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Experimental Section

Materials: Zinc oxide (nanorods), dopamine hydrochloride (DA), sodium molybdate 

dihydrate (Na2MoO4·2H2O), ferric chloride (FeCl3), Tris base, sodium citrate, salicylic 

acid, sodium hypochlorite solution (NaClO), sodium nitroferricyanide dihydrate 

(C5FeN6Na2O·2H2O), N2H4·H2O, and para-dimethylaminobenzaldehyde (p-C9H11NO) 

were acquired from Macklin. All chemical reagents were used without any pre-

treatment. During the whole experimentation, deionized water has been used.

Preparation of ZnO−Fe,Mo/PDA: Typically, 0.2 g of ZnO nanorods were first spread 

in 100 mL of Tris buffer solution (10 mM, pH = 8.5) through ultrasonication. After 

that, 0.1g of DA, 0.1g of FeCl3, and 0.1g of Na2MoO4·2H2O were slowly added to 

maintain Fe/Mo = 1:1. The as-prepared solution was further stirred for 24 hours so that 

the dopamine polymerizes onto ZnO nanorods to form Fe,Mo co-doped ZnO−PDA 

composite. The mixture was then centrifuged, washed, and dried in vacuum at 60 ℃ 

for 8 hours. At the end, black powder of composite material can be obtained.

Preparation of Fe,Mo-N/C: Pyrolysis of ZnO−Fe,Mo/PDA was performed at 800 ℃ 

for two hours under the nitrogen atmosphere at a heating rate of 5 ℃/min. Then, the 

products of pyrolysis were rinsed with 1 M HCl under ultrasound for two hours to 

eliminate the ZnO nanorods templates from ZnO−Fe,Mo/PDA. Subsequently, 

centrifugation, rinsing, and freeze-drying processes, the black color product of 

Fe,Mo−N/C (1:1) was finally obtained. In order to synthesize Fe,Mo−N/C (2:1) and 

Fe,Mo−N/C (1:2) systems, only the mass of Mo was changed to 0.05 and 0.2 g, 

respectively, and the corresponding initial Fe/Mo mass ratios were 2 and 0.5. For 
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comparison, a similar procedure (as discussed in the synthesis of ZnO−Fe,Mo/PDA) 

was repeated for preparing Fe containing N-doped porous carbon (Fe−N/C) without 

using of Na2MoO4·2H2O. Also, Mo based N-doped porous carbon (Mo−N/C) was 

prepared without using of FeCl3. N−C was prepared without the addition of both salts 

Na2MoO4·2H2O and FeCl3 in the synthesis step.

Electrochemical Measurements: Catalyst drop-casted carbon paper was used as the 

cathode (working electrode) throughout electrocatalytic NRR experimentation.  In 

general, 1.1 mL of water and 0.375 mL of isopropanol solution, 5 mg of catalyst, and 

30 μL of Nafion are distributed and sonicated for 1 hour to obtain a uniform solution. 

The catalyst suspension solution (200 μL) was drop-cast onto carbon paper (1 cm × 1 

cm) and dried in vacuum at 60 °C. Electrochemical measurements were performed by 

using CHI 760E electrochemical workstation with two-chamber H-type cell separated 

by Nafion 211 membrane at room temperature and pressure. The Nafion membrane was 

heated in an aqueous H2O2 solution and deionized water at 80 °C for 1 h respectively. 

A Pt mesh (1 cm × 1 cm) was used as the counter electrode and Ag/AgCl electrode was 

used as the reference electrode. All potentials measured in this work were calibrated to 

the reversible hydrogen electrode (RHE) using the Nernst equation: ERHE = EAg/AgCl + 

0.197 + 0.059 pH. Linear sweep voltammetry (LSV) curves were collected at a scan 

rate of 10 mV/s. For NRR experiments, potentiostatic tests were conducted in 80 mL 

of a N2-saturated 0.1 M Na2SO4 solution (the electrolyte was purged with N2 for 0.5 

hour before the measurement). During NRR process (NH3 synthesis), pure N2 was 

continuously fed into the cathode compartment.
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Determination of ammonia: The concentration of produced NH3 was determined by 

the indophenol blue method.1,2 Typically, 2 mL of the electrolyte was taken out from 

the electrochemical reaction vessel. Afterwards, 2 mL of 1 M NaOH solution 

containing salicylic acid (5 wt%) and sodium citrate (5 wt%) was added, followed by 

the addition of 1 mL of 0.05 M NaClO and 0.2 mL of C5FeN6Na2O (1 wt%). After 

keeping at room temperature for 2 hours, the absorption spectrum of the resulting 

solution was measured using a UV-vis spectrophotometer. All samples for UV-vis 

spectrophotometer were prepared by following the same previous procedure. The 

concentration of indophenol blue was measured using the absorbance at λ = 655 nm. 

