then dried 147 with N_2 (5.0 grade, Praxair) prior to use.

Upon illumination, the increase in NO and decrease in NO₂ were measured using a
 chemiluminescence NO_x (NO + NO₂) analyzer (T200U, Teledyne). To prevent the photolysis

150 of NO₂ in undesired areas and control the illuminated volume inside the flow tube, all but

151 8.5 cm of the length of the flow tube was covered with aluminum foil; in order to ensure the

152 light intensity within the reactor was identical to that in our dust photochemistry

experiments, these experiments were conducted with a Pyrex insert tube placed inside the flow tube. From these data, J_{NO_2} was obtained as follows²:

155
$$[NO_2]_{avg} = [NO_2]_{final} + \frac{1}{2}\Delta[NO]$$

156
$$J_{NO_2} = \frac{\Delta[NO]}{[NO_2]_{avg}} \times \frac{F}{V} \times \frac{1}{\phi} \times \frac{1}{T}$$

Here, $[NO_2]_{final}$ is the concentration of NO₂ at the exit of the illuminated flow tube, $\Delta[NO]$ is the increase in NO concentration upon illumination, *F* is the volumetric flow rate in L s⁻¹, *V* is the illuminated volume of the reactor in L, ϕ represents the quantum yield of NO production, and *T* represents the transmission factor of the lamps through the reactor walls.

162 The quantum yield of NO from the photolysis of NO_2 in N_2 depends on several subsequent

163 reactions induced by the formation of NO. Using the principal reactions described in

164 Zafonte et al.², we derive a quantum yield of 1.63 for NO for our experimental conditions,

165 which is in good agreement with the values reported by these authors. Finally, we note that

166 we set the value of *T* as unity, because we are interested in measuring the irradiance within

167 the flow tube rather than the inherent emission profile of the lamps.

168 Experimental protocol for J_{NO_2} determination involved first establishing a steady

169 concentration of NO₂ in the dark (~360 ppb) followed by the following illumination

170 protocol: 20 min light (1 lamp), 20 min dark, 20 min light (2 lamps), 20 min dark, 20 min

171 light (3 lamps), 20 min dark, 20 min light (4 lamps), and 20 min dark. This procedure was

172 conducted in triplicate, with results shown in **Figure S2**. A maximum photolysis frequency

173 of $0.0045 \pm 0.0001 \text{ s}^{-1}$ was obtained for NO₂ when all 4 lamps were turned on inside the

174 reactor, which is similar to the photolysis frequency of NO_2 in the atmosphere and indicates

175 an atmospherically relevant irradiance inside the flow tube^{1,2}.

176

1.3 Experimental details

177 **1.3.1 Pyrex insert tube preparation**

178Pyrex insert tubes were cleaned prior to use by first placing each tube in a 1% H_2SO_4 bath179for 1 min followed by a concentrated base bath for 1 h. After the base bath, the tubes were180thoroughly rinsed with deionized water and dried in a gravity oven (100L, FisherbrandTM)181at 324 ± 5 K.

The acid bath was prepared by adding 10 mL of concentrated H₂SO₄ to 990 mL of deionized
water. The base bath was prepared by adding 1 L of 2-propanol to 166 mL of deionized
water, followed by adding 41.7 g of solid KOH pellets and mixing until fully dissolved.

185 **1.3.1.1 Tube coating procedure for natural minerals**

Each coated tube was prepared by adding ~50 mg of Ti-containing mineral to a Pyrex
insert tube, followed by several drops of deionized water to form a slurry. The tube was
then stoppered with rubber stoppers (No. 00), rotated until the slurry covered the entire
inner surface of the tube, and placed on a hot dog roller (RHD800 Retro Series Hot Dog
Roller, Nostalgia Electrics) at maximum temperature to allow the mineral sample to dry in
an even layer. After drying, the first 5 cm of one end of the tube and the first 1 cm of the
other end were wiped clean using moistened laboratory wipes (Kimberly-Clark

Professional[™]). The first 5 cm was wiped to allow the ozone-containing gas flow to achieve
laminar flow prior to its interaction with the mineral surface (see **Table S1**); the last 1 cm
was wiped due to the formation of an uneven coating at the tube ends from the use of the
stoppers. The coated tubes were placed in a gravity oven (100L, Fisherbrand[™]) at 324 ± 5
K overnight prior to use.

198 The mass of mineral inside each Pyrex insert tube was determined by weighing by

199 difference on an analytical balance (AB265-S/FACT, Mettler Toledo). Coated tubes were

200 weighed after each experiment; then, they were rinsed with a tap water/Sparkleen[™]

201 mixture, distilled water, methanol, and deionized water, placed in a gravity oven (100L,

Fisherbrand[™]) at 324 ± 5 K overnight to dry, and weighed again.

1.3.1.2 Tube coating procedure for TiO₂ minerals (commercial and natural)

For both the commercial and natural TiO_2 samples, almost complete depletion of ozone was observed upon illumination, which resulted in a diffusion correction of several orders of magnitude for γ (as discussed in main text of the manuscript). Mixing of TiO_2 with photochemically inert SiO_2 has been previously been used to mitigate the effect of significant depletion of ozone from the gas-phase reservoir upon exposure to illuminated TiO_2^3 ; in this study, a similar strategy was employed.

contained the TiO₂. The resultant mixture was stirred with a PTFE stir bar (1 inch,
Fisherbrand[™]) to ensure homogeneous mixing of TiO₂ and SiO₂ particles; after 10 min, 1
mL was pipetted into a Pyrex insert tube and the same coating procedure described in
Section 1.3.1.1 was applied. Because each TiO₂ sample type displayed significantly
different reactivity, different TiO₂ loadings were employed for each TiO₂ sample; the
masses of both TiO₂ and SiO₂ used for each sample type are shown in Table S2.

220 **1.3.2 Experimental protocol**

221 At the beginning of each experiment, a Pyrex insert tube coated with the mineral substrate 222 of interest was placed in the coated-wall flow tube reactor, the movable injector was 223 retracted, and the coating was exposed for 30 min to zero air at the experimental RH. Then, 224 the injector was pushed in past the mineral coating, preventing exposure of the sample to 225 the gas flow, and the ozone generator was turned on. After 45 min, at which point a stable 226 ozone concentration was achieved, the injector was pulled back and samples were exposed 227 to ozone. After 1 h of dark exposure, samples were illuminated for 1 h; after an additional 228 30 min of dark exposure, the injector was again pushed in in order to verify that there was 229 no drift in ozone concentrations throughout the experiment; after 30 min, the ozone 230 generator was turned off and ozone concentrations were recorded for an additional 5 min. 231 The average ozone concentrations over the last 5 min in the light, dark, and with the 232 injector pushed in were used in the calculations described in main text of the manuscript. 233 Experiments were performed in triplicate for all minerals at 25% RH; selected reaction 234 profiles for each mineral sample are shown in **Figures S3–4**. For some minerals,

- experiments were also performed as a function of RH (here, experiments were only
 performed once at each RH value); representative reaction profiles are shown in Figure S5.
- 237 **1.3.3** Considerations in calculations of uptake coefficients

In this work, we quantify the reactivity of ozone with Ti-containing minerals using a quantity known as an uptake coefficient (γ)⁴, which is defined as the number of ozone molecules taken up by the surface divided by the total number of collisions of ozone molecules with the surface. Previous studies of trace gas-dust interactions have reported both initial⁵⁻⁷ and steady-state^{5,7-9} uptake coefficients; because the latter is most relevant for the behavior of dust over extended timescales in the atmosphere, we report it here.

- 244 In our system, laminar flow conditions (Reynolds number < 2000) and continuum flow 245 regimes (Knudsen number << 1) are applicable (see **Table S1**); therefore, at high values of γ , where significant depletion of ozone occurs near the sample surface, γ_{eff} can be limited by 246 247 the diffusion of ozone from the centre of the flow tube to the sample surface. In order to 248 correct for underestimations in γ_{eff} as a result of these radial diffusion limitations, a 249 correction factor is applied using the CKD method¹⁰ as described in the main text of the 250 manuscript. We note that we chose mineral sample masses such that reported uptake 251 coefficients had a maximum correction for radial diffusion of 30% from γ_{eff} .
- 252 **1.3.3.1** Additional considerations for TiO₂ samples

As described in **Section 1.3.1.2**, in order to minimize the need for excessive corrections for gas-phase diffusion limitations, we employed TiO₂/SiO₂ mixed films for all TiO₂ samples.

255 Because SiO₂ itself exhibited non-negligible photochemistry in our experiments,

256 calculations were slightly more involved for these mixed films.

257 In order to correct for SiO₂ reactivity, we calculated γ_{BET} (25% RH) for 3 SiO₂ samples with 258 similar masses and used the average γ_{BET} value to back-calculate a γ_{eff} value for the mass of 259 SiO₂ employed in a given TiO₂/SiO₂ experiment. From the γ_{eff} thus obtained, we back-260 calculated k_{obs} (s⁻¹) for this mass of SiO₂ and subtracted this value from the overall k_{obs} 261 value for the TiO₂/SiO₂ mixed film. In this way, we were able to obtain a k_{obs} value for TiO₂ 262 alone, which we then used to calculate γ_{eff} and γ_{BET} for TiO₂ as described in the previous 263 section. Importantly, we used the total surface area of TiO_2 alone in these calculations, 264 rather than the total surface area of the mixed film. We note that these calculations led to 265 negligible values for k_{obs} of TiO₂ alone under dark conditions; as a result, we do not report 266 dark uptake values for TiO₂.

We note that since radial diffusion limitations are independent of sample type and only depend on overall loss of ozone onto the surface, γ_{eff} values for the TiO₂/SiO₂ mixed films were multiplied by the correction factor ratio associated with γ_{eff} values calculated for the original mixed films (*i.e.* not for the TiO₂ fraction alone).

271 **1.4**

Sample treatment, preparation, and characterization

1.4.1 Sample treatment and preparation

273 Minerals were analyzed for their purity via visual inspection, electron microprobe analysis

274 (EMPA), and X-ray diffraction (XRD). Impurities were identified for each mineral and

275 purification treatments were selected accordingly; a summary of all treatments is

presented in Table S3. Pictures of mineral samples prior to treatment and preparation are
provided in Figure S6.

278 Obvious impurities on the outside of mineral samples and impurities that could not be 279 removed via chemical treatment (*vide infra*) were removed using a Dremel[®] tool. Rust was removed by submersing minerals in a 40 g L⁻¹ solution of SUPER IRON out[®] (active 280 281 ingredients sodium hydrosulfite, sodium metabisulfite, and sodium sulfite) for 30 min. 282 $CaCO_3$ was removed by placing minerals in 1 M HCl (phlogopite, 1.5 hours; titanite 1, 1 283 day). After the removal of impurities, minerals were rinsed with methanol once and with 284 deionized water 3 times. Minerals that were not subjected to these treatments were also 285 rinsed in this manner.

286 After minerals underwent purification treatments, they were first broken down using a 287 steel percussion mortar and pestle. To remove any steel contamination from use of the 288 percussion mortar, a rare earth magnet wrapped in weighing paper was then passed over 289 each broken-down sample (this was not possible for ilmenite and hastingsite samples, as 290 they also displayed magnetic properties). Minerals were then ground using an agate mortar 291 and pestle until they had a fine, powder-like appearance. To prevent cross contamination, 292 pure gem-quality Brazilian quartz (from Corinto, Brazil) was used to clean the steel 293 percussion and agate mortar and pestle between samples by grinding the quartz into a fine 294 powder; afterward, grinding equipment was rinsed with ethanol.

