Supporting information

Multifunctional fluoroethylene carbonate for improving high-temperature performance of $LiNi_{0.8}Mn_{0.1}Co_{0.1}O_2||SiO_x@Graphite lithium ion batteries$

Yuanyuan Kang,^{†,‡,§,⊥} Jun Wang,^{†,‡} Man Wang,^{‡,§,⊥} Xiwu Tang,[§] Zongze Cao,[§] Chaoyang Wang,[⊥] Qiao Shi,[§] Yunxian Qian*,^{‡,§} and Yonghong Deng*,[‡]

[‡] Department of Materials Science and Engineering, Academy for Advanced Interdisciplinary Studies, Shenzhen Key Laboratory of Solid State Batteries, Southern University of Science and Technology, Shenzhen, 518055, China

§ Shenzhen CAPCHEM Technology Co. Ltd., Shabo Tongfuyu Industry Zone, Pingshan New District, Shenzhen, 518118, China

[⊥] Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China

[†] These authors (Y. Kang and J. Wang) contributed equally to this paper.

*Corresponding authors.

E-mail addresses: <u>qianyx@capchem.com</u> (Y. Qian); <u>yhdeng08@163.com</u> (Y. Deng)

Figure S1. Cycling performance of the NMC811||SiO_x@Gr pouch cells with different electrolyte systems at 0.3 C and room temperature for 100 cycles.

Figure S2. EIS of the NMC811||SiO_{*x*}@Gr pouch cells after (a) formation and (b) 100 cycles at 0.3 C and 45°C.

Figure S3. SEM images of the NMC811 cathodes (a) at raw state, and after 100 cycles

with the (b) blank, (c) 5% FEC system and (d) 30% FEC systems.

Figure S4. TEM results of the $SiO_x@Gr$ anodes after 100 cycles for the three systems

and at raw state.

Figure S5. GC-MS chromatograms of the three electrolytes after (a) formation and (b)

100 cycles at 45°C.

Table S1. The charge/discharge capacities and *Coulombic* efficiency in the first formation cycle of the NMC811 $||SiO_x@Gr$ pouch cells using the three electrolyte systems.

	Charge capacity / mAh	Discharge capacity / mAh	<i>Coulombic</i> efficiency / %
Blank	1385.6	1181.5	85.3
5% FEC	1373.5	1169.2	85.1
30% FEC	1372.9	1173.9	85.5

Table S2. The charge/discharge specific capacities of the NMC811 electrodes using different electrolyte systems in the voltage range of 3.0-4.2 V at 0.3 C and 45°C. Note that the NMC811 electrodes were disassembled from the NMC811||SiO_x@Gr pouch cells after 100 cycles at 0.3 C and 45°C.

	Charge specific capacity / mAh/g	Discharge specific capacity / mAh/g
Blank	158.8	155.9
5% FEC	163.1	162.2
30% FEC	178.8	175.0

Table S3. The charge/discharge specific capacities of the SiO_x@Gr anodes using different electrolyte systems in the voltage range of 0.005-4.2 V at 0.3 C and 45°C. Note that the SiO_x@Gr electrodes were disassembled from the NMC811||SiO_x@Gr pouch cells after 100 cycles at 0.3 C and 45°C.

	Charge specific capacity / mAh/g	Discharge specific capacity / mAh/g
Blank	199.5	213.3
5% FEC	241.7	249.9
30% FEC	275.1	284.3

Peak Area / %	DEC	EC	FEC	DEDOHC
Structure		00	o F	$\sim 0^{\circ}$ $\sim 0^{\circ}$ $\sim 0^{\circ}$ $\sim 0^{\circ}$
Molecular Formula	$C_{5}H_{10}O_{3}$	$C_3H_4O_3$	$C_3H_4O_3F$	$C_8H_{14}O_6$
Blank-Formation	53.15	31.22		7.44
5% FEC-Formation	62.52	31.53	4.09	
30% FEC-Formation	62.60		31.46	
Blank-100 cycles	42.50	39.03		5.83
5% FEC-100 cycles	44.56	38.65	4.09	
30% FEC-100 cycles	53.98	38.65	33.59	

Table S4. The main electrolyte components detected from GC-MS for the threeelectrolyte systems after formation and 100 cycles.