To quantify the generated NH3, a calibration curve was constructed using a series of 

standard ammonium chloride (NH4Cl) solutions in 0.1 M Na2SO4, 0.05 M H2SO4 and 

0.1 M KOH, respectively. Fitting curves (Na2SO4: y = 6.694x + 0.005, R2 = 0.999; 

H2SO4: y = 6.123x + 0.006, R2 = 0.999; KOH: y = 4.448x + 0.008, R2 = 0.999, in which 

x and y stand for absorbance and concentration) of the three independent calibrations 

show a good linear relationship between the absorbance value and the NH3 

concentration.

Determination of hydrazine: As reported early,2 hydrazine (N2H4) present in 0.1 M 

Na2SO4 was estimated via method developed by Watt and Chrisp. A mixture of 5.99 g 

p-C9H11NO, 30 mL concentrated HCl and 300 mL C2H5OH was used as color reagent. 

Typically, 5 mL of the electrolyte was removed from the reaction cell and mixed with 

5 mL of the aforementioned color reagent. The absorbance of the resulting solution was 

measured at λ = 458 nm. Calibration curve was constructed using standard hydrazine 



S6

hydrate solutions with series of concentrations, a curve fit (y = 0.083x + 0.062, R2 = 

0.998) of three independent calibrations shows a good linear relationship between the 

absorbance value and the N2H4 concentration.

Determination of yield rate and Faradaic efficiency: The yield rate of NH3 formation 

can be calculated using the following equation: 

,           (S1)𝑌𝑖𝑒𝑙𝑑𝑟𝑎𝑡𝑒 = (𝐶𝑁𝐻3 × 𝑉) (𝑡 × 𝐴)

where  is NH3 concentration,  is the volume of electrolyte,  is the reaction 𝐶𝑁𝐻3 𝑉 𝑡

time and  is the surface area of the working electrode. Assuming that three electrons 𝐴

are needed to produce one NH3 molecule, the Faradaic efficiency (FE) can be calculated 

using the following equation:

,   (S2)   𝐹𝑎𝑟𝑎𝑑𝑎𝑖𝑐𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (3𝐹 × 𝐶𝑁𝐻3 × 𝑉) 𝑄

where  is the Faraday constant and  is the total charge passed through the 𝐹 𝑄

electrode during the reduction reaction.

Characterizations: Powder X-ray diffraction (XRD) patterns of all of the samples 

were carried out using graphite-filtered Cu Kα radiation operating at 40 kV and 30 mA, 

λ= 0.15418 nm (Shimadzu XRD-6000 diffractometer). Scanning electron microscope 

(SEM) with an accelerating voltage of 20 kV (SEM, Zeiss SUPRA 55) was applied for 

detailed morphology analysis. X-ray photoelectron spectrometry (XPS) spectra were 

recorded using Al Kα radiation (Thermo VG ESCALAB MK II). The positions of all 

BEs were calibrated by using the C 1s line at 284.8 eV. Transmission electron 

microscope (TEM) images and energy dispersive X-ray spectroscopy (EDS) mappings 

were taken using a JEOL JEM-2010F combined with EDX (Oxford X-MaxN 80-TLE) 
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spectroscopy. 

Figure S1. XRD patterns of pure ZnO.

Figure S2. SEM images of (a) Fe−N/C and (b) Mo−N/C catalysts.
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Figure S3. NH3 yield rates and Faradaic efficiencies in the three electrolytes.

Figure S4. UV-vis absorption spectra of the electrolytes estimated by the method of 

Watt and Chrisp after NRR reaction at a series of potentials.
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Figure S5. Controlled NMR analysis of Fe,Mo−N/C at the potential of -0.1 V vs. RHE.

Figure S6. Chronoamperometry (CA) tests of the stability of Fe,Mo−N/C catalyst at 
the potential of -0.1 V vs. RHE.
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Figure S7. TEM image for post-NRR Fe,Mo−N/C.

Figure S8. (a) Chronoamperometric results of Fe−N/C at different potentials and (b) 
corresponding NH3 yield rates and Faradaic efficiencies.

Figure S9. (a) Chronoamperometric results of Mo−N/C at different potentials and (b) 
corresponding NH3 yield rates and Faradaic efficiencies.
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Figure S10. (a) Chronoamperometric results of N−C at different potentials and (b) 
corresponding NH3 yield rates and Faradaic efficiencies.

Figure S11. Faradaic efficiency of HER at different potentials.

Figure S12. High-resolution XPS spectra of N 1s regions in (a) Fe,Mo−N/C (1:2) and 
(b) Fe,Mo−N/C (2:1) catalysts. 
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Figure S13. Different UV-vis absorption spectra of (a) Fe−N/C and (b) Mo−N/C 
catalysts before and after the addition of 10 mM KSCN at -0.1 V vs. RHE in 0.1 M 
Na2SO4.

Scheme S1. Schematic illustrations of the proposed reaction pathway for NRR on the 

Fe,Mo-N/C surface.

Table S1. Summary of elemental quantification determined by using XPS as a function 
of different catalysts.
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Table S2. The average NH3 yields (mol h-1cm-2) and corresponding Faradaic 
efficiencies (%) under different applied potentials.

Table S3. Summary of the NRR activity of electrocatalysts under ambient conditions.
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