295 **1.4.2 Surface area determination**

296 Prior to gas adsorption analysis, samples were degassed (activated) on a gas adsorption 297 sample preparation instrument (Smart VacPrep, Micromeritics); in order to ensure that the 298 measured surface area is reflective of the surface area presented under our experimental 299 conditions, degassing was performed in the absence of heat. For activation, each sample 300 was weighed into a pre-weighed glass sample tube equipped with filler rod and steel frit 301 ball valve. Samples were subsequently activated by evacuating the sample holder at 5.00 302 mmHg s⁻¹ until a pressure level of 1.00 mmHg or lower was achieved; the Smart VacPrep 303 instrument has a needle on the vacuum port to open the ball valve. Subsequently the 304 samples were held under unrestricted vacuum for 24 h. The sample holders were then 305 backfilled with nitrogen gas, removed from the Smart VacPrep instrument, and reweighed. 306 Gas adsorption isotherm data were collected at 77 K using nitrogen gas as the probe 307 molecule (3Flex, Micromeritics). Using the MicroActive software suite, the data obtained 308 were used to determine the Brunauer-Emmett-Teller (BET) accessible surface area by 309 fitting the linear BET equation and ensuring that the 4-point criterion was met¹¹.

310

1.4.3 Electron microprobe analysis

Electron microprobe analysis was conducted on 2 separate dates because minerals were purchased in 2 groups. The first set of minerals analyzed consisted of anatase 1, rutile, ilmenite, titanite 1, phlogopite, hastingsite, augite, and epidote. The second set, which was purchased to enable us to study the reactivity of samples of the same mineral obtained from different locations, consisted of anatase 2 and titanite 2. All EMPA data can be found in **Tables S5–14**.

317 1.4.3.1 Analysis of anatase 1, rutile, ilmenite, titanite 1, phlogopite, hastingsite, 318 augite, and epidote

319 An electron microprobe (JXA-8900R, JEOL) was used to examine grains of anatase 1, rutile, 320 ilmenite, titanite 1, phlogopite, hastingsite, augite, and epidote, which had been mounted in 321 epoxy, polished, and carbon-coated (25 nm thickness) prior to analysis. In addition to back-322 scattered electron images, quantitative compositional data were acquired from spot 323 analyses of the minerals using wavelength-dispersive spectrometry and Probe for EPMA 324 software¹². Thirteen elements were measured (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Zn, and 325 Nb) with the following conditions: 20 kV accelerating voltage, 20 nA probe current, and a 326 1 μ m beam diameter for all minerals except pholoppite, for which a 5 μ m beam was used. 327 Total count times of 20 s were used for both peaks and backgrounds for all elements except 328 V, Zn, and Nb, for which 30 s was used. The X-ray lines and diffraction crystals were: Na $K\alpha$, 329 TAP (thallium hydrogen phthalate); Mg $K\alpha$, TAP; Al $K\alpha$, TAP; Si $K\alpha$, TAP; K $K\alpha$, PET 330 (pentaerythritol); Ca Kα, PET; Ti Kα, PET; V Kα, PET; Cr Kα, PET; Mn Kα, LIF (lithium 331 fluoride); Fe K α , LIF; Zn K α , LIF; and Nb L α , PET. Corrections were applied to V for 332 interference by Ti, to Cr for interference by V, and to Mn for interference by Cr¹³. X-ray 333 intensity data were reduced following Armstrong (1995)¹⁴. The reference standards 334 consisted of metals, synthetic inorganic materials, and natural minerals¹⁵.

335 **1.4.3.2** Analysis of anatase 2 and titanite 2

An electron microprobe (SX100, Cameca) was used to examine grains of anatase 2 and
titanite 2, which had been mounted in epoxy, polished, and carbon-coated (25 nm
thickness) prior to analysis. In addition to back-scattered electron images, quantitative

339	compositional data were acquired from spot analyses of the minerals using wavelength-
340	dispersive spectrometry and Probe for EPMA software ¹² . Thirteen elements were
341	measured (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Zn, and Nb) with the following conditions:
342	20 kV accelerating voltage, 20 nA probe current, and a 1 μm beam diameter. Total count
343	times of 30 s were used for both peaks and backgrounds for all elements. The X-ray lines
344	and diffraction crystals were: Na Kα, TAP; Mg Kα, TAP; Al Kα, TAP; Si Kα, TAP; K Kα, PET; Ca
345	<i>K</i> α, PET; Ti <i>K</i> α, PET; V <i>K</i> α, PET; Cr <i>K</i> α, PET; Mn <i>K</i> α, LIF; Fe <i>K</i> α, LIF; Zn <i>K</i> α, LIF; and Nb <i>L</i> α,
346	PET. Corrections were applied to V for interference by Ti, to Cr for interference by V, and to
347	Mn for interference by Cr ¹³ . However, the correction to V was found to be insufficient,
348	based on analysis of reference rutile, and so the V data were discarded. The X-ray intensity
349	data were reduced following Armstrong (1995) ¹⁴ . The reference standards consisted of
350	metals, synthetic inorganic materials, and natural minerals ¹⁵ .

351 **1.4.4 X-ray diffraction analysis**

352 Powder X-ray diffraction (XRD) patterns of the ground mineral samples were collected on a Rigaku Ultima IV diffractometer with a Co $K\alpha$ radiation source operated at 38 kV and 38 353 354 mA. Phase identification was performed using JADE 9.6 software with the 2019 ICDD 355 Database PDF 4+ and 2018-1 ICSD databases^{16,17}. The patterns were analyzed with the 356 TOPAS academic software package¹⁸. All phases were analyzed with Pawley refinement method¹⁹. X-Ray diffraction data and refinement fits are shown in **Figures S9–10**. The 357 358 phases and their statistics from refinement fits are presented in Table S15, which also 359 summarizes the results and lists the cell parameters of the refined phases from the powder 360 XRD data.

361 The refinements in **Figures S9–10** show good visual fits and excellent refinement statistics 362 (**Table S15**). Ilmenite had no observed impurity peaks in its diffraction pattern (**Figure** 363 **S10**). For the rest of the samples, asterisks indicate the most intense impurities observed 364 with the X-ray diffraction technique. The phlogopite sample exhibited a strong preferred 365 orientation in the 0.0 2*n* direction, which resulted in a strong intensity of the 0.0 2*n* peaks 366 in the powder pattern (**Figure S10**). The samples with major impurity contents 367 (hastingsite and epidote) were also analyzed with Pawley fit to identify the presence of 368 secondary phases (see Figure S10).

369 Powder diffraction of all anatase (TiO_2) samples revealed minor (< 5%) unidentified 370 impurities based on a relative intensity comparison (**Figure S7**). The peak at \sim 32° 2 θ could 371 theoretically be assigned to rutile; the absence of other rutile phase peaks likely reflects the 372 low abundance of this phase. The commercial anatase sample was purchased from a batch 373 with a claimed anatase purity of 99.8%; a minor rutile peak was apparent in a quality check 374 diffraction pattern collected in 2014 (see Figure S8). However, Figure S7 shows multiple 375 other unidentified peaks in the powder diffraction pattern for this sample. Since most of the 376 impurities found in all 3 anatase samples gave reflections at the same diffraction angles, a 377 single crystal was picked from one of the samples (anatase 2) for analysis to check whether 378 these peaks reflected impurities within the phase itself or the existence of additional 379 impurity phases. Similarly, titanite 2 (Figure S10) features 2 unassigned peaks in its 380 diffraction pattern that were not present in the diffraction pattern for titanite 1 (**Figure S10**). 381 In order to check if these peaks originated from the structure of this particular sample of 382 titanite, a single crystal was picked from the mineral sample and analyzed via single crystal 383 diffraction.

Single crystal diffraction measurements were accomplished using a Bruker PLATFORM diffractometer equipped with a SMART APEX II CCD area detector and a graphitemonochromated Mo K α radiation source, using ω scans at 8 different ϕ angles with a frame width of 0.3° and an exposure time of 10 s per frame. Face-indexed absorption corrections were applied²⁰. Structure solution and refinement were carried out using the SHELXTL (version 6.12) program package²¹. The results of these analyses are displayed in **Tables 16**-**20**.

391 Atomic coordinates and crystallographic details are comparable to other crystallographic 392 reports of anatase and titanite crystals; no structural anomalies were observed. Atomic 393 distances from the crystallographic analysis are similar to multiple single crystal diffraction 394 reports of these minerals. In the case of anatase 2, a small excess of electron density on Ti atom (0.4 $e^{-}/Å^{3}$) is in a good agreement with the atomic composition (0.92 Ti + 0.08 Fe) 395 396 suggested by microprobe analysis (**Table S6**). Additionally, atomic displacement parameters 397 are slightly higher than what would be expected, suggesting negligible mixing in the metal 398 site, which is in a good agreement with the microprobe data. The extra peaks (observed on 399 powder patterns) were absent in the single crystal diffraction data, which suggests that these 400 peaks indeed belonged to impurity phase(s) and/or K β diffraction from the anatase phase 401 rather than to structural imperfections of the main phase.

402 **1.4.5 UV-Vis diffuse reflectance spectroscopy**

403 In order to determine the extent to which each Ti-containing mineral sample absorbs light

404 within the transmission range of the UV-A lamps in the photoreactor and to obtain their

405 band gaps, diffuse reflectance spectra were collected using a UV-Vis-NIR

406 spectrophotometer (Cary, 5000) equipped with a diffuse reflectance accessory.

407 Spectralon® was used as 100% reflectance standard and spectra were measured from

408 200–800 nm for all minerals except ilmenite, the spectrum of which was measured to 1200

409 nm, as its absorbance extended into the NIR region. Diffuse reflectance data were

410 transformed using the Kubelka–Munk function²²:

411
$$\frac{K}{S} = \frac{(1-R)^2}{2R}$$

412 Here, *K* is the absorption coefficient, *S* is the scattering coefficient, and *R* is the reflectance. 413 Band gaps for Ti-containing minerals were determined by plotting the Kubelka–Munk 414 function (*K/S*) against eV, where eV corresponds to the kinetic energy of a single electron at 415 a given wavelength, and then taking the intersection between a linear fit of the reflectance 416 dip and a horizontal line along the baseline of *K/S*²³. The Kubelka–Munk plots for a 417 selection of minerals (with associated band gaps, when possible) are presented in **Figure** 418 **4**; the remainder of the minerals are shown in **Figure S11**.

419 **1.4.6 Scanning electron microscopy**

The size and morphology of a select set of mineral samples—commercial anatase, anatase 1, anatase 2, rutile, titanite 1, and titanite 2—were assessed using a field emission scanning electron microscope (FESEM, Zeiss Sigma). In order to prepare samples for SEM analysis, a small amount (several mg) of each mineral was sprinkled onto carbon tape, which was then mounted on an aluminum stub. To reduce the influence of surface charging from the electron beam, samples were carbon coated using a sputter coater (EM SCD005, Leica). 426 Secondary electron images were collected using in-lens mode at 10 kV at $1000 \times$

427 magnification, except in the case of commercial anatase, which was obtained at $10,000 \times$

428 magnification due to its significantly smaller particle sizes compared to the natural ground

429 minerals. All secondary electron images are presented in **Figure S12**.

