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S1 Supplementary Figure
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Figure S1: (a) Equilibrium extinction spectra of CsPbBr3 NPs of different size. (b-e) Time-
and energy-resolved δT/T maps corresponding to the NPs whose extinction is reported in
panel (a).
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S2 Effective medium theory and model for the differen-

tial transmission

In Fig. 1 (main text) we show the fit of the Fano profile (Eq. 1 of the main text) to the

experimental extinction (X) of the 150 and 300 nm NP samples at equilibrium. In Eq. 1

of the main text, Xbck accounts for the absorption across the semiconducting edge and its

analytical expression is given by a second-order polynomial function

Xbck(h̄ω) = k0 + k1 · (h̄ω) + k2 · (h̄ω)2, (S1)

where k0, k1, and k2 are free parameters.

Given the relation X=− log10 T (where T is the sample transmission), it follows that the

differential transmission (δT/T ) is:

δT

T
= 10−δX − 1 ' − 1

log10 e
δX, (S2)

where δX is the differential extinction.

Fig. S2a displays the experimental δT/T spectra of the 150 nm NP sample, taken at

delay time ∆t = 2 ps. The experimental data (circles) can be reproduced (solid line) by

assuming a blue-shift δEg = (5.1 ± 0.4) meV of the Fano profile (Eq. 1 of the main text).

As discussed in the main text, the observed blue-shift δEg refers to the whole sample, which

can be modelled as an effective medium consisting in CsPbBr3 nanoparticles surrounded by

air. To compare the measured band-gap shift (δEg) to the values reported in literature for

thin films of similar perovskite compounds, we adopt the Modified Maxwell-Garnett Mie

model (MMGM),1 which accounts for the geometry dispersion of Mie resonators, to extract

a scaling factor C̃. This scaling factor allows us to estimate the intrinsic bandgap shift of

individual nanoparticles (δENP
g ) and compare it to results obtained on thin films.

According to the MMGM model, the dielectric function of the effective medium (εeff) is
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related to that of the nanoparticles (εnp) and of the surrounding medium (εm) through the

relation:

εeff − εm
εeff + 2εm

=
3ifvol

2

(
λ0

π
√
εm φ̄

)3 ∫ φ2

φ1

F(φ) a1(φ;λ0) dφ (S3)

where fvol is the volume fraction of the inclusion (see Sec. S2.1 for the details of the cal-

culation), λ0 is the wavelength in vacuum, φ̄ is the average diameter of the NPs, F(φ) is

the NPs diameter distribution function, φ1 and φ2 are the lower and upper limits of the

size distribution. The term a1(φ;λ) is the first electric (see Sec. S6.2 for more details) Mie

coefficient given by:

a1(φ;λ0)=

√
εnp ψ1

(
πφ
√
εnp/λ0

)
ψ′1
(
πφ
√
εm/λ0

)
−√εm ψ1

(
πφ
√
εm/λ0

)
ψ′1
(
πφ
√
εnp/λ0

)
√
εnp ψ1

(
πφ
√
εnp/λ0

)
ξ′1
(
πφ
√
εm/λ0

)
−√εm ξ1

(
πφ
√
εm/λ0

)
ψ′1
(
πφ
√
εnp/λ0

) , (S4)
where ψ and ξ are the Riccati - Bessel functions. We assume that the equilibrium dielectric

function of the nanoparticle εnp equals that of the CsPbBr3 thin film (which is extracted

from Ref. 2). According to the experimental distribution of the NPs diameters reported in

Fig. 1 of the main text, we assume a normal distribution of diameters given by:

F(φ) = 1/
√

2πσ2
φ e
−
(

φ−φ̄√
2σφ

)2

, where σφ is the standard deviation of the distribution. In the

case of the 150 nm NPs sample, φ̄ = 150 nm and σφ = 17 nm.

