Supporting Information

Investigations Into Aqueous Redox Flow Batteries

Based on Ferrocene Bisulfonate

Zhiling Zhao, ${ }^{\dagger}$ Baosen Zhang, Briana R. Schrage, Christopher J. Ziegler, * and Aliaksei Boika*

Department of Chemistry, The University of Akron, Akron, OH 44325
*Co-corresponding authors. E-mails: aboika@uakron.edu (A.B.), ziegler@uakron.edu
(C.J.Z.)
\dagger Present address: Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States.

Table of Contents

Page
Figure S1. Solubility tests using UV-visible spectroscopy. S3
Figure S2. ${ }^{1} \mathrm{H}$ NMR (300 MHz) of $\mathbf{1 , 1} \mathbf{1}$-FcDS in d6-DMSO. S4
Figure S3. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz) of $\mathbf{1 , 1} \mathbf{1}-\mathbf{F c D S}$ in d6-DMSO. S5
Figure S4: High-resolution ESI mass spectra of $\mathbf{1 , 1}$ '-FcDS. S6
Figure S5. UV-visible spectrum for $\mathbf{1 , 1}$ '-FcDS in water. S7
Figure S6. UV-visible spectra for $\mathbf{1 , 1} \mathbf{\prime}-$ FcDS, basic iron(III) acetate, and the 1,1 ' - FcDS S8 (2 M acetate buffer) decomposition solution in water.
Figure S7. UV-visible spectra for $1,1^{\prime}-\mathrm{FcDS}, \mathrm{FeCl}_{3}\left(1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\right)$, and the $1,1^{\prime}$ - FcDSS9
(0.5 M H 2 SO 4) decomposition solution in water.
Figure S8. CVs of $2 \mathrm{mM} 1,1$ '- FcDS in aqueous solution with 0.5 M EG .S10
Figure S9. CVs of $2 \mathrm{mM} 2,7-\mathrm{AQDS}(\mathrm{A})$ or $2 \mathrm{mM} 1,1^{\prime}-\mathrm{FcDS}(\mathrm{B})$ in aqueous solution. S11
Figure S10. CVs of $3 \mathrm{mM} 2,7-\mathrm{AQDS}$ (A) or $3 \mathrm{mM} 1,1$ ' $-\mathrm{FcDS}(\mathrm{B})$ in aqueous solution. S12
Figure S11. 100 charge and discharge cycles at constant current 25 mAS13 for $1,1^{\prime}-\mathrm{FcDS} / 2,7-A Q D S$ RFB using $1 \mathrm{M} \mathrm{NaNO}_{3}$.
Figure S12. 100 charge and discharge cycles at constant current 25 mAS14 for $1,1^{\prime}-\mathrm{FcDS} / 2,7-\mathrm{AQDS}$ RFB using acetate buffer.
Figure S13. 1, ${ }^{1}$-FcDS/2,7-AQDS RFB using 2 M acetate buffer as supporting electrolyte (0.5 M EG added). A: Ten charge and discharge cycles ($\# 2$ to \#11 cycles) at constant current 25 mA ; B: capacity vs cycling number; C : CE, EE and VE vs cycling number.
Figure S14. 100 charge and discharge cycles at constant current 25 mA for 1,1 '-FcDS/2, $7-A Q D S ~ R F B ~ u s i n g ~ 0.5 ~ M ~ H 2 S O 4 . ~$
Figure S15. 1,1’-FcDS permeability calculation plot. S17
$\begin{array}{ll}\text { Table S1. X-ray crystal data and structure parameters for compounds } & \text { S18 } \\ \mathbf{2 , 7} \mathbf{- A Q D S} \text { and } \mathbf{1 , 1} \mathbf{\prime}-\mathbf{F c D S} . & \end{array}$

Figure S1. Solubility tests using UV-vis spectroscopy. A and B: Calibration curves for the relationship between absorbance and concentration of $1,1^{\prime}-\mathrm{FcDS}$ in 1 M NaNO 3 with (A) and without (B) the addition of 0.5 M EG. C and D: UV-vis spectra of diluted supernatant of $1,1^{\prime}$ 'FcDS supersaturated solutions prepared in $1 \mathrm{M} \mathrm{NaNO}_{3}$ with (C: dilution 200 times) and without (D: dilution 100 times) the addition of 0.5 M EG .