430 **1.5** Chemicals

431 Natural minerals were sourced from www.minfind.com and through contact with 432 individual vendors. Deionized water (18 M Ω) was obtained from a Millipore Synergy UV 433 ultrapure water system. TiO₂ (anatase, 99.8% trace metal basis), KOH (ACS reagent \geq 85%, 434 pellets), and chloramine T trihydrate (Reag. Ph. Eur. grade) were obtained from Sigma 435 Aldrich. SiO₂ (amorphous fumed, reported surface area 85–115 m² g⁻¹) was obtained from 436 Alfa Aesar. Methanol (Optima grade, 99.9%), 2-propanol (certified ACS Plus), Na₂CO₃ 437 (anhydrous, certified ACS powder), and glycerol (certified ACS) were obtained from Fisher 438 Chemicals. Concentrated H₂SO₄ (reagent grade) and concentrated HCl (reagent grade) were obtained from Caledon Laboratory Chemicals. SUPER IRON out[®] (Summit Brands) was 439 purchased from Canadian Tire[®]. Sparkleen[™] was purchased from Fisherbrand[™]. Ethanol 440 441 (95%) was obtained from Commercial Alcohols. Except for the natural mineral samples, 442 which were treated as described in **Section 1.4.1**, all chemicals were used as received.

443 **2** Supporting results and discussion

444 **2.1 Ozone uptake by Ti-containing minerals under dark conditions**

445 Although the primary focus of this study was the photochemistry of Ti-containing minerals, 446 we also investigated ozone uptake by these minerals under dark conditions. As illustrated 447 in **Figures S3–4**, ozone exhibited time-dependent uptake to most Ti-containing mineral 448 samples under dark conditions. In particular, for most samples, the magnitude of ozone 449 loss decreased with increasing sample exposure and eventually reached a plateau value; in 450 other words, the concentration of ozone at the exit of the flow tube increased with 451 increasing sample exposure and eventually reached a steady state. We note that in some 452 cases, steady-state conditions were not reached *(e.g.* phlogopite, titanite 1, anatase 1, and 453 anatase 2; **Figures S3–4**), as we wanted to keep the total reaction time similar between 454 experiments; for these minerals, therefore, γ_{BET} values represent an upper limit.

455 As shown in **Figure S14**, *y*_{BET} values for our samples under dark conditions were 456 significantly lower than values obtained under illumination. Under dark conditions, γ_{BET} 457 values spanned almost an order of magnitude, with the highest values calculated for 458 ilmenite (7.6×10^{-7}) and the lowest for epidote $((7.5 \pm 1.8) \times 10^{-8})$. We note that ilmenite 459 displayed 2 distinct types of reaction profiles with associated uptake coefficients ((6.9 ± 460 1.3) \times 10⁻⁷, n = 3; (2.4 \pm 0.6) \times 10⁻⁷, n = 3); although we are not currently able to definitively 461 explain this behavior, we tentatively suggest that it may reflect variable contributions from 462 additional minor mineral phases within the sample. If present, these additional mineral 463 phases may have gone undetected during our sample characterization procedures, as 464 EMPA results only reflect the elemental abundances in spot-selected areas of mineral 465 samples and XRD is not always able to detect minor phases in multi-phase samples²⁴. To compare the reactivity of our minerals to natural dust samples, we also measured ozone 466

467 uptake by Cape Verde dust and Gobi dust; for these samples, γ_{BET} values of $(2.2 \pm 0.2) \times 10^{-8}$ 468 and $(3.6 \pm 0.6) \times 10^{-8}$ were obtained, respectively.

469	Ozone uptake by TiO_2/SiO_2 mixed films under dark conditions was indistinguishable from
470	that by SiO_2 films, which was itself small. These results agree with the coated-wall flow
471	tube study of Nicolas et al., which reported minimal uptake of ozone by TiO_2/SiO_2 films
472	under dark conditions ³ . As noted in Section 1.3.3.1 , because of the substantial
473	photoreactivity of TiO_2 samples, our films were prepared using low Ti mass fractions (see
474	Table S2), which implies that TiO_2 minerals themselves may be measurably reactive
475	toward ozone under dark conditions; however, this was not the focus of the present study
476	and is not explored/discussed here.

477 **2.1.1 Suggested mechanism for ozone uptake by Ti and Ti-bearing minerals**

The following mechanism has been proposed for the interaction of ozone with metal oxide surfaces, where SS represents an active surface site (we note that the importance of **R4** is debated)^{25,26}:

 $481 \qquad 0_3 + SS \qquad \rightarrow \qquad SS - 0 + 0_2 \tag{1}$

 $482 \qquad SS-0+O_3 \qquad \rightarrow \qquad SS-O_2+O_2 \tag{2}$

$$483 \qquad SS-O_2 \qquad \rightarrow \qquad SS+O_2 \tag{3}$$

 $484 \qquad 2(SS-0) \qquad \rightarrow \qquad 2SS+O_2 \tag{4}$

The saturation of active surface sites via **R1** and **R2** implies that ozone uptake by these
samples will eventually become negligible; however, the mechanism also allows for

regeneration of these sites via R3 and R4, which would lead to sustained (*i.e.* catalytic)
ozone loss. Our steady-state ozone concentrations do not return back to their initial values
prior to sample exposure (see Figures S3-4), which implies that destruction of ozone is
catalytic in nature to some degree for all of our samples. This catalytic behavior has been
previously observed for several natural mineral dusts^{5,9,27}, clays^{5,8,29}, and metal
oxides^{3,5,28,30,31}, the latter two of which are commonly used as mineral dust proxies.

493 The surface sites (SS) presented in **R1–4** represent active Lewis acid sites (*i.e.* surface 494 defects in the form of oxygen vacancies) that can promote ozone dissociation and resultant 495 formation of surface-bound oxygen atoms; in fact, in the case of volcanic ash, ozone has 496 been used as a molecular probe for Lewis acid sites³². The adsorption of ozone at these 497 Lewis acid sites has been studied using many surface spectroscopic techniques, including 498 FT-IR³³, XPS³⁴, Raman^{26,35,36}, and DRIFTS³⁷. The degree to which the catalytic destruction of 499 ozone occurs depends greatly on the strength of these Lewis acid sites. For example, 500 previous studies have found that the catalytic uptake of ozone by Fe_2O_3 is greater than by 501 Al_2O_3 , which is in turn greater than by SiO_2^5 . This trend has been attributed to Fe_2O_3 having 502 the weakest Lewis acid sites—and, by extension, the weakest SS–O₂ bonds—which allows 503 for greater regeneration of SS³⁰.

We suggest that similar considerations may be relevant for our sample set, which includes minerals with different chemical compositions and crystal structures (*i.e.* that observed reactivity differences may arise from differences in strength of Lewis acid sites). For example, ilmenite's elevated dark reactivity compared to other samples may reflect its elevated Fe content (~45%, **Table S8**) and consequent availability of Fe cations at its

509	surface. In addition, titanite 1's reactivity (γ_{BET} = (1.29 ± 0.02) × 10 ⁻⁷) compared to titanite 2
510	(uptake negligible compared to controls, and therefore not reported) may reflect the $4 imes$
511	larger amount of Fe detected in the former sample (Tables S9–10).
512	Fe can easily substitute for Ti in mineral structures due to its similar cation size and
513	charge ³⁸ . Depending on formation processes and conditions (<i>e.g.</i> crystallization
514	environment), therefore, we expect titanium-containing minerals in the environment to
515	have different abundances of these elements in their crystal structures, and ultimately
516	exhibit different reactivities; in other words, we anticipate that the results obtained here
517	are not specific for titanite but rather reflective of broader variability in environmental
518	samples.

519 **2.1.2 Comparison of uptake coefficients to previous literature**

Previous laboratory studies investigating the uptake of ozone by natural mineral dusts and
mineral dust proxies have been conducted using coated-wall flow tubes^{8,25,29,39},
environmental chambers^{30,31}, and Knudsen cells^{5,27,28}. Detailed descriptions of these
systems are provided in a review by Kolb et al.⁴⁰, but the most significant difference
between them is that whereas Knudsen cells are operated under molecular flow conditions
(*i.e.* under vacuum), coated-wall flow tubes and environmental chambers can be operated
at atmospheric pressures.

527 Uptake coefficients reported in Knudsen cell studies of dust-ozone interactions are

- 528 significantly larger than those obtained in this work. For example, Hanisch and Crowley
- 529 reported a steady-state BET uptake coefficient of 7×10^{-6} for the uptake of ozone by

530	Saharan Desert dust ⁴¹ , which is \sim 9–90× larger than the values obtained in our experiments
531	for our natural Ti-containing mineral samples and $200-300 \times$ larger than our Gobi and
532	Saharan dust samples, respectively. In the following paragraph, we suggest three
533	possibilities to explain this discrepancy.
534	First, as recently discussed by Lasne et al., the larger ozone uptake coefficients obtained in
535	Knudsen cell experiments could potentially be explained by more favorable regeneration of
536	surface sites via decomposition of SS–O ₂ (R3) at lower operating pressures ⁸ . Second, as
537	noted by Coates Fuentes et al., who reported smaller ozone uptake coefficients for clays in
538	their coated-wall flow tube experiments as compared to previous values from Knudsen cell
539	experiments, the <i>in situ</i> BET surface area of samples may differ from that measured when
540	samples are present in powder form ²⁹ . A reduction in the actual BET surface area of our
541	coated tubes with respect to the values determined for dry samples would also lead to an
542	underestimation in our calculated γ_{BET} values. In the case of ozone uptake by hydrocarbon
543	soot, <i>in situ</i> gas adsorption analysis ⁴² has previously been used to address these issues;
544	however, this approach would be challenging for our samples, which have significantly
545	lower specific surface areas. Third, we show in Section 2.1.3 for a subset of our mineral
546	samples that the uptake of ozone decreases with increasing RH. By extension, we might
547	expect uptake coefficients to be higher in low-pressure reactors, where adsorbed water
548	may be more thoroughly removed from samples and the number of available surface sites
549	for ozone adsorption may be correspondingly increased.

550 Uptake coefficients derived from studies conducted at atmospheric pressure are in better
551 agreement with our values^{3,8,25,29-31}. For example, Mogili et al. investigated ozone uptake

onto α -Al₂O₃ and α -Fe₂O₃ as a function of RH and ozone partial pressure in an atmospheric chamber and obtained γ_{BET} values ranging from 1.9×10^{-9} to 1.3×10^{-7} for these samples³⁰. In addition, Coates Fuentes et al. studied ozone uptake onto kaolinite, a clay used as a mineral dust proxy, using a coated-wall flow tube and found a γ_{BET} value of 1.9×10^{-8} at RH <1% ²⁹; similar results were obtained by Lasne et al.⁸. Finally, our results for Gobi dust are similar to those reported in a previous study of the catalytic uptake of ozone by this substrate in a U-shape fixed-bed reactor⁹.

559 **2.1.3 Influence of relative humidity on ozone uptake**

560 Although mineral dust is emitted primarily in arid regions, it can be exposed to 561 environments of differing RH during atmospheric transport. For example, mineral dust is 562 primarily transported across the Atlantic Ocean in the Saharan Air Layer, a dry, warm, air 563 mass; during transport, however, tropical disturbances can lead to vertical mixing of this 564 layer with underlying cool, moist, tropical Atlantic air and ultimately expose dust to more 565 humid environmental conditions^{43,44}. In addition, the mixing between dry, dust-laden air flows and more humid air can also occur during dust storm episodes that occur at lower 566 567 altitudes⁴⁵. In this context, it is important to understand the influence of water vapour on 568 the reactivity of our samples toward ozone.

Here, we investigated the RH dependence of ozone uptake for all TiO₂ minerals studied
(commercial anatase, anatase 1, anatase 2, and rutile) and for 4 Ti-containing minerals
(titanite 1, titanite 2, phlogopite, and ilmenite). Because we observed minimal loss of ozone
for all TiO₂/SiO₂ samples under dark conditions, discussion of the influence of RH on ozone
uptake by these samples is presented in Section 2.2.3 (illuminated conditions). In the case

of titanite 2, dark reactivity was small at all RH values (results not shown), so trends in

575 uptake were difficult to discern. In the case of ilmenite, the bimodal reactivity described in

576 Section 2.1 precluded reliable interpretation of RH trends. For these reasons, we limit our

577 discussion to the influence of RH on ozone uptake by titanite 1 and phlogopite.