Within the framework of MMGM theory, we calculated the scaling factor C̃ as the ratio

between the absorption1 variation of the nanoparticles (δαnp) and the absorption variation of

the sample (δαeff), i.e. C̃=δαnp/δαeff. Fig. S2b reports the comparison between the variation

of the absorption coefficient of the sample δαeff (yellow solid line) and of the nanoparticles

δαnp (black solid line). To calculate C̃ we optimize the overlap between the absorption

1The absorption coefficient α is related to the dielectric function ε = ε(1) + iε(2) via

α =
2ω

c

√√√√−ε(1) +√(ε(1))2 + (ε(2))2
2

,

where ω is the optical frequency and c the velocity of light in vacuum.
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Figure S2: Out-of-equilibrium properties at long time delays. (a) Experimental
differential transmission spectra (green markers) for 150 nm nanoparticles, taken at ∆t = 2 ps
after excitation. The solid line is obtained by fitting Eq. S2 to the experimental data in the
energy region near the resonance. (b) Variation of the absorption coefficient of the effective
medium δαeff (yellow solid line) and of the inclusion δαnp (black solid line); the latter is
multiplied by a factor 1/60.

variations at energies smaller than the exciton peak, which is the region investigated by

our pump-probe experiment. Following this procedure we obtain C̃= (60± 40). The error

is calculated taking into account the fact that the samples consist in lattices of randomly

distributed nanoparticles. The average coverage distribution density is σcov = 3 NP/µm2,

but it oscillates in the range 1÷5 NP/µm2.
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S2.1 Calculation of the volume fraction fvol

The volume fraction fvol can is estimated as (see Fig. S3):

fvol =
V ·N
Vtot

=

4
3
π
(
φ̄
2

)3

· σcov · S

φ̄ · S
=
π

6
· σcov · φ̄2,

where V is the volume of the single nanoparticle, Vtot is the volume of the selected region

(the height of the cylinder equals the mean nanoparticle diameter), N number of particles

within the selected region, φ̄ is the mean nanoparticle diameter, σcov is the average cover-

age distribution density, and S is area of the base of the selected region. Considering the

experimental parameters φ̄ = 150 nm and σcov = 3 NP/µm2, it follows that fvol = 0.035.

S
Vtot

Figure S3: Calculation of the volume fraction fvol. Sketch of the region adopted to
estimate the volume fraction. Vtot is the volume of the selected region (gray solid line), S is
area of the base of the selected region (shadowed gray surface), and φ̄ is mean nanoparticle
diameter. The height of the cylinder equals the mean nanoparticle diameter.
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S3 Calculation of the pump photon density

The initial free-carrier density injected by each pump pulse has been evaluated by taking

into account the material extinction, the fluence employed in the pump-probe experiment,

and the structural properties of the nanoparticles. The incident fluence is F = 54µJ/cm2

at λ = 425 nm. For 150 nm NPs, the extinction at the pump wavelength is X = 0.207

and the equilibrium transmission results equal to T = 10−X = 0.63. Taking into account

the reflection from the substrate (R=0.08) and assuming that the energy is absorbed by

the nanoparticles, the absorption due to the nanoparticles is A = 1 − (R + T ) = 0.29. It

follows that the absorbed fluence is EA = F · A = 15.5µJ/cm2 and, therefore, the energy

absorbed over an area A = 1µm2 is Ea = EA · A = 1.55× 10−13 J. Given an average

coverage distribution density of σcov = 3 NP/µm2 and assuming a spherical shape for the

nanoparticles, which gives a volume V = 1.767× 10−15 cm3, the energy absorbed per unit

volume is wa = Ea/(3 ·V ) = 29.2 Jcm−3 = 1.82× 1020 eVcm−3. Finally, given that the pump

is centered at λ = 425 nm, the photon density per unit volume at the pump wavelength is

nph = 62.6× 1018 cm−3.
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S4 Analysis of the time-resolved traces

The time-resolved δT/T (∆t) traces, at fixed probe energy, are analysed according to the

following double-exponential model. This choice is due to the fact that we want to describe

the dynamics of the differential signal as the sum of the contributions due to bandgap renor-

malization (BGR) and band filling (BF). The δT/T (∆t) model is given by the convolution

between a gaussian function G, describing the experimental time resolution (given by the

pump temporal width), and the material response function F :