		Blank-100 cycles	5% FEC-100 cycles	30% FEC-100 cycles
T / min	M / Z	Compound	Compound	Compound
1.73	183.0839		$C_7H_{12}O_5 + Li$	
1.83	159.0398	$C_4H_9O_4P + Li$	$C_4H_9O_4P + Li$	
2.03	209.0638		$C_8H_{10}O_6+Li$	
2.15	161.0352		$C_4H_8O_3PF + Li$	$C_4H_8O_3PF + Li$
2.32	241.0513		C ₈ H ₁₀ O ₈ +Li	C ₈ H ₁₀ O ₈ +Li
2.62	247.0555	$C_7H_{13}O_7P + Li$	$C_7H_{13}O_7P + Li$	
2.82	311.0578		C ₁₁ H ₁₂ O ₁₀ +Li	
2.93	187.0713	C ₆ H ₁₃ O ₄ P +Li		
2.98	151.0941	C7H12O3 +Li		
3.82	243.0482	$C_8H_{12}O_7 + Na$	$C_8H_{12}O_7 + Na$	
3.90	205.0606	$C_6H_{15}O_4P + Na$		
5.44	267.0409	$C_7H_{14}O_6FP + Na$	$C_7H_{14}O_6FP + Na$	
5.76	293.0781	$C_9H_{19}O_7P + Na$		
6.35	445.0997	$C_{13}H_{28}O_{11}P_2 + Na$		
6.57	229.0692	$C_8H_{14}O_6 + Na$	$C_8H_{14}O_6 + Na$	
6.73	273.0966	$C_{10}H_{18}O_7+Na$		
6.94	381.0942	$C_{12}H_{23}O_{10}P + Na$		
7.63	317.0849	$C_{11}H_{18}O_9 + Na$	$C_{11}H_{18}O_9 + Na$	
8.43	405.1014	$C_{14}H_{22}O_{12} + Na$		
8.6,9.64	257.0993	$C_{10}H_{18}O_6 + Na$		
10.48	345.1157	C ₁₃ H ₂₂ O ₉ +Na		

 Table S5. LC-QTof-MS results collected from the electrolytes after 100 cycles.

10.96	285.131	C ₁₂ H ₂₂ O ₆ +Na	
11.07	373.1464	C15H26O9+Na	

		Blank-100 cycles	5% FEC-100 cycles	30% FEC-100 cycles
T / min	M / Z	Compound	Compound	Compound
1.26-2.49	305.1578	PEG	PEG	PEG
1.30			$C_4H_9O_5P$	
2.42	257.0276		$C_8H_{10}O_8 + Na$	
2.43-2.61	315.0328			$C_{10}H_{12}O_{10}$
2.66	263.0327	$C_7H_{13}O_7P$		
3.93	243.0469		$C_8H_{12}O_7 + Na$	
5.77	293.0769	C9H19O7P		
6.60	229.0697	$C_8H_{14}O_6$		
7.64	317.0852	$C_{11}H_{18}O_9$		

 Table S6. LC-QTof-MS results collected from the NMC811 cathodes after 100 cycles.

		Blank-100 cycles	5% FEC-100 cycles	30% FEC-100 cycles
T / min	M / Z	Compound	Compound	Compound
1.26-2.49	305.1578	PEG	PEG	PEG
1.19	253.0476	$C_6H_{15}O_7P$		
1.26	191.0108	$C_6H_7O_5P$		-
1.30	235.0358	$C_6H_{13}O_6P$		
1.62	341.0172	$C_8H_{16}O_9P_2+Na$		
1.80	385.0325	$C_{10}H_{16}O_{11}FP+Na$		
2.57	257.0280		$C_8H_{10}O_8 + Na$	
3.83	205.0616	$C_6H_{15}O_4P + Na$		
3.95	243.0484		$C_8H_{12}O_7 + Na$	
4.90	357.0858	C10H24O8P2+Na		
5.67	509.1074	$C_9H_{19}O_7P + Na$		
6.24	445.1014	$C_{13}H_{28}O_{11}P_2 + Na$		
6.60	229.0697		$C_8H_{14}O_6 + Na$	

Table S7. LC-QTof-MS results collected from the $SiO_x@Gr$ anodes after 100 cycles.