Figure S2. ${ }^{1} \mathrm{H}$ NMR (300 MHz) of $\mathbf{1 , 1} \mathbf{1}$-FcDS in d6-DMSO.

Figure S3. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz) of $\mathbf{1 , 1} \mathbf{1}-\mathbf{F c D S}$ in d6-DMSO.

Figure S4. High-resolution ESI mass spectra of $\mathbf{1 , 1} \mathbf{\prime} \mathbf{- F c D S}$. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S5. UV-visible spectrum for $\mathbf{1 , 1} \mathbf{1}-\mathbf{F c D S}$ in water.

Figure S6. UV-visible spectra for $\mathbf{1 , 1} \mathbf{\prime}-\mathbf{F c D S}$, basic iron(III) acetate, and the 1,1 '-FcDS (2 M acetate buffer) decomposition solution in water.

Figure S7. UV-visible spectra for $\mathbf{1 , 1} \mathbf{\prime}-\mathbf{F c D S}, \mathrm{FeCl}_{3}\left(1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\right)$, and the $1,1^{\prime}$ - $\mathrm{FcDS}(0.5 \mathrm{M}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$) decomposition solution in water.

Figure S8. CVs of $2 \mathrm{mM} \mathrm{1,1}$ '-FcDS in aqueous solution with $0.5 \mathrm{M} \mathrm{EG} .1 \mathrm{M} \mathrm{NaNO}_{3}$ was added as supporting electrolyte. Working electrode: 3 mm dia. glassy carbon, reference electrode: $\mathrm{Ag}|\mathrm{AgCl}| \mathrm{KCl}(2 \mathrm{M})$, counter electrode: platinum wire. From inner curve to outer one, the scan rate varies from $20 \mathrm{mV} / \mathrm{s}$ to $65 \mathrm{mV} / \mathrm{s}$.

Figure S9. CVs of $2 \mathrm{mM} 2,7-\mathrm{AQDS}(\mathrm{A})$ or $2 \mathrm{mM} 1,1^{\prime}-\mathrm{FcDS}(\mathrm{B})$ in aqueous solution. 2 M acetate buffer ($\mathrm{pH}: 4.53$) was added as supporting electrolyte. Working electrode: 3 mm dia. glassy carbon, reference electrode: $\mathrm{Ag}|\mathrm{AgCl}| \mathrm{KCl}(2 \mathrm{M})$, counter electrode: platinum wire. From inner curve to outer one, the scan rate varies from $20 \mathrm{mV} / \mathrm{s}$ to $65 \mathrm{mV} / \mathrm{s}$.

Figure S10. CVs of 3 mM 2,7-AQDS (A) or $3 \mathrm{mM} 1,1^{\prime}-\mathrm{FcDS}(\mathrm{B})$ in aqueous solution. 0.5 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added as supporting electrolyte. Working electrode: 3 mm dia. glassy carbon, reference electrode: $\mathrm{Ag}|\mathrm{AgCl}| \mathrm{KCl}(2 \mathrm{M})$, counter electrode: platinum wire. From inner curve to outer one, the scan rate varies from $20 \mathrm{mV} / \mathrm{s}$ to $65 \mathrm{mV} / \mathrm{s}$.

Figure S11. 100 charge and discharge cycles at constant current 25 mA for 1,1 '- $\mathrm{FcDS} / 2,7-\mathrm{AQDS}$ RFB using $1 \mathrm{M} \mathrm{NaNO}_{3}$ as supporting electrolyte (0.5 M EG added). Sodium ions serve as charge carriers during cell operation.