δT/T (∆t) = G(∆t) ∗ F(∆t) , where G(t) =

√
4 ln 2

π τ 2
p

e
− 4 ln 2

τ2
p

t2

and (S5)

F(∆t) = θ(∆t− t0) ·
[
A1 ·

(
1− e−

∆t−t0
τR1

)
· e−

∆t−t0
τD1 +

+A2 ·
(

1− e−
∆t−t0
τR2

)
· e−

∆t−t0
τD2

]
. (S6)

In the previous expressions, τp=40 fs is the FWHM of the pump-laser pulse, t0 is the zero-

time offset, τR1 is the BGR rise time, τD1 is the BGR decay time, τR2 is the BF rise time,

τD2 is the BF decay time, A1 and A2 are the amplitude factors of the two mechanisms.

Table S1: Parameters extracted from the fit procedure applied to the δT/T dynamics at
different probe energies

Parameter 150-nm-NP 300-nm-NP

τR1 (fs) 200 ± 10 190 ± 10
τD1 (fs) 410 ± 10 390 ± 10
τR2 (fs) 500 ± 20 460 ± 20
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S5 Models of the dynamics of the single nanoparticle op-

tical properties

Here, we report the description of the models adopted to establish the role of the different

physiscal phenomena in determining the out-of-equilibrium optical properties of the single

nanoparticle. Upon free-carriers injection, the transmission variation is controlled by three

main components:3 the Drude term (D), the band filling (BF) and the bandgap renormal-

ization (BGR) effects. These processes give rise to a modulation of both the refractive index

and absorption, as given by:

δn = δnD + δnBGR + δnBF (S7a)

δα = δαD + δαBGR + δαBF (S7b)

For each process (i=D, BGR, BF), the refractive index and absorption variations are con-

strained by the following Kramers-Krönig relations:

δni(h̄ω;nfc) =
2ch̄

e2
P.V.

∫ +∞

0

δαi(ξ;nfc)

ξ2 − (h̄ω)2 dξ, (S8)

where c is the speed of light in vacuum, e is the electron charge, h̄ is the Planck’s constant,

and P.V. is the Cauchy principal value.3,4 As it will be described in the following, these

three components depend on the pump-injected free-carriers density nfc. In our analysis,

we assume an injected free-carrier density nfc = 1.2× 1020 cm−3 for 150 nm NPs; moreover,

the pump-injected free-electron density in the conduction band (ne) is assumed equal to the

pump-injected free-holes density in the valence band (nh), i.e. ne ' nh ' nfc/2.
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S5.1 Drude

The Drude term represents the physical mechanism for which the photon-absorption pro-

motes a free-carrier to a higher energy state within the same band. The corresponding

change in the refractive index is given by:

δnD (E;nfc) = − nfc h̄
2 e2

4m∗ n0 ε0

(
E2 + h̄2 γ2

) , (S9)

where m∗ =
(
m−1
e +m−1

h

)−1 is the reduced-effective mass (m∗ = 0.072m0,5), n0 is the

refractive index at equilibrium and γ is the inverse collision time of the carriers.

S5.2 Bandgap Renormalization

In the case of parabolic bands, the optical absorption (α0) of electrons (holes) from the

valence (conduction) band to the conduction (valence) band is given by the square-root law:

αeq
(
h̄ω;E0

g

)
=


0 for h̄ω < E0

g ,

C1

h̄ω

√
h̄ω − Eg + C2

Γ/2

[h̄ω−(E0
g−Ex)]

2
+(Γ/2)2

for h̄ω ≥ E0
g

, (S10)

where E0
g , Ex, and C are respectively the band-gap energy, the exciton binding energy and

a constant. The bandgap renormalization term is modeled as a rigid translation (red shift)

of the absorption curve:

