Construction of $\boldsymbol{\beta}$-Quaternary $\boldsymbol{\alpha}, \boldsymbol{\alpha}$-Difluoroketones via Catalytic Nucleophilic Substitution of Tertiary Alcohols with Difluoroenoxysilanes

Yong-Jia Hao, ${ }^{\dagger, \#}$ Yi Gong, ${ }^{\ddagger, \#}$ Ying Zhou,*, \dagger Jian Zhou, ${ }^{\ddagger, \S}$ and Jin-Sheng Yu*, ${ }^{\text {, }}$
${ }^{\dagger}$ College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 China.
*Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
§ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032 China.
\# These authors contributed equally to this work.
E-mail for Y. Zhou: zhouying067@gzy.edu.cn; E-mail for J.-S. Yu: jsyu@chem.ecnu.edu.cn

Supporting information

Table of Contents	Page
1. General information	S 2
2. General procedure for the substitution reaction	S3-S13
3. Transformation of products	S14-S17
4. Control experiment and a proposed reaction pathway	S 18
5. X-ray crystallographic data of compound 6	$\mathrm{~S} 19-\mathrm{S} 23$
$6 .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra and HPLC spectra	S24-S114

1. General information

Reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the progress of reaction. Purification of reaction products was carried out by flash chromatography on $300-400$ mesh silica gel. Chemical yields referred to pure isolated substances. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker DPX-400 or DPX-500 spectrometer. The HRMS spectra were measured on Waters Synapt TOF G2-S mass spectrometer or Bruker maXis impact spectrometer using electron spray ionization (ESI) method. Chemical shifts (δ) are expressed in parts per million (ppm) units using $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ as the internal standard. HPLC analysis was performed on a Shimadzu LC-20AD instrument using Daicel Chiral columns at $30^{\circ} \mathrm{C}$ and a mixture of HPLC-grade hexanes and isopropanol as eluent. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{dt}=$ doublet of triplets. Coupling constants (J) are reported in Hertz.

Unless mentioned, all reactions were carried out under an atmosphere of N_{2}. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DCE, and $\mathrm{CH}_{3} \mathrm{CN}$ were prepared by first distillation over $\mathrm{P}_{2} \mathrm{O}_{5}$ and then from CaH_{2}. Anhydrous toluene and THF were prepared by distillation over sodium-benzophenone ketyl prior to use. The 3substituted 3-hydroxyoxindoles 2 were prepared from the corresponding isatins and Grignard reagents according to the reported procedure. ${ }^{1}$ Difluoroenoxysilanes ${ }^{2 \mathrm{a}, \mathrm{b}}$ and monofluorinated silyl enol ethers ${ }^{2 \mathrm{c}}$ were prepared by using the literature methods.

List of abbreviation:

Entry	Chemical name	Abbreviation
1	Dichloromethane	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
2	1,2-Dichloroethane	DCE
3	Tetrahydrofuran	THF
4	Petroleum ether	PE
5	Ethyl acetate	EtOAc
6	Hexafluoroisopropyl alcohol	HFIP

[^0]
2. General procedure for the substitution reaction

2.1 The reaction of 3-hydroxyoxindoles 2 with fluorinated enol silyl ethers 1

Under an atmosphere of N_{2}, to a 25 mL flame-dried Schleck tube were added 3hydroxyoxindoles 2 ($0.25 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Fe}(\mathrm{OTf})_{3}(0.0125 \mathrm{mmol}, 6.3 \mathrm{mg}, 5.0 \mathrm{~mol} \%$), followed by the addition of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. After being stirred at room temperature for about 5 min , fluorinated enol silyl ethers $\mathbf{1}(0.375 \mathrm{mmol}, 1.5$ equivs) was then added. The resulting mixture was stirred at room temperature until full conversion of $\mathbf{2}$ by TLC analysis. The reaction mixture was then concentrated under reduced pressure to give the residue, which was purified by silica gel column chromatography to afford the products $\mathbf{3}$, using PE/EtOAc as eluent.

