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S1. EXPERIMENTAL CHARACTERIZATION OF THE METASURFACE POLARIZATION

TRANSFER MATRIX

We use the experimental scheme presented in Fig. 2(d) of the main manuscript to characterize

the metasurface transfer matrix. The power-meter readings are recorded over varying input states

(θin) and the angle of the QWP (θQ), which are related to the metasurface transfer matrix T as

follows:

PDetA = |〈θPol2|Q(θQ)T|θin〉|2PDetB , (S1)

where θPol2 is the orientation angle of the linear polarizer (Pol2), |θin〉 is the input linear polariza-

tion state at an angle of θin selected by a corresponding rotation of HWP, Q(θQ) is the transmission

matrix of the quarter-waveplate rotated at an angle θQ, and PDetA,B
are the measured powers at the

detectors A and B. Readings were recorded over varying input states (θin) and the angle of the

QWP (θQ). We perform numerical fitting to reconstruct from the power measurements the transfer

matrix T, up to a global phase.

Here, we prove that this procedure enables accurate and unique reconstruction of the trans-

fer matrix. Let us first consider an idealized situation in the absence of noise. Then, according

to Eq. (S1), the detected power dependence on the input polarization and QWP angles can be

represented through the Fourier decomposition as

Pr(θin, θQ;T) = PDetA/PDetB =
∑
p=0,±2

∑
q=0,±2,±4

[
P̃c,c(p, q) cos(pθin) cos(qθQ)

+ P̃c,s(p, q) cos(pθin) sin(qθQ) + P̃s,c(p, q) sin(pθin) cos(qθQ)

+P̃s,s(p, q) sin(pθin) sin(qθQ)
]
.

(S2)
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To be specific, we consider the last polarizer angle to be fixed at θPol2 = 0. We find that the

measured angular Fourier components can be used to reconstruct the absolute values of the transfer

matrix elements as follows:

|T1,1|2 = [P̃c,c(0, 0) + P̃c,c(2, 0)] + [P̃c,c(0, 4) + P̃c,c(2, 4)], (S3)

|T2,1|2 = [P̃c,c(0, 0) + P̃c,c(2, 0)]− 3 [P̃c,c(0, 4) + P̃c,c(2, 4)], (S4)

|T1,2|2 = [P̃c,c(0, 0)− P̃c,c(2, 0)] + [P̃c,c(0, 4)− P̃c,c(2, 4)], (S5)

|T2,2|2 = [P̃c,c(0, 0)− P̃c,c(2, 0)]− 3 [P̃c,c(0, 4)− P̃c,c(2, 4)]. (S6)

Then, the phases can be found from the following relations, up to a global phase:

T2,1T
∗
1,1 = [i P̃c,s(0, 2) + 2 P̃c,s(0, 4)) + [i P̃c,s(2, 2) + 2 P̃c,s(2, 4)], (S7)

T2,2T
∗
1,2 = [i P̃c,s(0, 2) + 2 P̃c,s(0, 4))− [i P̃c,s(2, 2) + 2 P̃c,s(2, 4)], (S8)

Re(T1,2T
∗
1,1) = P̃s,c(2, 0) + P̃s,c(2, 4) (S9)

Re(T2,2T
∗
2,1) = P̃s,c(2, 0)− 3 P̃s,c(2, 4) (S10)

T2,2T
∗
1,1 + T2,1T

∗
1,2 = i P̃s,s(2, 2) + 2 P̃s,s(2, 4). (S11)

This analysis establishes the possibility to reconstruct both the amplitude and phase of the transfer

matrix elements. However, there can be an ambiguity in determining the phase for a specific

case of T2,2T1,1 = T2,1T1,2 as then the equations are invariant to a simultaneous change of sign

in solutions argT1,2 = argT1,1 ± ρ, and argT2,2 = argT2,1 ± ρ, where ρ is determined from

Eq. (S9). Importantly, since we operate at normal incidence, the chiral effects are weak and the

transfer matrix is close to symmetric, such that T2,1 ' T1,2, and the latter condition makes the

reconstruction unique by removing the phase ambiguity.