δαBGR(h̄ω;nfc/ncr) = αeq
(
h̄ω;E0

g − δEBGR(nfc/ncr)
)
− αeq

(
h̄ω;E0

g

)
, (S11)

where δEBGR is the free-carrier dependent bandgap shift, whose expression is

δEBGR(nfc/ncr) =


C3

εs

(
1− nfc

2ncr

)1/3

, nfc/2 ≥ ncr

0, nfc/2 < ncr

, (S12)
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where C3=0.05 is a fitting parameter, εs= 4 (Ref. 6) is the relative static dielectric constant,

and ncr is the critical concentration of free carriers,3 which is calculated as

ncr
[
cm−3

]
=

(
m∗/m0

1.4 εs

)3

· 1.6× 1024 = 3.4× 1018. (S13)

S5.3 Band Filling

The band filling term implies a free-carriers induced modulation of the interband absorption

for photon energies slightly above the nominal bandgap. In presence of free-carriers injection,

the variation of the intraband absorption is described by the following expression:

δαBF (h̄ω;nfc, T
∗) = αeq

(
h̄ω;E0

g

) [
fv
(
h̄ω;E∗Fv , T

∗)− fc(h̄ω;E∗Fc , T
∗)− 1

]
, (S14)

where

fv
(
h̄ω;E∗Fv , T

∗) =

[
1 + exp

(
Ea − E∗Fv
kBT ∗

)]−1

and fc
(
h̄ω;E∗Fc , T

∗) =

[
1 + exp

(
Eb − E∗Fc
kBT ∗

)]−1

(S15)

are the Fermi-Dirac distributions for the electrons in the conduction band and holes in the

valence band, respectively. In Eq. S15, T ∗ is the effective temperature, Ea and Eb denote an

energy level in the valence and conduction band, and E∗Fv and E
∗
Fc

are the carrier-dependent

quasi-Fermi levels. The effective temperature T ∗ is computed by considering the excess

energy of the pump-excited free-carriers which, in our case, corresponds to T ∗ ≈ 3000 K (we

assume that the energy is equally distributed between electrons and holes,7). For a given

photon energy h̄ω, the values of Ea and Eb are uniquely defined on the basis of energy and

momentum conservation:

Ea = − (h̄ω − Eg)
(

me

me +mh

)
− Eg and Eb = (h̄ω − Eg)

(
mh

me +mh

)
. (S16)
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The value of the carrier-dependent quasi-Fermi levels is computed by the Nilsson approxi-

mation:8

E∗Fv = −

[
ln

(
nfc
2Nv

)
+
nfc
2Nv

[
64 + 0.05524 · nfc

2Nv

·
(

64 +

√
nfc
2Nv

)]−1/4
]
kBT

∗ − E0
g (S17)

and

E∗Fc =

[
ln

(
nfc
2Nc

)
+
nfc
2Nc

[
64 + 0.05524 · nfc

2Nc

·
(

64 +

√
nfc
2Nc

)]−1/4
]
kBT

∗, (S18)

where the zero energy level is set at the bottom of the conduction band. Nv and Nc are the

effective density of states in the valence and conduction band, respectively, given by

Nv = 2

(
mh kB T

∗

2πh̄

)3/2

and Nc = 2

(
me kB T

∗

2πh̄

)3/2

. (S19)

The refractive index variation due to bandgap renormalization and band filling is ob-

tained after the application of the Kramers-Krönig relations (see Eq. S8). The possible

photoinduced variation of interband transitions at high energies, i.e. beyond the experimen-

tal accessible energy range, would gives rise to an additional refractive index variation, which

is not accounted for by Eq. S14. This contribution is considered by assuming an additional

frequency independent refractive index variation, δn0, which can be adjusted to finely match

the ratio between the amplitudes of the δT/T signals at the energy h̄ω '2.4 eV for the 150

nm and 300 nm NPs.