Column chromatography with PE/EtOAc (10/1, v/v) afforded product 3a in 91% yield (92.6 mg) as white solid, m.p. $148-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.93 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=8.9,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42-$ $7.35(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{td}, J=7.6 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.6(\mathrm{t}, J=31.7 \mathrm{~Hz}, 1 \mathrm{C}), 173.4(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{C})$, 159.7, 144.4, 134.4, $131.8(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{C}), 130.8(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{C}), 130.1(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{C})$, 129.3, 128.5, 126.5 (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{C}), 126.2(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{C}), 123.2,122.1,117.5(\mathrm{dd}, J=268.5$, $261.9 \mathrm{~Hz}, 1 \mathrm{C}), 113.6,108.8,57.9(\mathrm{t}, J=20.5 \mathrm{~Hz}, 1 \mathrm{C}), 55.2(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{C}), 26.7 ;{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-97.45 (d, $J=310.7 \mathrm{~Hz}, 1 \mathrm{~F}$), -99.35 (d, $\left.J=310.6 \mathrm{~Hz}, 1 \mathrm{~F}\right)$; IR (ATR): 2976, 2885, 1720, 1510, 1253, 1082, 941, $675 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{Na}$ 430.1231; Found 430.1201.

Column chromatography with $\mathrm{PE} / E t O A c(10 / 1, \mathrm{v} / \mathrm{v})$ afforded product 3b in 90% yield (88.0 mg) as white solid (m.p. 148-150 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}$, $3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 187.5(\mathrm{t}, J=31.6 \mathrm{~Hz}, 1 \mathrm{C}), 173.2(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{C}), 144.3,138.4,134.3,131.7(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{C}), 130.1(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 129.4$, $129.4,129.3,129.0,128.5,126.5(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{C}), 126.2(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{C}), 122.1,117.5(\mathrm{dd}, J$ $=268.9,262.3 \mathrm{~Hz}, 1 \mathrm{C}), 108.8,58.2(\mathrm{t}, J=21.0 \mathrm{~Hz}, 1 \mathrm{C}), 26.7,20.9(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-97.26(\mathrm{~d}, J=310.8 \mathrm{~Hz}, 1 \mathrm{~F}),-99.08(\mathrm{~d}, J=310.8 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2976, 1710, 1263, 1072, 1049, 939, 881, $659 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{Na} 414.1282$; Found 414.1281.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v}$) afforded product $\mathbf{3 c}$ in 60% yield (61.5 mg) as white solid (m.p. $97-99{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}$, $4 \mathrm{H}), 7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.6 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.26$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.5(\mathrm{t}, J=32.3 \mathrm{~Hz}, 1 \mathrm{C}), 173.0(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{C}), 159.3$, 144.4, 134.4, 133.1, 131.8 ($\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{C}$), 130.1 ($\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{C}$), 129.4, 129.1, 128.5, 126.3 $(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{C}), 122.2,121.9,117.5(\mathrm{dd}, J=267.7,261.2 \mathrm{~Hz}, 1 \mathrm{C}), 115.8(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{C})$, $113.8,108.8,58.5$ (dd, $J=22.6,20.6 \mathrm{~Hz}, 1 \mathrm{C}), 55.2(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{C}), 26.7 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}): $\delta-97.21(\mathrm{~d}, J=310.0 \mathrm{~Hz}, 1 \mathrm{~F}),-98.98(\mathrm{~d}, J=310.4 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2976, 1714, 1695, 1492, 1259, 1047, 779, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{Na} 430.1225$; Found 430.1226.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v})$ afforded product 3d in 76% yield (71.6 mg) as white solid (m.p. $150-152{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 6 \mathrm{H})$, $7.08(\mathrm{td}, J=7.6 \mathrm{~Hz}, 0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 187.4(\mathrm{t}, J=21.6 \mathrm{~Hz}, 1 \mathrm{C}), 173.1(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{C}), 144.4,134.4,131.7(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{C})$, 131.6, 130.2 (t, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}$), 129.5, 129.5, 129.4, 128.51, 128.48, 128.2, 126.4 (d, $J=4.3 \mathrm{~Hz}$, 1C), 122.2, $117.5(\mathrm{t}, J=269.3 \mathrm{~Hz}, 262.6 \mathrm{~Hz}, 1 \mathrm{C}), 108.8,58.5(\mathrm{t}, J=20.2 \mathrm{~Hz}, 1 \mathrm{C}), 26.7 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-97.18$ (d, $J=310.7 \mathrm{~Hz}, 1 \mathrm{~F}$), -98.94 (d, $J=310.7 \mathrm{~Hz}, 1 \mathrm{~F}$); IR (ATR): 2976, 1708, 1319, 1261, 1087, 1051, $881 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{Na} 400.1125$; Found 400.1110.