In practice, the reconstruction based on experimental data is performed by finding the transfer

matrix elements that provide the best fit between the measured powers at the specific waveplate

orientations and the expression according to Eq. (S1). The accuracy of reconstruction was moni-

tored by checking the mismatch of the least means squares fitting,

δP (fit)(T) =

∑N
i

(
P

(fit)
r (θ

(i)
in , θ

(i)
Q ;T)− Pr(θ(i)

in , θ
(i)
Q )
)2

∑N
i

(
Pr(θ

(i)
in , θ

(i)
Q )
)2 , (S12)

where N is the total number of measurements, θ(i)
in and θ(i)

Q are the angles at the i-th measure-

ment, and P (fit)
r is the predicted transmission ratio from Eq. (S1). This fitting was found to have
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Figure S1. Numerical simulation of transfer matrix of cuboidal resonators. Shown here are the amplitudes

of transmitted light in the ordinary and extraordinary axes against the physical sizes of the pixels (Lx, Ly).

mean squared error of 2.0× 10−3 and 3.1× 10−3 for the results shown in Figs. 3(b,c) and 4(c,d),

respectively. The average mean squared error is 4.9× 10−3 across the wavelengths for Fig. 3(e).

S2. NUMERICAL OPTIMIZATION OF THE METASURFACE DESIGN

Using Rigorous Coupled Wave Analysis (RCWA) [S1, S2], sweeps across the physical sizes of

individual, cuboidal resonators without rotation were generated, see Fig. S1. These sweeps were

generated using idealized refractive indices of amorphous silicon on glass. Physical parameters

were then chosen from these sweeps, also accounting for a design freedom of the nanoresonator

rotation. Pairwise resonators were then arranged in a metasurface according to the form of Eq. (1)

for a target transfer matrix, and this analytical design was subsequently simulated numerically

using a commercial electrodynamic solver, CST Studio. A notable limitation of Eq. (1) is that

it does not consider near-field interactions between nanoresonators. The full simulations revealed
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that these relatively weak higher order interactions do exist for some configurations. To effectively

compensate for such effects, we used the CST Studio to perform optimization passes starting

from an analytical design based on Eq. (1) and fine-tune the parameters to minimize the phase-

invariant fidelity measure δ = 1−
∣∣∣∑i,j T

∗
ijT̃ij

∣∣∣2 [∑i,j T
∗
ijTij

∑
i,j T̃

∗
ijT̃ij

]−1

, where Tij and T̃ij are

the elements of the target and the numerically calculated transfer matrices, respectively. While

this optimization step is insensitive to overall efficiency, only fine variations of the nanoresonator

parameters were allowed, preserving the high efficiency of the initial design obtained from the

single resonator combination design step and subsequently to CST Studio.

S3. TRANSMISSION EFFICIENCY FOR POLARIZATION PAIRS

In the manuscript, we show that by designing a metasurface with the transfer matrix according

to Eq. (2), one can transform two arbitrarily chosen input polarization states {Ai, Bi} to other two

arbitrarily chosen output states {At, Bt}. Here we discuss the transmission efficiency of such a

transformation.

Consider two arbitrary input states Ai =

 cosαi

sinαi e
iϕi

 and Bi =

 cos βi

sin βi e
iδi

, and two

arbitrary output states At =

 cosαt

sinαt e
iϕt

 and Bt =

 cos βt

sin βt e
iδt

. The orthogonal states of

the two input states are A⊥i = iς2A
∗
i =

 sinαi e
−iϕi

−cosαi

 and B⊥i = iς2B
∗
i =

 sin βi e
−iδi

−cos βi


where ς2 =

 0 −i
i 0

 is the second Pauli matrix. The designed transfer matrix in Eq. (2) of the

manuscript is

T0 = 〈A∗t |Bi〉 · |Bt〉〈A⊥i | − 〈B∗t |Ai〉 · |At〉〈B⊥i | =

 τ11 τ12

τ21 τ22

 , (S13)

where

τ11 =sinαi cos βi cosαt cos βt e
iϕi + sinαi sin βi sinαt cos βt e

i(ϕi+δi+ϕt)

− cosαi sin βi cosαt cos βt e
iδi − sinαi sin βi cosαt sin βt e

i(ϕi+δi+δt),
(S14)

τ12 = τ21 = sinαi cos βi cosαt sin βt e
i(ϕi+δt) − cosαi sin βi sinαt cos βt e

i(ϕt+δi), (S15)
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τ22 =cosαi cos βi sinαt cos βt e
iϕt + sinαi cos βi sinαt sin βt e

i(ϕi+ϕt+δt)

− cosαi cos βi cosαt sin βt e
iδt − cosαi sin βi sinαt sin βt e

i(δi+ϕt+δt).
(S16)

The two singular values of T0 are given by

σmin/max =
1√
2

√
|τ11|2 + 2|τ12|2 + |τ22|2 ± γ , (S17)

where

γ =

√(
|τ11|2 − |τ22|2

)2
+ 4|τ12|2

(
|τ11|2 + |τ22|2

)
+ 8Re (τ ∗11τ

2
12τ
∗
22) . (S18)

The final transfer matrix is

T=
eiφg

σmax

 τ11 τ12

τ21 τ22

 =

 T11 T12

T21 T22

 , (S19)

where φg is an arbitrary global phase. For an input state Ai, the output is a pure state, T |Ai〉 =
tA|At〉, with a transmission coefficient

tA = −e
iφg〈B∗t |Ai〉〈B⊥i |Ai〉

σmax

= −e
iφg
(
cosαi cos βt + sinαi sin βt e

i(ϕi+δt)
) (

sinαi cos βi e
iϕi − cosαi sin βi e

iδi
)

σmax

.