578 As illustrated in **Figure S5**, the loss of ozone at the surface of both titanite 1 and phlogopite

579 increased with decreasing RH. At lower RH values, the correction factor for radial diffusion

580 of ozone inside the coated-wall flow tube becomes very large; for this reason, we did not

581 calculate γ_{BET} values for these experiments. These results agree qualitatively with those

582 obtained in previous studies of ozone uptake by metal oxides^{25,25,31} and clays^{8,29}, and most

583 likely reflect competition by water vapour for available surface sites for ozone

584 adsorption⁴⁶.

585 **2.2 Ozone uptake by TiO**₂ **under illuminated conditions**

586 2.2.1 Mechanistic discussion for photoenhanced ozone uptake by TiO₂

Here, we elaborate on the mechanism proposed by Nicolas et al. for the TiO₂-catalyzed
uptake of ozone (**R5-R13**)⁴⁷:

589
$$\operatorname{TiO}_2 + h\nu \rightarrow \operatorname{TiO}_2(e^- + h^+)$$
 (5)

$$590 \qquad O_3 + e^- \quad \rightarrow \quad O_3^{\bullet -} \tag{6}$$

$$591 O_2 + e^- \to O_2^{\bullet-} (7)$$

 $592 O_2^{\bullet-} + O_3 \to O_3^{\bullet-} + O_2 (8)$

$$593 \qquad O_3^{\bullet-} + H^+ \quad \rightarrow \quad HO_3^{\bullet} \tag{9}$$

594
$$HO_3^{\bullet} \rightarrow O_2 + {}^{\bullet}OH$$
 (10)

595
$$\bullet OH + O_3 \rightarrow O_2 + HO_2 \bullet$$
 (11)

596
$$H_2O_{(ads)} + h^+ \rightarrow 2^{\bullet}OH$$
 (12)

597
$$>$$
TiOH + h⁺ \rightarrow {>TiOH[•]}⁺ (13)

598 In this mechanism, absorption of light with energy equal to or greater than the band gap of 599 TiO₂ leads to the formation of an electron-hole pair (**R5**) and initiates a chain of reactions 600 that reduce ozone and ultimately result in the release of molecular oxygen (R6-R11). In 601 this proposed mechanism, ozone can be reduced directly by photogenerated electrons (R6) 602 or indirectly by superoxide radicals produced from the reduction of molecular oxygen by 603 photogenerated electrons (**R7–8**). In both cases, the ozonide radical thus produced can 604 decompose to yield hydroxyl radicals (**R9-10**), which can in turn lead to further ozone 605 decomposition (**R11**). Under our experimental conditions, additional mechanisms for 606 hydroxyl radical production include the reaction of photogenerated holes with molecularly 607 adsorbed water (**R12**) and/or the hydrated surface of TiO_2 (**R13**)⁴⁸.

608 **2.2.2 Comparison of uptake coefficients to previous literature**

609 Although this work is the first to study the photochemical uptake of ozone by natural Ti-610 containing minerals, several other studies have explored the photochemical uptake of 611 ozone by commercial TiO₂. Using a coated-wall flow tube, Nicolas et al. obtained a γ_{BET} value 612 of $(2.6 \pm 0.4) \times 10^{-6}$ for TiO₂/SiO₂ mixed films at similar ozone concentrations, RH values,

613 and film masses to those employed in our experiments⁴⁷. This value is much lower than the 614 value we obtain in this work (*i.e.* $(1.8 \pm 0.3) \times 10^{-4}$). We suggest that this difference may 615 reflect different approaches used to calculate γ_{BET} : specifically, because these authors were 616 interested in the reactivity of the composite film rather than the reactivity of TiO_2 itself, 617 they reported γ_{BET} values corrected for the entire surface area of their TiO₂/SiO₂ mixed 618 films. By contrast, in this work, because we were interested in obtaining γ_{BET} for the TiO₂ 619 fraction, we used the surface area of TiO_2 alone in our calculations (see **Section 1.3.3.1**). In 620 another study, Chen et al.³¹ used an environmental reaction chamber to obtain a γ_{BET} value 621 of $(2.4 \pm 0.1) \times 10^{-7}$, which is lower than both the values obtained in this study and those reported by Nicolas et al.³¹. We suggest that this discrepancy likely reflects the use of 622 623 significantly higher ozone concentrations in the reaction chamber than in the flow tube 624 studies, as calculated γ_{BET} values for surface-mediated reactions display a negative 625 dependence on gas-phase ozone concentrations⁴⁷. Finally, whereas our commercial TiO₂ 626 was primarily anatase, the two previous studies used Degussa TiO₂, which contains both 627 anatase and rutile. Since studies have shown that the photoreactivity of mixed TiO_2 phases can differ from that of individual TiO₂ phases⁴⁹, it is also possible that the inherent 628 629 photoreactivity of our TiO₂ sample differs from those employed in these previous studies.

630 **2.2.3 Influence of relative humidity on ozone uptake**

In order to assess the influence of adsorbed water on the photochemical uptake of ozone by
our TiO₂ samples, we performed experiments at several RH values. As illustrated in Figure
S13, anatase 1 exhibits the highest photoreactivity at RH 10%. These results agree with
those of Nicolas et al., who observed the highest photoreactivity values for TiO₂ with ozone

635	at intermediate RH values ⁴⁷ . They attributed lower photoreactivities under wet conditions
636	to competitive adsorption by water vapour, and lower photoreactivities under dry
637	conditions to reductions in the quantity of adsorbed water available to generate radical
638	species ((R12) in the mechanism described in Section 2.2.1) at the illuminated TiO_2
639	surface ^{47,51} . The fact that photochemistry still occurs under dry conditions in both of our
640	studies implies that the hydrated TiO_2 surface itself may also participate in photochemistry
641	(R13); additional evidence for photochemistry in the absence of water vapour is also
642	provided by observations of TiO ₂ -mediated photochemistry under vacuum conditions (<i>i.e.</i>
643	in a photochemical Knudsen cell) ⁵² .
644	Figure S13 also shows that the trends in γ_{BET} as a function of RH are mineral-dependent
644 645	Figure S13 also shows that the trends in γ_{BET} as a function of RH are mineral-dependent for our sample set: specifically, commercial anatase and anatase 2 display the highest
644 645 646	Figure S13 also shows that the trends in γ _{BET} as a function of RH are mineral-dependent for our sample set: specifically, commercial anatase and anatase 2 display the highest photoreactivity at RH <0.1%, whereas the photoreactivity of rutile is relatively invariant
644 645 646 647	Figure S13 also shows that the trends in γBET as a function of RH are mineral-dependentfor our sample set: specifically, commercial anatase and anatase 2 display the highestphotoreactivity at RH <0.1%, whereas the photoreactivity of rutile is relatively invariant
644 645 646 647 648	Figure S13 also shows that the trends in γBET as a function of RH are mineral-dependentfor our sample set: specifically, commercial anatase and anatase 2 display the highestphotoreactivity at RH <0.1%, whereas the photoreactivity of rutile is relatively invariant
 644 645 646 647 648 649 	Figure S13 also shows that the trends in γBET as a function of RH are mineral-dependentfor our sample set: specifically, commercial anatase and anatase 2 display the highestphotoreactivity at RH <0.1%, whereas the photoreactivity of rutile is relatively invariant
 644 645 646 647 648 649 650 	Figure S13 also shows that the trends in γBET as a function of RH are mineral-dependentfor our sample set: specifically, commercial anatase and anatase 2 display the highestphotoreactivity at RH <0.1%, whereas the photoreactivity of rutile is relatively invariant
 644 645 646 647 648 649 650 651 	Figure S13 also shows that the trends in γBET as a function of RH are mineral-dependentfor our sample set: specifically, commercial anatase and anatase 2 display the highestphotoreactivity at RH <0.1%, whereas the photoreactivity of rutile is relatively invariant

653 **3 References**

- (1) Parrish, D. D.; Murphy, P. C.; Albritton, D. L.; Fehsenfeld, F. C. The Measurement of the
 Photodissociation Rate of NO2 in the Atmosphere. *Atmos. Environ.* **1983**, *17* (7), 1365–1379.
 https://doi.org/10.1016/0004-6981(83)90411-0.
- (2) Zafonte, L.; Rieger, P. L.; Holmes, J. R. Nitrogen Dioxide Photolysis in the Los Angeles
 Atmosphere. *Environ. Sci. Technol.* **1977**, *11* (5), 483–487.
- (3) Nicolas, M.; Ndour, M.; Ka, O.; D'Anna, B.; George, C. Photochemistry of Atmospheric Dust: Ozone
 Decomposition on Illuminated Titanium Dioxide. *Environ. Sci. Technol.* 2009, 43 (19), 7437–
 7442. https://doi.org/10.1021/es901569d.
- (4) Pöschl, U.; Rudich, Y.; Ammann, M. Kinetic Model Framework for Aerosol and Cloud Surface
 Chemistry and Gas-Particle Interactions–Part 1: General Equations, Parameters, and
 Terminology. *Atmos. Chem. Phys.* 2007, 7 (23), 5989–6023.
- (5) Michel, A. E.; Usher, C. R.; Grassian, V. H. Reactive Uptake of Ozone on Mineral Oxides and
 Mineral Dusts. *Atmos. Environ.* 2003, *37* (23), 3201–3211. https://doi.org/10.1016/S1352 2310(03)00319-4.
- (6) Adams, J. W.; Rodriguez, D.; Cox, R. A. The Uptake of SO2 on Saharan Dust: A Flow Tube Study.
 Atmos. Chem. Phys. 2005, 5 (10), 2679–2689.
- 670 (7) El Zein, A.; Bedjanian, Y. Interaction of NO2 with TiO2 Surface under UV Irradiation:
 671 Measurements of the Uptake Coefficient. *Atmos. Chem. Phys.* 2012, *12* (2), 1013–1020.
 672 https://doi.org/10.5194/acp-12-1013-2012.
- (8) Lasne, J.; Romanias, M. N.; Thevenet, F. Ozone Uptake by Clay Dusts under Environmental
 Conditions. *ACS Earth Space Chem.* 2018, *2* (9), 904–914.
 https://doi.org/10.1021/acsearthspacechem.8b00057.
- 676 (9) Wang, X.; Romanias, M. N.; Thévenet, F.; Rousseau, A. Geocatalytic Uptake of Ozone onto Natural 677 Mineral Dust. *Catalysts* **2018**, *8* (7), 263. https://doi.org/10.3390/catal8070263.
- Knopf, D. A.; Pöschl, U.; Shiraiwa, M. Radial Diffusion and Penetration of Gas Molecules and
 Aerosol Particles through Laminar Flow Reactors, Denuders, and Sampling Tubes. *Anal. Chem.* 2015, *87* (7), 3746–3754. https://doi.org/10.1021/ac5042395.
- (11) Sing, K. S. W. Adsorption by Powders and Porous Solids. In *Adsorption by Powders and Porous Solids (Second Edition)*; Rouquerol, F., Rouquerol, J., Sing, K. S. W., Llewellyn, P., Maurin, G.,
 Eds.; Academic Press: Oxford, 2014; pp 237–268. https://doi.org/10.1016/B978-0-08097035-6.00007-3.
- (12) Donovan, J. J.; Kremser, D.; Fournelle, J. H.; Goemann, K. *Probe for EPMA: Acquisition, Automation and Analysis, Version 11*; Eugene, Oregon, Probe Software, Inc., 2015.
- (13) Donovan, J. J.; Snyder, D. A.; Rivers, M. L. An Improved Interference Correction for Trace
 Element Analysis, 2nd ed.; Microbeam Analysis, 1993.
- 689 (14) Armstrong, J. T. CITZAF: A Package of Correction Programs for the Quantitative Electron
 690 Microbeam X-Ray-Analysis of Thick Polished Materials, Thin-Films, and Particles; Microbeam
 691 Analysis 4, 1995.
- (15) Jarosewich, E.; Nelen, J. A.; Norberg, J. A. *Reference Samples for Electron Microprobe Analysis*,
 4th ed.; Geostand. Geoanal. Res, 1980.
- (16) Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A Quality Materials Characterization
 Database. *Powder Diffraction* 2019, *34* (4), 352–360.
- 696 https://doi.org/10.1017/S0885715619000812. 697 (17) Jade 9.5: Materials Data: Livermore, CA. 2019.
- 698 (18) TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. -
- 699 User's Manual, Bruker AXS, Karlsruhe, Germany. Bruker AXS (2008).
- 700 (19) Pawley, G. S. Unit-Cell Refinement from Powder Diffraction Scans. J. Appl. Cryst. 1981, 14 (6),
- 701 357–361. https://doi.org/10.1107/S0021889881009618.