12



S6 Mie-theory of single particle

S6.1 Extinction, Scattering, and Absorption

In order to clarify how scattering and absorption mechanisms contribute to total extinction,

we analytically calculated the scattering, extinction and absorption cross-sections (Csca, Cext,

and Cabs, respectively) of a single sperical CsPbBr3 particle, within the framework of Mie

theory.9 This model applies to the ideal case of isolated nanoparticles in a surrounding

medium, but it is instructive to qualitatively address the role of the scattering and absorption

processes. The analytical expressions are given by:

Csca =
2π

k2

∞∑
h=1

(2h+ 1) (|ah|2 + |bh|2) (S20a)

Cext =
2π

k2

∞∑
h=1

(2h+ 1) <(ah + bh) (S20b)

Cabs = Cext − Csca (S20c)

where the index h is the multipole order, ah and bh are the scattering Mie-coefficients of

the order h, k=2π
√
εm

λ0
is the wave-number in the surrounding medium, εm is the dielectric

function of the surrounding medium, and λ0 is the wavelength in vacuum. Assuming that

the permeability of the particle equals to that of the surrounding medium, Mie coefficients

can be obtained thanks to the following expressions:

ah =
mψh(mx)ψ′h(x)− ψh(x)ψ′h(mx)

mψh(mx)ξ′h(x)− ξh(x)ψ′h(mx)
(S21a)

bh =
ψh(mx)ψ′h(x)−mψh(x)ψ′h(mx)

ψh(mx)ξ′h(x)−mξh(x)ψ′h(mx)
, (S21b)

where ψ and ξ are the Riccati - Bessel functions, m =
√
εnp/
√
εm is the relative refractive

index, εnp is the dielectric function of the nanoparticle, x = πφ
√
εm/λ0 is the size parameter,

and φ is the sphere diameter. Basing on these equations and assuming that the dielectric

13



function of a CsPbBr3 nanoparticle equals that of the thin film of the same material (ex-

tracted from Ref. 2), we calculate the cross-sections of the CsPbBr3 spherical NPs with

diameter of 150 and 300 nm (see Fig. S4). In both cases, near the exciton region, the

scattering, characterized by a Fano asymmetric lineshape, dominates the total extinction.
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Figure S4: Cross Sections for spherical CsPbBr3 nanoparticles. Extinction, scattering
and absorption cross-sections of spherical CsPbBr3 nanoparticles with diameter of 150 (panel
a) and 300 nm (panel b) at equilibrium.

S6.2 Modes Decomposition (equilibrium and out-of-equilibrium)

In this section we describe how multipole decomposition of the scattering cross-section is

spectrally modified by the photo-excitation process in the simple case of an isolated nanopar-

ticle in a surrounding medium. The outcome of numerical simulations of the full electro-

magnetic problem in the realistic configuration (nanoparticle+substrate) is discussed in the

main text. In expression S20, ah (electric) and bh (magnetic) are the Mie-coefficients of the

order h. The multipole modes are named according to the order: h=1 stands for dipole

mode, 2-quadrupole, 3-octupole, etc. Fig. S5a and c exhibit the scattering cross-section

at equilibrium (obtained as described in S6.1), together with the contribution provided by

the four strongest multipole modes (dipolar (D) and quadrupolar (Q) modes of magnetic

(M) and electric (E) types), for a CsPbBr3 particle with diameter of 150 and 300 nm (panel

(a) and (c), respectively). The out-of-equilibrium scattering cross-section (i.e., after photo-

14



excitation) is calculated thanks to expressions S20a, S21 by using a perturbed perovskite

dispersion, εout = εnp + δεnp. The photo-induced variation of the nanoparticles dispersion

δεnp is obtained as described in Sec. S5. The out-of-equilibrium cross-section, together with

the contribution provided by the four strongest multipole modes, are reported in panels (b)

and (d) for a CsPbBr3 particle with diameter of 150 and 300 nm, respectively.
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Figure S5: Modes decomposition for spherical CsPbBr3 nanoparticles. Calculated
scattering cross-section (red solid lines) for a spherical CsPbBr3 nanoparticle of diameters
150 nm (a, b) and 300 nm (c, d), as well as contributions to the four strongest Mie modes in
visible spectral range: electric dipole (ED, blue solid lines), magnetic dipole (MD, magenta
solid lines), electric quadrupole (EQ, yellow solid lines), and magnetic quadrupole (MQ,
black dashed lines). The spectra are calculated for unperturbed material before photo-
excitation (a, c), and after photo-excitation assuming an injected free carrier density nfc =
1.2× 1020 cm−3 (b, d).
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