(S20)

When the input state is Bi, the output pure state is T|Bi〉 = tB|Bt〉, where the transmission

coefficient is

tB =
eiφg〈A∗t |Bi〉〈A⊥i |Bi〉

σmax

=
eiφg

(
cos βi cosαt + sin βi sinαt e

i(δi+ϕt)
) (

sinαi cos βi e
iϕi − cosαi sin βi e

iδi
)

σmax

.

(S21)

Therefore, the power transmission efficiencies TA = |tA|2 and TB = |tB|2 depend on the inner

products of the states, which relate to the distances between the states on the Poincaré sphere.

Apparently, both TA and TB are zero when Ai = Bi and At 6= Bt because it is impossible

to transform one state into two different states simultaneously. When Ai is orthogonal to the

conjugate state of Bt, TA will be zero. When Bi is orthogonal to the conjugate state of At, TB will

be zero. These features are evident in Fig. S2 showing the calculated transmission efficiency when

four states are all linearly polarized, i.e. ϕi = δi = ϕt = δt = 0. One can see that TA = 0 when

|βt − αi| = π/2 and TB = 0 when |αt − βi| = π/2. However, there are always some cases that TA

and TB can reach 100% simultaneously.
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Figure S2. Transmission efficiency of the designed transfer matrix for transforming two linear polarization

states into other two polarization states as functions of αt and βt when (a) αi = 0, βi = π/8; (b) αi = 0, βi =

π/4; (c) αi = 0, βi = 3π/8; and (d) αi = 0, βi = π/2.

In general, once the two polarization pairs are chosen, the transmission efficiencies are deter-

mined based on this scheme. Once again, we highlight here that the analytical solution formulated

in our work provides the best possible efficiency for a symmetric non-amplified transfer matrix,

since the maximum singular value is one.

We note that a higher efficiency could be potentially achieved for some states by expanding a

range of transformations to include asymmetric matrices, which would require a design of meta-

surfaces with a chiral response [S3]. While we consider in this work the experimental realizations

of non-chiral metasurface response at normal incidence, our general analytical framework can

guide future developments of complex-birefringent metasurfaces with tailored chiral response at

off-normal incidence.

S4. COMPENSATION OF FABRICATION ERRORS

During the fabrication, the dimensions of the fabricated structures may be different from the

designed values due to variations of the fabrication conditions in the electron beam lithography and

etching. In order to compensate for the possible fabrication errors, for a single design we patterned
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the same dimension multiple times using different doses during the electron beam lithography and

chose the best one for the experiment. By doing so, the transfer matrix of the best structure

appeared to be very close to the designed one. The slight difference can result in a position shift of

At and Bt with respect to the designed places on the Poincaré sphere and a small variation of the

transmission efficiency. However, we emphasize that once the sample is characterized, its transfer

matrix is determined with high precision and thus the output polarization state for a specific input

state is also well defined. Therefore, any small fabrication errors are fully taken into account in

our experiment and data analysis.

S5. TRANSFORMATION OF ELLIPTICAL POLARIZATION STATES
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Figure S3. Metasurface design for the transformation of a pair of two elliptical polarization states to the

other chosen states. (a) Three-dimensional render of the metasurface. (b, c) The numerically simulated

(b) arguments and (c) absolute values of the transfer matrix at a wavelength of 1550nm. (d) The transfor-

mation of states calculated from the numerical model.

Under our scheme, it is possible to transform between arbitrary input to output pairs of polar-
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ization states, including any elliptical ones. As an illustration, we show in Fig. S3 the application

of the general approach to the following pairs of input states,

|Ai〉 =

 cos(30.0◦)

sin(30.0◦)e−i 0.5π

 , |Bi〉 =

 cos(27.5◦)

sin(27.5◦)e−i 0.7π


and the target output states

|At〉 =

 cos(41.6◦)

sin(41.6◦)ei 0.25π

 , |Bt〉 =

 cos(49.0◦)

sin(49.0◦)ei 0.82π


We designed and numerically optimized a metasurface, which achieves the transmission efficien-

cies TA = 43.2% and TB = 28.2%. The numerically determined transfer matrix has singular

values of σmax = 0.91 and σmin = 0.18, demonstrating that the design is close to optimal as the

largest singular value is close to one.
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