702	(20)	Bruker AXS Inc. Version, S. A. D. A. B. S.; Madison WI, USA, 2001.
703	(21)	Sheldrick, G. M. SHELXTL, Version 6.12. Bruker AXS Inc.: Madison, WI 2001.
704	(22)	Kortüm, G. Reflectance Spectroscopy: Principles, Methods, Applications; Springer Science &
705		Business Media, 2012.
706	(23)	Murphy, A. B. Band-Gap Determination from Diffuse Reflectance Measurements of
707		Semiconductor Films, and Application to Photoelectrochemical Water-Splitting. Sol. Energy
708		<i>Mater. Sol. Cell</i> 2007 , <i>91</i> (14), 1326–1337. https://doi.org/10.1016/j.solmat.2007.05.005.
709	(24)	Jenkins, R.; Snyder, R. Introduction to X-Ray Powder Diffractometry; Wiley: New York, 1996.
710	(25)	Sullivan, R. C.; Thornberry, T.; Abbatt, J. P. D. Ozone Decomposition Kinetics on Alumina:
711		Effects of Ozone Partial Pressure, Relative Humidity and Repeated Oxidation Cycles. <i>Atmos.</i>
712		<i>Chem. Phys.</i> 2004 , <i>4</i> (5), 1301–1310. https://doi.org/10.5194/acp-4-1301-2004.
713	(26)	Li, W.; Gibbs, G. V.; Oyama, S. T. Mechanism of Ozone Decomposition on a Manganese Oxide
714		Catalyst. 1. In Situ Raman Spectroscopy and Ab Initio Molecular Orbital Calculations. J. Am.
715		<i>Chem. Soc.</i> 1998 , <i>120</i> (35), 9041–9046. https://doi.org/10.1021/ja981441+.
716	(27)	Hanisch, F.; Crowley, J. N. Ozone Decomposition on Saharan Dust: An Experimental
717		Investigation. Atmos. Chem. Phys. 2003, 3 (1), 119–130. https://doi.org/10.5194/acp-3-119-
718		2003.
719	(28)	Michel A. E.; Usher C. R.; Grassian V. H. Heterogeneous and Catalytic Uptake of Ozone on
720	Ċ	Mineral Oxides and Dusts: A Knudsen Cell Investigation. <i>Geophys. Res. Lett.</i> 2002 , 29 (14),
721		10–11. https://doi.org/10.1029/2002GL014896.
722	(29)	Coates Fuentes, Z. L.; Kucinski, T. M.; Hinrichs, R. Z. Ozone Decomposition on Kaolinite as a
723		Function of Monoterpene Exposure and Relative Humidity. ACS Earth Space Chem. 2017 .
724		https://doi.org/10.1021/acsearthspacechem.7b00107.
725	(30)	Mogili, P. K.; Kleiber, P. D.; Young, M. A.; Grassian, V. H. Heterogeneous Uptake of Ozone on
726	Ċ	Reactive Components of Mineral Dust Aerosol: An Environmental Aerosol Reaction Chamber
727		Study. J. Phys. Chem. A 2006 , 110 (51), 13799–13807. https://doi.org/10.1021/jp063620g.
728	(31)	Chen, H.; Stanier, C. O.; Young, M. A.; Grassian, V. H. A Kinetic Study of Ozone Decomposition
729		on Illuminated Oxide Surfaces. J. Phys. Chem. A 2011 , 115 (43), 11979–11987.
730		https://doi.org/10.1021/jp208164v.
731	(32)	Maters, E. C.; Delmelle, P.; Rossi, M. J.; Ayris, P. M.; Bernard, A. Controls on the Surface
732		Chemical Reactivity of Volcanic Ash Investigated with Probe Gases. <i>Earth Planet. Sci. Lett.</i>
733		2016 , <i>450</i> , 254–262. https://doi.org/10.1016/j.epsl.2016.06.044.
734	(33)	Bulanin, K. M.; Lavalley, J. C.; Tsyganenko, A. A. IR Spectra of Adsorbed Ozone. Colloids Surf. A
735		Physicochem. Eng. Asp. 1995, 101 (2), 153–158. https://doi.org/10.1016/0927-
736		7757(95)03130-6.
737	(34)	Lampimäki, M.; Zelenay, V.; Křepelová, A.; Liu, Z.; Chang, R.; Bluhm, H.; Ammann, M. Ozone-
738		Induced Band Bending on Metal-Oxide Surfaces Studied under Environmental Conditions.
739		<i>ChemPhysChem</i> 2013 , <i>14</i> (11), 2419–2425. https://doi.org/10.1002/cphc.201300418.
740	(35)	Li, W.; Oyama, S. T. Mechanism of Ozone Decomposition on a Manganese Oxide Catalyst. 2.
741		Steady-State and Transient Kinetic Studies. J. Am. Chem. Soc. 1998, 120 (35), 9047–9052.
742		https://doi.org/10.1021/ja9814422.
743	(36)	Radhakrishnan, R.; Oyama, S. T. Ozone Decomposition over Manganese Oxide Supported on
744		ZrO2 and TiO2: A Kinetic Study Using in Situ Laser Raman Spectroscopy. J. Catal. 2001, 199
745		(2), 282–290. https://doi.org/10.1006/jcat.2001.3167.
746	(37)	Roscoe, J. M.; Abbatt, J. P. D. Diffuse Reflectance FTIR Study of the Interaction of Alumina
747	-	Surfaces with Ozone and Water Vapor. J. Phys. Chem. A 2005 , 109 (40), 9028–9034.
748		https://doi.org/10.1021/jp050766r.
749	(38)	Fitzpatrick, R. W.; Chittleborough, D. J. Titanium and Zirconium Minerals. In Soil Mineralogy
750		with Environmental Applications; John Wiley & Sons, Ltd, 2002; pp 667–690.
751		https://doi.org/10.2136/sssabookser7.c22.

- (39) Chang, R. Y.-W.; Sullivan, R. C.; Abbatt, J. P. D. Initial Uptake of Ozone on Saharan Dust at
 Atmospheric Relative Humidities. *Geophys. Res. Lett.* 2005, *32* (14), L14815.
 https://doi.org/10.1029/2005GL023317.
- (40) Kolb, C. E.; Cox, R. A.; Abbatt, J. P. D.; Ammann, M.; Davis, E. J.; Donaldson, D. J.; Garrett, B. C.;
 George, C.; Griffiths, P. T.; Hanson, D. R.; Kulmala, M.; McFiggans, G.; Pöschl, U.; Riipinen, I.;
 Rossi, M. J.; Rudich, Y.; Wagner, P. E.; Winkler, P. M.; Worsnop, D. R.; O' Dowd, C. D. An
 Overview of Current Issues in the Uptake of Atmospheric Trace Gases by Aerosols and
 Clouds. *Atmospheric Chemistry and Physics* 2010, *10* (21), 10561–10605.
 https://doi.org/10.5194/acp-10-10561-2010.
- (41) Hanisch, F.; Crowley, J. N. Ozone Decomposition on Saharan Dust: An Experimental
 Investigation. *Atmos. Chem. Phys.* 2003, *3* (1), 119–130. https://doi.org/10.5194/acp-3-1192003.
- Aubin, D. G.; Abbatt, J. P. D. Interaction of NO2 with Hydrocarbon Soot: Focus on HONO Yield,
 Surface Modification, and Mechanism. *J Phys Chem A* 2007, *111* (28), 6263–6273.
 https://doi.org/10.1021/jp068884h.
- (43) Wu, L. Impact of Saharan Air Layer on Hurricane Peak Intensity. *Geophys. Res. Lett.* 2007, 34
 (9). https://doi.org/10.1029/2007GL029564.
- 769 (44) Perry, K. D.; Cahill, T. A.; Eldred, R. A.; Dutcher, D. D.; Gill, T. E. Long-Range Transport of North
 770 African Dust to the Eastern United States. *J. Geophys. Res.* 1997, *102* (D10), 11225–11238.
 771 https://doi.org/10.1029/97JD00260.
- (45) Xie, C.; Nishizawa, T.; Sugimoto, N.; Matsui, I.; Wang, Z. Characteristics of Aerosol Optical
 Properties in Pollution and Asian Dust Episodes over Beijing, China. *Appl. Opt.* 2008, 47 (27),
 4945–4951. https://doi.org/10.1364/A0.47.004945.
- (46) Rubasinghege, G.; H. Grassian, V. Role(s) of Adsorbed Water in the Surface Chemistry of
 Environmental Interfaces. *Chem. Commun.* 2013, 49 (30), 3071–3094.
 https://doi.org/10.1039/C3CC38872G.
- (47) Nicolas, M.; Ndour, M.; Ka, O.; D'Anna, B.; George, C. Photochemistry of Atmospheric Dust:
 Ozone Decomposition on Illuminated Titanium Dioxide. *Environ. Sci. Technol.* 2009, 43 (19),
 7437–7442. https://doi.org/10.1021/es901569d.
- (48) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of
 Semiconductor Photocatalysis. *Chem. Rev.* **1995**, *95* (1), 69–96.
 https://doi.org/10.1021/cr00033a004.
- (49) Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Explaining the Enhanced
 Photocatalytic Activity of Degussa P25 Mixed-Phase TiO₂ Using EPR. *J. Phys. Chem. B* 2003,
 107 (19), 4545–4549. https://doi.org/10.1021/jp0273934.
- (50) Bickley, R. I.; Gonzalez-Carreno, T.; Lees, J. S.; Palmisano, L.; Tilley, R. J. D. A Structural
 Investigation of Titanium Dioxide Photocatalysts. *J. Solid State Chem.* **1991**, *92* (1), 178–190.
 https://doi.org/10.1016/0022-4596(91)90255-G.
- (51) Folli, A.; Campbell, S. B.; Anderson, J. A.; Macphee, D. E. Role of TiO2 Surface Hydration on NO
 Oxidation Photo-Activity. *J.Photoch. Photobio. A* 2011, *220* (2), 85–93.
 https://doi.org/10.1016/j.jphotochem.2011.03.017.
- (52) Styler, S. A.; Donaldson, D. J. Photooxidation of Atmospheric Alcohols on Laboratory Proxies
 for Mineral Dust. *Environ. Sci. Technol.* 2011, 45 (23), 10004–10012.
 https://doi.org/10.1021/es202263q.
- (53) Brown, G. E.; Henrich, V. E.; Casey, W. H.; Clark, D. L.; Eggleston, C.; Felmy, A.; Goodman, D. W.;
 Grätzel, M.; Maciel, G.; McCarthy, M. I.; Nealson, K. H.; Sverjensky, D. A.; Toney, M. F.; Zachara,
 J. M. Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial
 Organisms. *Chem. Rev.* **1999**, *99* (1), 77–174. https://doi.org/10.1021/cr980011z.
 - S33