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v}$) afforded product $\mathbf{3 e}$ in 63% yield (64.7 mg) as white solid (m.p. $146-148{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.92 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=8.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{dd}$, $J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{td}, J=7.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.2(\mathrm{t}, J=31.5 \mathrm{~Hz}, 1 \mathrm{C}), 172.8(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{C}), 144.4,134.9,134.5,131.6(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{C}), 130.9(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{C}), 130.1(\mathrm{t}, J$ $=2.9 \mathrm{~Hz}, 1 \mathrm{C}), 129.7,128.5,128.4,126.3(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{C}), 125.9(\mathrm{td}, J=5.6 \mathrm{~Hz}, 1 \mathrm{C}), 122.4,117.4$ (dd, $J=269.4,263.2 \mathrm{~Hz}, 1 \mathrm{C}), 109.0,58.1(\mathrm{t}, J=22.4 \mathrm{~Hz}, 1 \mathrm{C}), 26.8 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-97.24 (d, $J=310.6 \mathrm{~Hz}, 1 \mathrm{~F}),-98.97$ (d, $J=310.6 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2976, 1701, 1608, 1259, 1101, 1053, $881 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{17}{ }^{35} \mathrm{ClF}_{2} \mathrm{NO}_{2}$ 412.0916; Found 412.0917.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v}$) afforded product $\mathbf{3 f}$ in 54% yield (61.6 mg) as white solid (m.p. $141-143{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.93-7.90 (m, 2H), 7.73 (dd, $J=8.7 \mathrm{~Hz}, 1.2,2 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}$, $3 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.2(\mathrm{t}, J=31.8 \mathrm{~Hz}, 1 \mathrm{C}), 172.7(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{C})$, $144.4,134.5,131.6$ ($\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{C}$), 131.4, 131.3 ($\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{C}$), 130.7 , 130.2 ($\mathrm{t}, J=3.2 \mathrm{~Hz}$, 1C), $129.7,128.5,126.3(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{C}), 125.8(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{C}), 123.2,122.4,117.3(\mathrm{dd}, J=$ 269.7, $262.9 \mathrm{~Hz}, 1 \mathrm{C}$), 109.1, $58.1(\mathrm{t}, \mathrm{J}=20.4 \mathrm{~Hz}, 1 \mathrm{C}), 26.8 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-97.25$ (d, $J=310.2 \mathrm{~Hz}, 1 \mathrm{~F}$), -98.96 (d, $J=310.6 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2978, 2360, 1710, 1608, 1265, 1101, 1078, $742 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{17}{ }^{79} \mathrm{BrF}_{2} \mathrm{NO}_{2}$ 456.0411; Found 456.0427.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(5 / 1, \mathrm{v} / \mathrm{v}$) afforded product $\mathbf{3 g}$ in 37% yield (38.5 mg) as white solid (m.p. $174-176^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.38 (s, br, 1H), 7.96 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.89$ (dd, $J=8.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59-7.55 $(\mathrm{m}, 1 \mathrm{H}), 7.50(\mathrm{dd}, \mathrm{J}=7.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.18-$ 7.16 (m, 2H), 7.10-7.03 (m, 2H), 6.92 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.8(\mathrm{t}, J=32.9 \mathrm{~Hz}, 1 \mathrm{C}), 173.2(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{C}), 144.4,136.8,134.3,132.1(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{C})$,
$130.1(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{C}), 129.4,128.5,127.1(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{C}), 126.2,126.1,125.7(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{C}), 122.4$ (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{C}), 122.2$ ($\mathrm{d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{C}$), $120.1,118.6$ ($\mathrm{dd}, J=267.4,260.7 \mathrm{~Hz}, 1 \mathrm{C})$, 111.3, 108.6, 107.7, $56.5(\mathrm{t}, J=22.1 \mathrm{~Hz}, 1 \mathrm{C}), 26.6 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -96.63 (d, $J=$ $305.7 \mathrm{~Hz}, 1 \mathrm{~F}),-99.40$ (d, $J=306.6 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2974, 2358, 1610, 1288, 1257, $1047 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na} 439.1229$; Found 439.1225.

