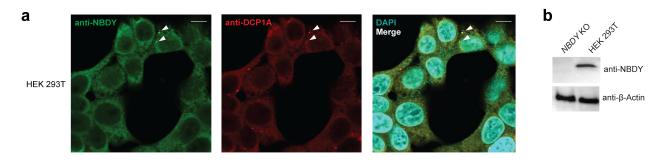
Supporting Information

Title: The NBDY microprotein regulates cellular RNA decapping

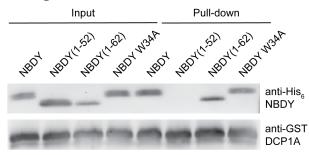
Authors: Zhenkun Na^{1,2,5}, Yang Luo^{1,2,5}, Jeremy A. Schofield^{2,3}, Stephanie Smelyansky^{1,2,3}, Alexandra Khitun^{1,2}, Sowndarya Muthukumar⁴, Eugene Valkov⁴, Matthew D. Simon^{2,3}, Sarah A. Slavoff^{1,2,3*}

Affiliations: ¹Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States

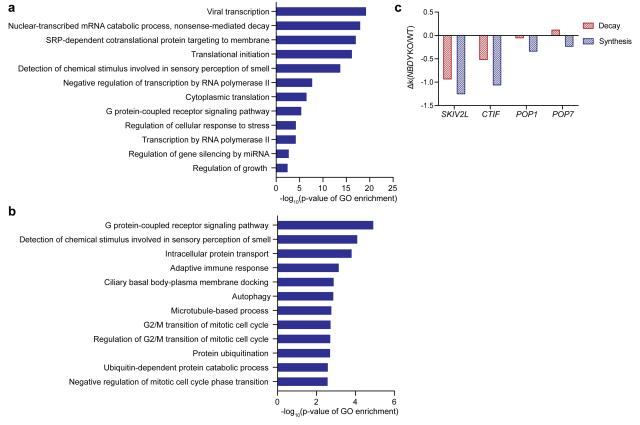
²Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States


³Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States

⁴Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States


⁵These authors contributed equally

*Correspondence to: sarah.slavoff@yale.edu


Figure S1I An anti-NBDY antibody is specific and reveals co-localization of endogenous NBDY with a decapping protein in P-bodies. (a) Detection of endogenous NBDY by immunofluorescence (additional field of view). Fixed HEK 293T cells were stained with antibodies detecting NBDY or DCP1A. Scale bars, 10 μ m. (b) Analysis of *NBDY* knockout (KO) HEK 293T cell lines by Western blot using an anti-NBDY antibody, with comparison to wild type HEK 293T cells.

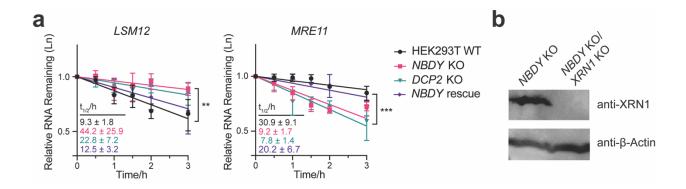

Figure S2I NBDY interacts with DCP1A via a C-terminal polyproline motif. A pulldown assay showing the direct interaction of GST-DCP1A-EVH1 with recombinant His₆-tagged NBDY constructs.

Figure S3I NBDY knockout causes secondary changes in RNA synthesis. (a,b) Top significant biological process GO terms of genes downregulated (a) or upregulated (b) by RNA synthesis in *NBDY* KO versus WT HEK 293T cells. Fisher's exact test was performed using PANTHER overrepresentation test with FDR<0.05. (c) The mean fold changes in RNA decay rate (red) vs synthesis rate (blue) for genes encoding RNA decay machineries that are exclusively downregulated in *NBDY* KO vs WT HEK 293T cells but not in *DCP2* KO.

Figure S4I NBDY regulates RNA decay. (a) RNA stability measurement of selected genes belonging to the following classes: stabilized in both *DCP2* KO and *NBDY* KO (*LSM12*) and destabilized in both *DCP2* KO and *NBDY* KO (*MRE11*). Number of biological replicates: n=3. Error bars represent mean \pm s.d. Significance was analyzed by ANOVA linear regression. **P < 0.01; ***P < 0.001, Dunnett's test. (b) Western blot confirmation of *NBDY/XRN1* double knockout (DKO) cells.

Figure S5I NBDY status does not affect the activity of the RNA decapping complex *in vitro*. (a) Silver stain of the decapping complex immunopurified from WT HEK 293T and *NBDY* KO cells. (b) Analysis of immunopurified decapping complex components by Western blot. (c) *In vitro* decapping assay with decapping complex immunopurified from *NBDY* KO or WT HEK 293T cells. EDTA inhibition served as a negative control.