- (54) Ivanov, A. V.; Trakhtenberg, S.; Bertram, A. K.; Gershenzon, Y. M.; Molina, M. J. OH, HO2, and 800 Ozone Gaseous Diffusion Coefficients. J. Phys. Chem. A 2007, 111 (9), 1632–1637. 801
- 802
- https://doi.org/10.1021/jp066558w. Jennings, S. G. The Mean Free Path in Air. *J. Aerosol Sci* **1988**, *19* (2), 159–166. 803 (55)
- https://doi.org/10.1016/0021-8502(88)90219-4. 804
- 805

Supporting figures and tables

Figure S1

a)

Schematic of the photochemical coated-wall flow tube reactor, with a) the movable injector

- pushed in, which prevents the interaction of ozone with mineral samples and b) the
- movable injector pulled back, which allows for interaction between ozone and mineral
- samples. For clarity, only 2 of the 4 UV-A lamps in the apparatus are shown here.

b)

- 822 Photolysis frequencies for NO₂ (J_{NO_2}) inside the flow tube versus the number of lamps
- turned on. Each data point represents the mean of 3 experimental trials, with 1σ error
- bars; in some cases, error bars are too small to be seen. The dashed line is a linear fit to the
- 825 experimental data.
- 826

827

c) titanite 2, d) phlogopite, e) hastingsite, f) augite, and g) epidote. exposure of ozone to our Ti-containing mineral under dark and illuminated conditions, respectively: a) ilmenite, b) titanite 1, time periods in which ozone was not exposed to our Ti-containing mineral. The blue and yellow regions of the profile show the Representative reaction profiles of Ti-containing minerals with ozone at 25% RH. The unshaded regions of the profile show

Representative reaction profiles of TiO_2/SiO_2 mixtures with ozone at 25% RH. The unshaded regions of the profile show time periods in which ozone was not exposed to our Ti-containing mineral. The blue and yellow regions of the profile show the exposure of ozone to our Ti-containing mineral under dark and illuminated conditions, respectively: a) commercial anatase (0.1 wt. %), b) anatase 1 (1 wt. %), c) anatase 2 (20 wt. %), and d) rutile (10 wt. %).

Photographs of natural Ti-containing minerals prior to grinding, with countries of origin listed in parentheses.

Comparison of powder diffraction data of commercial anatase, anatase 1, and anatase 2. Impurity peaks and/or peaks from K β radiation are indicated with arrows.

Anatase purity check from Sigma Aldrich. The pattern is from the same batch as our commercial anatase sample. Cu radiation source was used for this measurement. Minor rutile peak is at 27.3° 2θ angle.

Figure S9 Pawley refinement fit for TiO_2 minerals: commercial anatase, anatase 1, anatase 2, and rutile.

Pawley refinement fit for remaining minerals. Ilmenite, titanite 1, titanite 2, phlogopite, and augite are fit with only one phase, whereas the hastingsite sample has diffraction peaks from hastingsite (black ticks), magnetite (dark grey ticks), and quartz (light grey ticks), and the epidote sample has diffraction peaks from epidote (black ticks) and quartz (dark grey ticks).

Kubelka–Munk plots for Ti-containing minerals, in some cases with associated band gaps: a) ilmenite, b) phlogopite, c) hastingsite, d) augite, and e) epidote.

f) titanite 2. Secondary electron images collected by FESEM of: a) commercial anatase, b) anatase 1, c) anatase 2, d) rutile, e) titanite 1, and

Influence of relative humidity on light ozone BET uptake coefficients (γ_{BET}) for TiO₂ minerals. Each data point represents 1 trial, except for RH 25%, in which each data point represents the mean of 3 trials with 1σ error bars.

relative humidity / %

Figure S14. BET uptake coefficients (γ_{BET}) under dark and illuminated conditions for ozone at RH 25% at the surface of Ti minerals, Ti-bearing minerals, and desert dust samples (Cape Verde dust and Gobi dust). Titanite 2 dark uptake was not significantly larger than the blank experiments (as discussed in main text of the manuscript). Each data point represents the mean of 3 trials with 1σ error bars, except for ilmenite, in which each trial (n = 6) is displayed individually as this sample appeared to display bimodal reactivity (see **Section 2.1**).

Table S1

Photochemical coated-wall flow tube parameters.

Parameter	Experimental	Equation
Temperature (<i>T</i>)	296.5 K	
Pressure (<i>P</i>)	1 atm	
Flow tube reactor diameter (D _{reactor})	1.6 cm	
Flow tube reactor length (<i>L_{reactor}</i>)	34.4 cm	
Pyrex insert tube diameter (D _{tube})	1.05 cm	
Pyrex insert tube length (<i>L</i> _{tube})	20 cm	
Flow reactor cross-sectional area (A)	0.865 cm ²	$A = \pi r^2$
Volumetric flow (F)	0.440 L min ⁻¹	
Linear velocity (v)	8.47 cm s ⁻¹	$v = \frac{F}{A}$
Length of coated tube (L)	14.0 cm	
Residence time (<i>t</i>)	1.6 s	$t = \frac{v}{L}$
Reynolds number (<i>Re</i>)*	59.3	$Re = \frac{\rho \times D_{tube} \times v}{\eta}$
Length to laminar flow $(I)^{10}$	2.18 cm	$l = 0.035 \times Re \times D_{tube}$
Mean molecular velocity (ω)**	361.6 m s ⁻¹	$\omega = \sqrt{\frac{8RT}{\pi M}}$
Ozone diffusion coefficient (<i>D</i>) ⁵⁴	0.13 cm ² s ⁻²	
Mean free path (λ)	105.7 nm	$\lambda = \frac{D}{\omega}$
Knudsen number (<i>Kn</i>)	2.00×10^{-5}	$Kn = \frac{2 \times \lambda}{D_{tube}}$
Dimensionless axial distance $(z^*)^{10}$	0.38	$z^* = z \frac{\pi D}{2F}$

		z = axial distance of tube (L)
Effective Sherwood number $(N_{Shw}^{eff})^{10}$	3.97	$N_{Shw}^{eff} = 3.6568 + \frac{A}{(z^* + B)} 55$ A = 0.0978 and B = 0.0154

*Re calculations require density (ρ) and viscosity (η) of air, which are taken to be 1.2 kg m⁻³ and 1.8 x 10⁻⁵ Pa s, respectively at 296.5 K⁵⁵

 $^{**}\omega$ calculations require the ideal gas constant (R) and the molar mass of ozone (M), which are 8.3145 J K^{-1} mol^{-1} and 48 x 10^{-3} kg mol^{-1}

Table S2

 TiO_2/SiO_2 mixtures prepared for each TiO_2 sample.

Sample	Mass of SiO ₂ (mg)	Mass of TiO ₂ (mg)	TiO ₂ wt. %
Commercial anatase	899.2	0.87	0.1
Anatase 1	891.0	9.00	1.0
Anatase 2	720	180.08	20.0
Rutile	809.7	90.37	10.0

Table S3

Summary of mineral sample pretreatments.

Sample	Dremel®	SUPER IRON out [®] (0.04 g mL ⁻¹)	HCl (1 M)
Anatase 1	\checkmark		
Anatase 2			
Rutile			
Ilmenite			
Titanite 1	\checkmark		\checkmark
Titanite 2			
Phlogopite	\checkmark	\checkmark	\checkmark
Hastingsite		\checkmark	
Augite		\checkmark	
Epidote	\checkmark	\checkmark	

Table S4Specific surface areas (BET; $m^2 g^{-1}$) of each mineral sample under study.

Sample	BET surface area (m ² g ⁻¹)
Commercial anatase	9.6791
Anatase 1	3.7258
Anatase 2	1.5205
Rutile	1.9323
Ilmenite	2.0914
Titanite 1	1.9616
Titanite 2	1.0077
Phlogopite	18.7799
Hastingsite	1.7424
Augite	1.6235
Epidote	1.3855
Silicon dioxide	94.5500

 Table S5

 Elemental composition of anatase 1 as obtained via electron microprobe analysis. In all cases, results less than the estimated limit of detection are reported as zero.

Max	Min	Std Dev.	Average									
0.12	0.00	0.04	0.07	0.10	0.00	0.00	0.12	0.07	0.08	0.07	0.09	Nb ₂ 0 ₅
0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	SiO2
100.12	99.14	0.34	99.47	99.14	99.14	99.30	99.51	99.70	99.19	100.12	99.63	TiO ₂
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Zn0
0.02	0.00	0.01	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.00	0.00	Al ₂ 0 ₃
0.11	0.00	0.04	0.07	0.10	0.11	0.06	0.04	0.00	0.10	0.08	0.03	V ₂ 0 ₃
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Cr ₂ 0 ₃
0.09	0.00	0.03	0.03	0.05	0.00	0.03	0.03	0.00	0.09	0.00	0.00	Fe ₂ 0 ₃
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	MnO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	MgO
0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	CaO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Na ₂ 0
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	K ₂ 0
100.27	99.26	0.32	99.63	99.39	99.26	99.41	99.73	99.77	99.46	100.27	99.75	Total

H
يم
D
e
~
9,

Elemental composition of anatase 2 as obtained via electron microprobe analysis. In all cases, results less than the estimated limit of detection are reported as zero.

Max	Min	Std Dev.	Average																	
0.04	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Nb ₂ 0 ₅
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SiO ₂
100.20	99.63	0.15	99.83	99.79	99.72	99.78	99.79	99.89	99.81	99.78	99.63	99.81	100.20	99.67	99.68	99.80	99.89	100.02	100.08	TiO ₂
0.03	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.03	0.00	0.00	ZnO
0.03	0.00	0.01	0.01	0.02	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	Al ₂ 0 ₃
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Cr ₂ 0 ₃
0.11	0.03	0.02	0.07	0.06	0.07	0.08	0.08	0.08	0.06	0.03	0.03	0.08	0.05	0.05	0.11	0.06	0.09	0.10	0.03	Fe ₂ 0 ₃
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	MnO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	MgO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	CaO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Na ₂ 0
0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	K ₂ 0
100.25	99.66	0.15	99.91	99.87	99.79	99.90	99.87	99.97	99.91	99.81	99.66	99.89	100.25	99.75	99.82	99.86	100.01	100.12	100.11	Total

 Table S7

 Elemental composition of rutile as obtained via electron microprobe analysis. In all cases, results less than the estimated limit of detection are reported as zero.