3h

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(5 / 1, \mathrm{v} / \mathrm{v})$ afforded product $\mathbf{3 h}$ in 57% yield (49.2 mg) as white solid (m.p. 89-91 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.96-7.94 (m, 2H), 7.59-7.55 (m, 1H), 7.44-7.39 (m, 2H), 7.17 (dd, $J=8.5,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.49-6.46(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.5(\mathrm{t}, J=31.6 \mathrm{~Hz}, 1 \mathrm{C}), 175.5(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{C}), 160.9,145.1,134.2,132.0(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{C})$, $130.1(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{C}), 128.4,124.7(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{C}), 120.6(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{C}), 118.3(\mathrm{dd}, J=$ $265.1,260.6 \mathrm{~Hz}, 1 \mathrm{C}), 106.3,96.4,55.4(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 51.2(\mathrm{~d}, J=22.3 \mathrm{~Hz}, 1 \mathrm{C}), 26.5,18.3(\mathrm{t}$, $J=5.1 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-102.12(\mathrm{~d}, J=306.9 \mathrm{~Hz}, 1 \mathrm{~F}),-103.17(\mathrm{~d}, J=306.6$ Hz, 1F); IR (ATR): 2885, 2360, 1724, 1510, 1186, 1051, 883, $763 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NO}_{3} 346.1255$; Found 346.1281.