Figure S12. 100 charge and discharge cycles at constant current 25 mA for $1,1^{\prime}-\mathrm{FcDS} / 2,7-\mathrm{AQDS}$ RFB using 2 M acetate buffer as supporting electrolyte (0.5 M EG added). Sodium ions, as well as hydronium cations, serve as charge carriers during the cell operation.

Figure S13. 1, 1’-FcDS/2,7-AQDS RFB using 2 M acetate buffer as supporting electrolyte (0.5 M
EG added). A: Ten charge and discharge cycles (\#2 to \#11 cycles) at constant current 25 mA ; B: capacity vs cycling number; C : CE, EE and VE vs cycling number.

Figure S14. 100 charge and discharge cycles at constant current 25 mA for $1,1^{\prime}-\mathrm{FcDS} / 2,7-\mathrm{AQDS}$
RFB using $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ as supporting electrolyte. Hydronium cations serve as charge carriers during the cell operation.

S15. $\quad \Delta \ln \left(1-\frac{2 c_{t}}{c_{0}}\right)\left(\frac{V_{0} t}{2 A}\right)$
Figure S15. 1,1'-FcDS permeability calculation plot using $\boldsymbol{P}=\frac{\Delta t}{}$, where \boldsymbol{P} is permeability, $\boldsymbol{c}_{\boldsymbol{t}}$ is the concentration of $1,1^{\prime}-\mathrm{FcDS}$ in the receiving side, $\boldsymbol{c}_{\mathbf{0}}$ is the concentration of 1,1 ' -FcDS in the donating side $(0.03 \mathrm{M}), \boldsymbol{V}_{\mathbf{0}}$ is the volume of solution in reservoir (30 mL), \boldsymbol{I} is the thickness of membrane $(183 \mu \mathrm{~m}), \boldsymbol{A}$ is the membrane effective area $\left(9 \mathrm{~cm}^{2}\right), \boldsymbol{t}$ is time interval. The permeability is $1.67 \mathrm{E}-9 \mathrm{~cm}^{2} / \mathrm{s}$ according to the slope of the trendline for plotted data.

Table S1. X-ray crystal data and structure parameters for compounds 2,7-AQDS and 1,1’-FcDS.

Compound	2,7-AQDS	$\mathbf{1 , 1}$ - $\mathbf{F c D S}$
CCDC	2009129	2009128
Empirical formula	$\mathrm{C}_{96} \mathrm{H}_{98} \mathrm{~N}_{4} \mathrm{Na}_{12} \mathrm{O}_{69} \mathrm{~S}_{12}$	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{FeNa}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}$
Formula weight	3072.38	498.21
Crystal system	Monoclinic	Triclinic
Space group	$\mathrm{C} 2 / \mathrm{m}$	$\mathrm{P}-1$
a / \AA	$20.109(2)$	$6.2579(4)$
b / \AA	$20.778(2)$	$6.7586(4)$
c / \AA	$15.8044(14)$	$23.6781(15)$
$\alpha\left({ }^{\circ}\right)$	90	$93.877(3)$
$\beta\left({ }^{\circ}\right)$	$112.816(5)$	$96.594(3)$
$\gamma\left({ }^{\circ}\right)$	90	$109.331(3)$
Volume $\left(\AA^{3}\right)$	$6087.0(11)$	$932.77(10)$
Z	2	2
Dc $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.676	1.774
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.370	1.137
$\mathrm{~F}(000)$	3156	512
reflns collected	102040	38129
indep. reflns	5544	4630
GOF on F^{2}	1.546	1.071
$\mathrm{R} 1\left(\right.$ on $\left.\mathrm{F}_{\mathrm{o}}{ }^{2}, \mathrm{I}>2 \sigma(\mathrm{I})\right)$	0.1796	0.0400
wR2 $\left(\right.$ on $\left.\mathrm{F}_{\mathrm{o}}{ }^{2}, \mathrm{I}>2 \sigma(\mathrm{I})\right)$	0.4190	0.1284
$\mathrm{R} 1($ all data $)$	0.2183	0.0472
wR2 $($ all data $)$	0.4383	0.1315