Мах	Min	Std Dev.	Average									
0.60	0.48	0.04	0.52	0.51	0.49	0.52	0.60	0.48	0.54	0.50	0.49	Nb ₂ 0 ₅
0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	SiO ₂
98.93	98.63	0.10	98.78	98.86	98.90	98.93	98.74	98.63	98.72	98.74	98.73	Ti0 ₂
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ZnO
0.04	0.02	0.01	0.03	0.02	0.04	0.03	0.02	0.03	0.03	0.04	0.04	Al ₂ 0 ₃
0.19	0.00	0.06	0.11	0.14	0.13	0.14	0.12	0.19	0.12	0.05	0.00	V ₂ O ₃
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Cr ₂ 0 ₃
0.68	0.64	0.01	0.67	0.64	0.68	0.68	0.66	0.66	0.67	0.67	0.68	Fe ₂ 0 ₃
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	MnO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	MgO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	CaO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Na ₂ 0
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	K ₂ 0
100.30	99.94	0.13	100.11	100.17	100.24	100.30	100.16	99.99	100.09	100.00	99.94	Total

Table S8

for the elemental composition. Elemental composition of ilmenite as obtained via electron microprobe analysis. In all cases, results less than the estimated limit of detection are reported as zero. We note that the impurity in the ilmenite sample was not used in the overall average

Impurity	Max	Min	Std Dev.	Average								
0.00	4.48	0.00	1.67	0.71	4.48	0.00	0.47	0.00	0.00	0.00	0.00	Nb ₂ 0 ₅
3.47	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.02	SiO ₂
14.82	53.50	50.01	1.19	51.03	53.50	50.49	51.44	50.10	50.94	50.73	50.01	TiO ₂
0.00	0.04	0.00	0.02	0.02	0.00	0.03	0.00	0.03	0.04	0.00	0.04	Zn0
1.53	0.02	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	Al ₂ 0 ₃
0.04	0.06	0.00	0.02	0.01	0.06	0.00	0.00	0.00	0.00	0.00	0.00	V_2O_3
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Cr ₂ 0 ₃
66.95	46.43	38.96	2.65	44.82	38.96	45.87	44.53	46.43	45.86	46.03	46.09	FeO
0.39	0.71	0.60	0.04	0.68	0.60	0.71	0.71	0.69	69.0	0.71	99.0	MnO
0.14	0.03	0.00	0.01	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	MgO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	CaO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Na ₂ 0
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	K ₂ 0
87.42	97.65	96.82	0.29	97.28	97.65	97.1	97.15	97.26	97.53	97.47	96.82	Total

 Table S9

 Elemental composition of titanite 1 as obtained via electron microprobe analysis. In all cases, results less than the estimated limit of detection are reported as zero.

Max	Min	Std Dev.	Average									
1.16	0.91	0.10	1.06	0.98	0.91	0.93	1.11	1.16	1.13	1.08	1.14	Nb ₂ 0 ₅
30.50	30.04	0.15	30.24	30.32	30.10	30.23	30.04	30.23	30.12	30.50	30.35	SiO ₂
34.98	34.39	0.22	34.72	34.59	34.51	34.39	34.70	34.86	34.72	34.98	34.98	Ti0 ₂
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Zn0
1.33	1.17	0.05	1.24	1.29	1.33	1.27	1.17	1.19	1.23	1.20	1.23	Al ₂ 0 ₃
0.06	0.00	0.03	0.03	0.00	0.06	0.00	0.06	0.04	0.06	0.04	0.00	V ₂ O ₃
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Cr ₂ 0 ₃
2.42	2.29	0.05	2.34	2.40	2.42	2.38	2.29	2.31	2.30	2.29	2.33	Fe ₂ 0 ₃
0.09	0.08	0.00	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.08	0.08	MnO
0.08	0.04	0.02	0.07	0.07	0.08	0.08	0.06	0.08	0.05	0.04	0.06	MgO
27.34	27.08	0.08	27.20	27.26	27.12	27.24	27.14	27.08	27.22	27.34	27.22	CaO
0.33	0.29	0.02	0.31	0.29	0.29	0.30	0.33	0.29	0.32	0.32	0.30	Na ₂ 0
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	K ₂ 0
97.87	96.90	0.36	97.27	97.28	96.90	96.90	96.98	97.33	97.24	97.87	97.69	Total

T
ىم
Ъ
ē
S
0
_

Elemental composition of titanite 2 as obtained via electron microprobe analysis. In all cases, results less than the estimated limit of detection are reported as zero.

Мах	Min	Std Dev.	Average																	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Nb ₂ 0 ₅
30.85	30.70	0.04	30.77	30.73	30.79	30.78	30.76	30.85	30.77	30.77	30.70	30.75	30.75	30.76	30.74	30.78	30.72	30.78	30.81	SiO ₂
38.83	38.16	0.20	38.47	38.83	38.64	38.51	38.51	38.44	38.31	38.46	38.76	38.64	38.42	38.33	38.26	38.17	38.16	38.68	38.44	TiO2
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ZnO
0.96	0.70	0.07	0.85	0.70	0.86	0.87	0.85	0.90	0.88	0.90	0.71	0.83	0.96	0.88	0.90	0.86	0.86	0.82	0.86	Al ₂ 0 ₃
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Cr ₂ 0 ₃
0.62	0.49	0.04	0.56	0.49	0.59	0.58	0.61	0.58	0.58	0.57	0.50	0.52	0.62	0.57	0.57	0.57	0.57	0.53	0.57	Fe ₂ 0 ₃
0.03	0.00	0.01	0.01	0.00	0.02	0.00	0.00	0.00	20.0	0.02	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	MnO
0.04	0.02	0.01	0.03	0.02	0.02	0.03	0.03	0.02	0.03	0.03	0.04	0.03	0.02	0.03	0.02	0.02	0.04	0.03	0.03	MgO
28.42	28.22	0.06	28.31	28.38	28.29	28.37	28.27	28.39	28.28	28.29	28.26	28.42	28.31	28.35	28.33	28.30	28.30	28.22	28.25	CaO
0.12	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.00	0.00	Na ₂ 0
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	K ₂ 0
99.21	98.70	0.15	99.01	99.15	99.21	99.14	99.03	99.18	98.90	99.04	98.99	99.19	99.08	98.95	98.82	98.70	98.77	99.06	98.96	Total

 Table S11

 Elemental composition of phlogopite as obtained via electron microprobe analysis. In all cases, results less than the estimated limit of detection are reported as zero.

Max	Min	Std Dev.	Average								
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Nb ₂ O ₅
42.85	42.23	0.23	42.68	42.23	42.68	42.83	42.53	42.85	42.80	42.82	SiO ₂
1.07	0.92	0.05	1.02	1.07	1.05	1.04	1.02	1.05	0.98	0.92	TiO ₂
0.09	0.06	0.01	0.08	0.06	0.08	0.07	0.09	0.07	0.08	0.08	Zn0
11.20	10.95	0.09	11.10	11.17	10.95	11.10	11.19	11.20	11.02	11.08	Al ₂ 0 ₃
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V ₂ 0 ₃
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Cr ₂ 0 ₃
6.88	6.60	0.10	6.74	6.88	6.79	6.68	6.79	6.80	6.60	6.66	Fe0
0.14	0.12	0.01	0.13	0.14	0.12	0.12	0.12	0.13	0.13	0.13	MnO
22.43	22.05	0.13	22.19	22.15	22.05	22.13	22.26	22.05	22.23	22.43	MgO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	CaO
0.43	0.18	0.08	0.31	0.36	0.33	0.25	0.34	0.25	0.18	0.43	Na ₂ 0
10.51	10.07	0.15	10.27	10.17	10.25	10.39	10.17	10.31	10.51	10.07	K20
94.71	94.23	0.18	94.50	94.23	94.30	94.61	94.51	94.71	94.53	94.62	Total

 Table S12

 Elemental composition of hastingsite as obtained via electron microprobe analysis. In all cases, results less than the estimated limit of detection are reported as zero.

	Nb ₂ O ₅	SiO ₂	Ti0 ₂	ZnO	Al ₂ 0 ₃	V ₂ 0 ₃	Cr ₂ 0 ₃	FeO	MnO	MgO	CaO	Na ₂ 0	K20	
	0.00	40.95	0.80	0.00	10.59	0.00	0.00	21.01	0.21	8.76	11.17	1.68	2.0	7
	0.00	40.79	0.77	0.00	10.58	0.00	0.00	20.96	0.23	8.66	11.14	1.63	2.02	
	0.00	40.86	0.76	0.03	10.42	0.00	0.00	20.96	0.20	8.64	11.16	1.63	2.02	
	0.00	40.72	0.78	0.03	10.43	0.00	0.00	20.98	0.20	8.59	11.08	1.63	2.02	
	0.00	40.58	0.76	0.00	10.53	0.00	0.00	21.02	0.21	8.73	11.14	1.67	2.02	
	0.00	40.63	0.84	0.03	10.46	0.00	0.00	20.91	0.20	8.62	11.12	1.64	2.07	
	0.00	40.75	0.76	0.00	10.37	0.00	0.00	21.00	0.19	8.66	11.11	1.69	2.03	
	0.00	40.79	0.81	0.00	10.44	0.00	0.00	21.00	0.22	8.68	11.11	1.64	2.02	
Average	0.00	40.76	0.79	0.01	10.48	0.00	0.00	20.98	0.21	8.67	11.13	1.65	2.03	
Std Dev.	0.00	0.12	0.03	0.02	0.08	0.00	0.00	0.04	0.01	0.06	0.03	0.02	0.02	
Min	0.00	40.58	0.76	0.00	10.37	0.00	0.00	20.91	0.19	8.59	11.08	1.63	2.02	
Max	0.00	40.95	0.84	0.03	10.59	0.00	0.00	21.02	0.23	8.76	11.17	1.69	2.07	

 Table S13

 Elemental composition of augite as obtained via electron microprobe analysis. In all cases, results less than the estimated limit of detection are reported as zero.

Max	Min	Std Dev.	Average									
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Nb ₂ 0 ₅
52.26	50.90	0.41	51.59	52.26	51.74	51.46	51.31	51.55	51.96	51.55	50.90	SiO ₂
0.77	0.55	0.08	0.71	0.75	0.75	0.76	0.77	0.73	0.55	0.64	0.76	TiO ₂
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ZnO
3.41	2.49	0.32	3.10	3.41	3.38	3.18	3.09	2.98	2.49	2.88	3.39	Al ₂ 0 ₃
0.06	0.00	0.02	0.02	0.00	0.03	0.00	0.06	0.03	0.00	0.00	0.00	V ₂ O ₃
0.69	0.55	0.05	0.61	0.59	0.61	0.61	0.60	0.69	0.67	0.55	0.58	Cr ₂ 0 ₃
5.81	5.41	0.15	5.63	5.80	5.70	5.61	5.54	5.45	5.41	5.69	5.81	FeO
0.13	0.11	0.01	0.12	0.13	0.11	0.13	0.12	0.12	0.11	0.13	0.11	MnO
17.32	16.41	0.29	16.73	16.80	16.68	16.61	16.56	16.51	17.32	16.94	16.41	MgO
20.25	19.57	0.27	19.99	20.25	20.20	20.12	20.19	20.15	19.72	19.57	19.70	CaO
0.37	0.32	0.02	0.34	0.37	0.33	0.35	0.37	0.33	0.32	0.34	0.33	Na ₂ 0
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	K ₂ 0
100.36	97.99	0.76	98.84	100.36	99.53	98.83	98.61	98.54	98.55	98.29	97.99	Total

 Table S14

 Elemental composition of epidote as obtained via electron microprobe analysis. In all cases, results less than the estimated limit of detection are reported as zero.