Column chromatography with PE/EtOAc (10/1, v/v) afforded product 3i in 92\%
 yield (97.8 mg) as yellow solid (m.p. $\left.168-170{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97$ (dd, $J=7.4,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{dd}, J=8.9,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H})$, $7.42(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dt}, J=8.1 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=8.8,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.3$ (t, $\left.J=32.2 \mathrm{~Hz}, 1 \mathrm{C}\right), 173.2(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{C}), 159.8,158.6$ (d, $J=240.5$ $\mathrm{Hz}, 1 \mathrm{C}), 140.4,134.6,131.4(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{C}), 130.6(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{C}), 130.2(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{C})$, $128.6,128.1(\mathrm{dd}, J=8.4,5.5 \mathrm{~Hz}, 1 \mathrm{C}), 122.6,117.4(\mathrm{dd}, J=267.7,260.0 \mathrm{~Hz}, 1 \mathrm{C}), 115.5(\mathrm{~d}, J=23.1$ $\mathrm{Hz}, 1 \mathrm{C}), 114.4(\mathrm{dd}, J=25.8,2.9 \mathrm{~Hz}, 1 \mathrm{C}), 113.7,109.2(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{C}), 58.2(\mathrm{t}, J=21.7 \mathrm{~Hz}, 1 \mathrm{C})$, 55.2 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{C}), 26.8 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-97.36$ (d, $J=314.7 \mathrm{~Hz}, 1 \mathrm{~F}$), -99.32 (d, $J=314.8 \mathrm{~Hz}, 1 \mathrm{~F}),-120.41$ (s, 1F); IR (ATR): 2976, 1714, 1697, 1512, 1259, 1078, 1051, 812 cm^{-1}; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{Na} 448.1136$; Found 448.1148.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v}$) afforded product $\mathbf{3 j}$ in 85% yield $(93.7 \mathrm{mg})$ as white solid (m.p. $\left.185-187^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.97 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=8.9,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.53$ (t, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-$ $6.91(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $187.3(\mathrm{t}, J=32.7 \mathrm{~Hz}, 1 \mathrm{C}), 173.1(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{C}), 159.9,143.0,134.7,131.4(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{C})$, 130.7 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{C}), 130.3$ (t, $J=2.9 \mathrm{~Hz}, 1 \mathrm{C}), 129.2,128.6,128.4$ (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{C}), 127.4$, 126.4 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{C}), 122.4,117.4(\mathrm{dd}, J=269.3,261.9 \mathrm{~Hz}, 1 \mathrm{C}), 113.7,109.7,58.1(\mathrm{t}, J=20.8$ $\mathrm{Hz}, 1 \mathrm{C}), 55.3$ ($\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{C}$), 26.8; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-97.19$ ($\mathrm{d}, J=315.2 \mathrm{~Hz}, 1 \mathrm{~F}$), -99.15 (d, $J=315.9 \mathrm{~Hz}, 1 \mathrm{~F}$); IR (ATR): 2976, 1701, 1608, 1257, 1099 1051, 881, $734 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18}{ }^{35} \mathrm{ClF}_{2} \mathrm{NO}_{3} \mathrm{Na} 464.0835$; Found 464.0840.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v}$) afforded product $\mathbf{3 k}$ in 59% yield (70.1 mg) as white solid (m.p. $172-174{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.4(\mathrm{t}, J=32.4$ $\mathrm{Hz}, 1 \mathrm{C}), 173.4$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{C}), 160.0,147.3,134.8,131.3$ (t, $J=3.5 \mathrm{~Hz}, 1 \mathrm{C}), 130.7(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{C}), 130.3(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{C}), 128.6,127.4(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{C}), 127.1(\mathrm{q}, J=3.8 \mathrm{~Hz}, 1 \mathrm{C}), 125.6$, 124.4 (q, $J=32.8 \mathrm{~Hz}, 1 \mathrm{C}), 122.9(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{C}), 122.1,117.4(\mathrm{dd}, J=269.6,262.0 \mathrm{~Hz}, 1 \mathrm{C})$, 113.9, 108.6, $57.8(\mathrm{t}, J=22.8 \mathrm{~Hz}, 1 \mathrm{C}), 55.3(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{C}), 26.9 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-61.28(\mathrm{~s}, 3 \mathrm{~F}),-97.07(\mathrm{~d}, J=316.0 \mathrm{~Hz}, 1 \mathrm{~F}),-99.29(\mathrm{~d}, J=315.3 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2978, 1691, 1608, 1328, 1259, 1101, 740, $700 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{5} \mathrm{NO}_{3}$ 476.1285; Found 476.1266.
 Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(15 / 1, \mathrm{v} / \mathrm{v}$) afforded product 31 in 73% yield (79.8 mg) as yellow solid (m.p. 167-169 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=9.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H})$, 7.43-7.39 (m, 2H), $7.15(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.4(\mathrm{t}, J=32.4$
$\mathrm{Hz}, 1 \mathrm{C}), 173.1(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{C}), 159.7,155.4,137.9,134.4,131.8(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{C}), 130.7$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{C}), 130.2(\mathrm{t}, J=32.4 \mathrm{~Hz}, 1 \mathrm{C}), 128.5,127.8(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{C}), 123.2,117.5(\mathrm{dd}, J=$ $268.9,261.9 \mathrm{~Hz}, 1 \mathrm{C}), 114.3$ (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{C}), 113.6,113.0,109.0,58.3$ (t, $J=20.6 \mathrm{~Hz}, 1 \mathrm{C}), 55.8$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{C}), 55.2(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{C}), 26.8 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-97.44(\mathrm{~d}, J=$ $311.8 \mathrm{~Hz}, 1 \mathrm{~F})$, -99.51 (d, $J=311.9 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2978, 1701, 1608, 1510, 1099, 1049, 805, $700 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{Na} 460.1336$; Found 460.1351.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(4 / 1, \mathrm{v} / \mathrm{v}$) afforded product $\mathbf{3 m}$ in 88% yield (96.1 mg) as yellow solid (m.p. $131-133{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.96(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{td}, J=7.8 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{td}, J=7.6 \mathrm{~Hz}, 0.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.93-6.86(m, 5H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 185.7(\mathrm{t}$, $J=32.1 \mathrm{~Hz}, 1 \mathrm{C}), 173.5(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{C}), 164.5,159.6,144.3,132.8(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{C}), 130.8$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{C}), 129.2,126.8(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{C}), 126.1(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{C}), 124.5(\mathrm{t}, J=3.4 \mathrm{~Hz}$, 1C), $123.3,122.0,117.8(\mathrm{dd}, J=268.7,262.1 \mathrm{~Hz}, 1 \mathrm{C}), 113.8,113.5,108.7,57.9(\mathrm{t}, J=20.6 \mathrm{~Hz}, 1 \mathrm{C})$, 55.5 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{C}), 55.2(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{C}), 26.6 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-96.60(\mathrm{~d}, J$ $=310.3 \mathrm{~Hz}, 1 \mathrm{~F}$), -98.43 (d, $J=310.5 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2976, 2360, 1512, 1444, 1257, $1087 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{Na} 460.1336$; Found 460.1351.