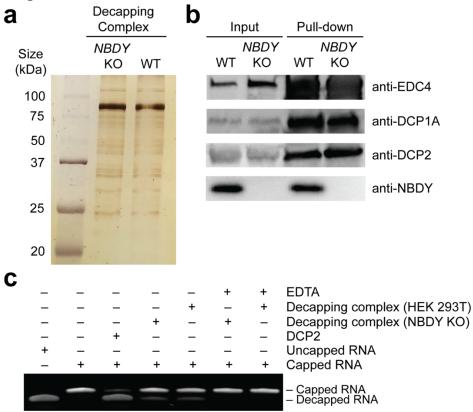


Figure S6I NBDY interaction with DCP1A does not affect stability of a specific endogenous reporter transcript. RNA life time of a DCP2 substrate, *RRP41*, was measured in NBDY rescue and NBDY (1-52) truncated construct (non-DCP1A-interacting) complementation cell line. Number of biological replicates: n=3. Error bars represent mean \pm s.d. Significance was evaluated by linear regression *t*-test; ns, not significant.

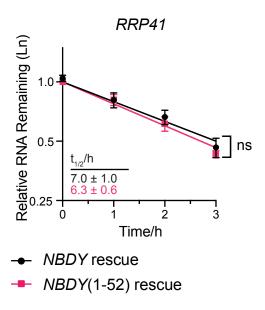
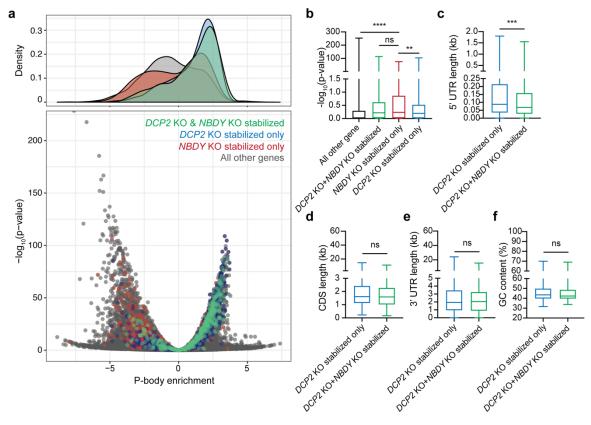



Figure S71 Physical basis of differential regulation of DCP2 substrates by NBDY. (a) P-body enrichment based on data from Hubstenberger *et al.* for each of the described classes of RNA stability changes in *DCP2* KO or *NBDY* KO vs WT HEK 293T cells. (b) Box plot depicting sum of p-values of NMD targeting based on data from Colombo et *al.* for indicated classes of RNA stability changes in *DCP2* KO or *NBDY* KO vs WT HEK 293T cells. Significance was evaluated by Mann Whitney *U* test; ns, not significant; **P<0.01; ****P<0.0001. (c-f) Box plots representing 5' UTR length (c), coding sequence length (d), 3' UTR length (e) and GC content (f) for RNAs stabilized in both *DCP2* KO or *NBDY* KO vs WT HEK 293T cells or that exclusively in *DCP2* KO vs WT HEK 293T cells. Data were obtained from ENSEMBL (version 101). Significance was evaluated by Mann Whitney *U* test; ns, not significant; ***P<0.001.

Gene/Primer	Primer Sequences
Name	
NBDY	5' GGAGAAAACTGACGACCCGTTTCTGT 3'
Fwd/Rev	5' TCTCTACTTCTCCGGAGGAGGAGGAGGG 3'
DCP2	5' GCATGAGTCAGTTCCACATCATTGA 3'
Fwd/Rev	5' CAGACAGAAGATGACTATCCCAATCA 3'
XRN1	5' CACTTTTCCCTGCTGCTTAAGAT 3'
Fwd/Rev	5' ATTTCTGGGGGAGTTTACGC 3'

Table S1.

Gene specific PCR primers used in this study.

Gene/Primer	Primer Sequences
Name	
MRE11	5' ATGCAGTCAGAGGAAATGATACG 3'
Fwd/Rev	5' CAGGCCGATCACCCATACAAT 3'
ATM	5' ATCTGCTGCCGTCAACTAGAA 3'
Fwd/Rev	5' GATCTCGAATCAGGCGCTTAAA 3'
ZNF84	5' AGCAGCCTAGTGTCACTGG 3'
Fwd/Rev	5' TGCCACATCATGTTACCATCTAC 3'
GJC1	5' AGCTGTAGGAGGAGAATCCATC 3'
Fwd/Rev	5' TGCAAACGCATCATAACAGACA 3'
EPC2	5' GGGAGACAATGAGTAAACTCTCC 3'
Fwd-2/Rev-2	5' GACGCAGTCGTTGAGATCAG 3'
EPC2 Splint	5'
_	CCAACATGGCGGACATTACC <u>CATCAAAGCCAGCAAACGCAGTGTTCAT</u>
	<u>TC</u> 3'
Anchor Fwd	5' GCTGATGGCGATGAATGAACACTGC 3'

Table S2.

qRT-PCR and qSL-RT-PCR primers used in this study.