Max	Min	Std Dev.	Average									
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Nb ₂ 0 ₅
37.31	37.02	0.10	37.16	37.19	37.20	37.13	37.20	37.02	37.31	37.03	37.19	SiO ₂
0.23	0.17	0.02	0.21	0.22	0.20	0.20	0.20	0.23	0.17	0.23	0.22	Ti0 ₂
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ZnO
22.66	22.38	0.11	22.54	22.38	22.53	22.49	22.63	22.60	22.66	22.62	22.39	Al ₂ O ₃
0.05	0.04	0.01	0.05	0.05	0.04	0.04	0.05	0.04	0.05	0.04	0.05	V_2O_3
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Cr ₂ 0 ₃
14.34	14.13	0.07	14.20	14.34	14.23	14.18	14.18	14.15	14.24	14.13	14.18	Fe ₂ O ₃
0.14	0.11	0.01	0.13	0.12	0.12	0.11	0.12	0.13	0.14	0.14	0.14	MnO
0.05	0.02	0.01	0.03	0.02	0.03	0.05	0.03	0.04	0.03	0.03	0.03	MgO
23.16	23.01	0.06	23.07	23.13	23.13	23.07	23.03	23.02	23.01	23.16	23.03	CaO
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Na ₂ 0
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	K ₂ 0
97.61	97.23	0.14	97.39	97.45	97.48	97.27	97.44	97.23	97.61	97.38	97.23	Total

Commercial anatase	Anatase 1	Anatase 2	Rutile
<i>I</i> 4 ₁ / <i>amd</i> (No. 136)	<i>I</i> 4 ₁ / <i>amd</i> (No. 136)	<i>I</i> 4 ₁ / <i>amd</i> (No. 136)	P4 ₂ /mnm (No. 136)
3.78645(5)	3.78514(4)	3.78489(3)	4.59572(6)
3.78645(5)	3.78514(4)	3.78489(3)	4.59572(6)
9.5179(1)	9.5120(1)	9.5119(1)	2.95966(4)
06	06	00	06
06	06	06	06
06	06	06	06
296	296	296	296
Сο Κα,	Сο Κα,	Сο Κα,	Co Κα,
K α 1 λ =1.78900 Å	K α 1 λ =1.78900 Å	Ka 1 λ =1.78900 Å	K α 1 λ =1.78900 Å
K α 2 λ =1.79283 Å	K α 2 λ =1.79283 Å	Kα2 <i>λ</i> =1.79283 Å	K α 2 λ =1.79283 Å
20.00-90.00°	20.00-90.00°	20.00-90.00°	20.00-90.00°
Pawley	Pawley	Pawley	Pawley
3500 data points	3500 data points	3500 data points	3500 data points
14	14	14	13
27	27	27	27
$R_{\rm wp} = 0.0472$	$R_{\rm wp} = 0.0492$	$R_{\rm wp} = 0.0657$	$R_{\rm wp} = 0.0482$
$\left[\left(\sum w y_{o}^{2}\right)\right]^{1/2}$			
	Commercial anatase H_1/amd (No. 136) (No. 3.78645(5) ,78645(5) 9.5179(1) 90 90 ,78645(5) 90 ,78645(5) 90 ,78645(5) 90 ,78645(5) 90 ,78645(5) 90 ,78645(5) 90 ,78645(5) 90 ,78645(5) 90 ,78645(5) 90 ,78645(5) 90 ,78645(5) 90 ,790 90 ,790 90 ,790 20.00-90.00° ,8 90 ,4=1.78900 Å 14 ,27 27 ,7 $R_{wp} = 0.0472$ $N \mathcal{Y}_0^2$ $1/2$	Commercial anatase Anatase 1 I_{41}/amd (No. I_{41}/amd (No. 136) 136 (No. I_{41}/amd (No. 136) $3.78645(5)$ $3.78514(4)$ $3.78645(5)$ $3.78514(4)$ $3.78645(5)$ 90 296 $Co K\alpha,$ $Co K\alpha,$ $K\alpha 1 \lambda = 1.78900$ Å $K\alpha 1 \lambda = 1.78900$ Å $K\alpha 2 \lambda = 1.79283$ Å $K\alpha 2 \lambda = 1.79283$ Å $20.00 - 90.00^\circ$ Pawley 90 90 14 14 27 27 $Rwp = 0.0492$ $Rwp = 0.0492$ $\sqrt{\sum W y_0^2}^{1/2}$ $Rwp = 0.0492$	Commercial anatase Anatase 1 Anatase 2 H_1/amd (No. 136) H_1/amd (No. 136) H_1/amd (No. 136) H_1/amd (No. 136) M_1/amd (No. 136) M_1/amd (No. 136) $3.78645(5)$ $3.78514(4)$ $3.78489(3)$ $3.78645(5)$ 90 $9.5120(1)$ 90 90 $9.5120(1)$ 90 296 296 296 296 $Co K\alpha$, $Co K\alpha$, $Co K\alpha$, $Co K\alpha$, $K\alpha 2$ $\lambda = 1.78900$ $K\alpha 1$ $\lambda = 1.78900$ $S00$ data points $Z0.00-90.00^\circ$ $Z0.00-90.00^\circ$ $20.00-90.00^\circ$ $20.00-90.00^\circ$ $20.00-90.00^\circ$ $20.00-90.00^\circ$

Table S15.
5
ystallographi
c data foi
Ti-containing
sample re
efinement.

sample	Titanite 1	Titanite 2	Phlogopite	Augite	Hastingsite	Epidote	ilmenite
space group	C2/c (No. 15)	C2/c (No. 15)	C2/m (No. 12)	C2/c (No. 15)	C2/m (No. 12)	P2 ₁ /m (No. 11)	R3 (No. 148)
a (Å)	6.5529(1)	6.5735(1)	5.1635(2)	9.7361(2)	9.9076(1)	8.8986(1)	5.08769(7)
b(Å)	8.7022(2)	8.7278(1)	9.0833(6)	8.8989(1)	18.1624(4)	5.63531(8)	5.08769(7)
<i>с</i> (Å)	7.0569(1)	7.0851(1)	20.086(2)	5.2686(1)	5.3283(3)	10.1623(1)	4.0820(2)
α,°	90	90	90	90	90	90	90
β,°	113.849(1)	113.962(1)	95.685(3)	106.327(1)	104.992(3)	115.4145(8)	90
۲°	90	90	90	90	90	90	120
T (K)	296	296	296	296	296	296	296
radiation	Co Kα,	Co Kα,	Co Κα,	Co Kα,	Co Kα,	Сο Κα,	Co Kα,
	K $\alpha 1 \lambda = 1.78900 \text{ Å}$	K α 1 λ =1.78900 Å	$K\alpha 1 \lambda = 1.78900 \text{ Å}$	K $\alpha 1 \lambda = 1.78900 \text{ Å}$	$K\alpha 1 \lambda = 1.78900 \text{ Å}$	K $\alpha 1 \lambda = 1.78900 \text{ Å}$	K $\alpha 1 \lambda = 1.78900 \text{ Å}$
	Ka2 λ =1.79283 Å	Ka2 λ =1.79283 Å	Kα2 <i>λ</i> =1.79283 Å	Kα2 <i>λ</i> =1.79283 Å	Ka2 λ =1.79283 Å	Kα2 <i>λ</i> =1.79283 Å	Ka2 λ =1.79283 Å
2θ limits	20.00-90.00°	20.00-90.00°	20.00-90.00°	20.00-90.00°	20.00-90.00°	20.00-90.00°	20.00-90.00°
refinement method	Pawley	Pawley	Pawley	Pawley	Pawley	Pawley	Pawley
no. of data collected	3500 data points	3500 data points	3500 data points	3500 data points	3500 data points	3500 data points	3500 data points
no. of Bragg	189	189	257	14	258	281	36
reflections							
no. of variables	205	205	273	27	330	333	50
residuals	$R_{\rm wp} = 0.0731$	$R_{\rm wp} = 0.0482$	$R_{\rm wp} = 0.0923$	$R_{\rm wp} = 0.0526$	$R_{\rm wp} = 0.0347$	$R_{\rm wp} = 0.0358$	$R_{\rm wp} = 0.0201$
$P = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} $	\]/ \	/2					

$$R_{\rm wp} = \left[\sum \left[w(y_{\rm o} - y_{\rm c})\right] / \sum w y_{\rm o}^2\right]^{1/2}$$

Formula	TiO ₂	CaTiSiO ₅
Formula mass (amu)	79.90	196.07
Space group	<i>I</i> 4 ₁ / <i>amd</i> (No. 136)	<i>C</i> 2/ <i>c</i> (No. 15)
a (Å)	3.806(4)	6.572(3)
<i>b</i> (Å)	3.806(4)	8.731(3)
<i>c</i> (Å)	9.576(9)	7.084(4)
<i>α</i> , °	90	90
<i>β</i> , °	90	113.922(4)
γ, °	90	90
<i>V</i> (Å ³)	138.7(2)	371.6(3)
Ζ	4	4
$ ho_{ m calcd}$ (g cm ⁻³)	3.825	3.505
Т (К)	296(2)	296(2)
Crystal dimensions (mm)	$0.01 \times 0.08 \times 0.20$	$0.05 \times 0.12 \times 0.14$
Radiation	Graphite monocl	nromated Mo <i>K</i> α,
	$\lambda = 0.7$	1073 Å
μ (Mo K α) (mm ⁻¹)	5.55	3.900
Transmission factors	0.3958- 0.9313	0.6191-0.8441
2θ limits	11.54 – 95.74 °	8.24 - 66.44 °
Data collected	$-5 \le h \le 5, -5 \le k \le 5, -5 \le k \le 5$	$-9 \le h \le 10, -13 \le k \le 13,$
	$14 \le l \le 14$	$10 \le l \le 10$
No. of data collected	917	2164
No. of unique data, including $F_0^2 < 0$	$84 (R_{int} = 0.0370)$	706 ($R_{int} = 0.0285$)
No. of unique data, with $F_{0^2} > 2\sigma(F_{0^2})$	72	560
No. of variables	8	41
$R(F)$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})^{a}$	0.0127	0.0373
R _w (F _o ²) ^b	0.0144	0.0481
Goodness of fit	1.231	1.084
$(\Delta ho)_{ m max}$, $(\Delta ho)_{ m min}$ (e Å ⁻³)	0.362, - 0.448	0.644, - 1.262

Table S16. Crystallographic data for anatase 2 and titanite 1 single crystals

 ${}^{a}R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w}(F_{o}^{2}) = \left[\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum wF_{o}^{4}\right]^{1/2}; w^{-1} = [\sigma^{2}(F_{o}^{2}) + (Ap)^{2} + Bp],$ where $p = [\max(F_{o}^{2}, 0) + 2F_{c}^{2}] / 3.$

Position	Wyckoff position	X	у	Z	U11 (Ų)	U22 (Å2)	U33 (Ų)
Ti	4 <i>b</i>	0	1/4	3/8	0.0081(3)	0.0081(3)	0.0059(3)
0	8 <i>e</i>	0	1/4	0.1668(2)	0.0069(6)	0.0134(6)	0.0064(6)

Table S17. Atomic coordinates and displacement parameters for anatase 2.

Table S18. Selected interatomic distances (Å) for anatase 2.

Position	Wyckoff position	x	у	Z	U11 (Ų)	U22 (Ų)	U33 (Ų)
Ti	4 <i>a</i>	0	0	0	0.0102(3)	0.0118(3)	0.0225(4)
Si	4 <i>e</i>	0	0.68280(9)	1/4	0.0090(4)	0.0091(4)	0.0111(4)
Са	4 <i>e</i>	0	0.33202(7)	1/4	0.0120(3)	0.0103(3)	0.0361(5)
01	4 <i>e</i>	0	0.0721(3)	1/4	0.0174(10)	0.0122(9)	0.0123(10)
02	8 <i>f</i>	0.3976(2)	0.28987(16)	0.3819(2)	0.0144(7)	0.0121(7)	0.0183(8)
03	8 <i>f</i>	0.3141(2)	0.06639(19)	0.0897(2)	0.0141(7)	0.0147(8)	0.0177(8)

Table S19. Atomic coordinates and displacement parameters for titanite 1.

Ti – 01 (×2)	1.879(1)
Ti – O3 (×2)	1.984(2)
Ti – O2 (×2)	2.016(2)
Si – 03 (×2)	1.640(2)
Si – O2 (×2)	1.646(2)
Ca – 01	2.269(3)
Ca – O3 (×2)	2.417(2)
Ca – O2 (×2)	2.420(2)

Table S20.	Selected	interatomic	distances	(Å)	for	titanite	1.
------------	----------	-------------	-----------	-----	-----	----------	----