Column chromatography with PE/EtOAc (15/1, v/v) afforded product 3n in 79\% yield (87.1 mg) as white solid (m.p. $119-121^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.6,2 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.33$ $(\mathrm{m}, 3 \mathrm{H}), 7.08(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.86(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.26$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.5(\mathrm{t}, J=32.3 \mathrm{~Hz}, 1 \mathrm{C}), 173.2(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{C}), 159.8$, 144.3, 141.1, 131.5 (t, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 130.8(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{C}), 130.1(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{C}), 129.4$, $128.9,126.4(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{C}), 126.2(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{C}), 123.0,122.2,117.4(\mathrm{dd}, J=266.5,260.0$ $\mathrm{Hz}, 1 \mathrm{C}), 113.6,108.9,57.8(\mathrm{t}, J=20.2 \mathrm{~Hz}, 1 \mathrm{C}), 55.2,26.7 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-97.45$ (d, $J=311.4 \mathrm{~Hz}, 1 \mathrm{~F}),-99.46$ (d, $J=310.7 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 1708, 1512, 1259, 1089, 1051, 881, $694 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18}{ }^{35} \mathrm{ClF}_{2} \mathrm{NO}_{3} \mathrm{Na} 464.0835$; Found 464.0831.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(6 / 1, \mathrm{v} / \mathrm{v}$) afforded product $\mathbf{3 o}$ in 57% yield (57.1 mg) as white solid (m.p. 181-183 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR analysis of the crude mixture revealed that the dr was $>20: 1$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.66-7.63 (m, 2H), 7.58-7.54 (m, 2H), 7.32-7.30 (m, 2H), 7.28-7.24 (m, 2H), 6.88$6.82(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 197.2$ (d, $\left.J=19.0 \mathrm{~Hz}, 1 \mathrm{C}\right), 173.6$ (d, $\left.J=4.2 \mathrm{~Hz}, 1 \mathrm{C}\right), 159.3,149.8$ (d, $\left.J=2.9 \mathrm{~Hz}, 1 \mathrm{C}\right)$, $144.4,136.0,134.9,130.0,129.9,129.3,128.1,126.8,126.2,125.9,124.7,122.0,113.7,108.7,98.9$ (d, $J=201.6 \mathrm{~Hz}, 1 \mathrm{C}), 55.2(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{C}), 38.3$ (d, $J=24.7 \mathrm{~Hz}, 1 \mathrm{C}), 26.5 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}): δ-157.71 (s, 1F); IR (ATR): 2976, 2358, 1444, 1259, 1089, 1052, 852, $605 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{FNO}_{3} \mathrm{Na} 424.1319$; Found 424.1325.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(5 / 1, \mathrm{v} / \mathrm{v}$) afforded product 3p in 47% yield $(48.8 \mathrm{mg})$ as white solid (m.p. $\left.174-176{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR analysis of the crude mixture revealed that the dr was $>20: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H})$, 3.22-3.14 (m, 1H), $2.75(\mathrm{dt}, J=4.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.8$ (d, $J=21.2 \mathrm{~Hz}, 1 \mathrm{C}), 175.4$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{C}), 159.3,145.0,143.2,133.8,131.6,130.7$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{C}), 129.0,128.5,128.2,127.2(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{C}), 126.9,126.4,126.3,121.4,113.5$, 108.8, 97.1 (d, $J=192.3 \mathrm{~Hz}, 1 \mathrm{C}), 58.3$ (d, $J=19.8 \mathrm{~Hz}, 1 \mathrm{C}), 55.2,31.3$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{C}), 26.6$, 24.7 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{C}$); ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-166.54$ ($\mathrm{s}, 1 \mathrm{~F}$); IR (ATR): 2974, 2358, 1597, 1276, 1257, 1093, 758, $659 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{FNO}_{3} \mathrm{Na}$ 438.1476; Found 438.1467.

2.2 The reaction of acyclic tertiary alcohols 4 with difluoroenoxysilane 1a

Under an atmosphere of N_{2}, to a 25 mL flame-dried Schleck tube were added acyclic tertiary alcohols 4 ($0.25 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Fe}(\mathrm{OTf})_{3}(0.0125 \mathrm{mmol}, 6.3 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$, followed by the addition of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. After being stirred at room temperature for about 5 min , difluoroenoxysilane $\mathbf{1 a}$ ($0.375 \mathrm{mmol}, 1.5$ equivs) was then added. The resulting mixture was stirred at room temperature until full conversion of $\mathbf{4}$ by TLC analysis. The reaction mixture was then concentrated under reduced pressure to give the residue, which was purified by silica gel column chromatography to afford the products 5 , using the indicated eluent.

Column chromatography with PE/EtOAc (16/1, v/v) afforded product 5a in 62% yield (70.7 mg) as white solid (m.p. $52-54{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.92-7.89 (m, 2H), 7.56-7.48 (m, 3H), 7.48-7.44 (m, 4H), 7.42-7.38 (m, 2H), 7.36$7.31(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $197.9(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{C}), 189.7(\mathrm{t}, J=32.1 \mathrm{~Hz}, 1 \mathrm{C}), 159.1,138.2,136.2,133.7(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{C})$, 133.4, 132.6 (t, $J=2.2 \mathrm{~Hz}, 1 \mathrm{C}), 131.4,131.3$ ($\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{C}), 130.2,129.9(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{C})$, 128.2, 128.0, 127.9, 127.7 (t, $J=1.8 \mathrm{~Hz}, 1 \mathrm{C}), 127.5,118.5$ (t, $J=266.2 \mathrm{~Hz}, 1 \mathrm{C}), 113.4,70.4$ (t, $J=$ 18.9 Hz, 1C), 55.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-94.29$ (s, 2F); IR (ATR): 2927, 2360, 1598, 1512, 1448, 1255, 1018, $812 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Na}$ 479.1435; Found 479.1423.

Column chromatography with $\mathrm{PE} / E t O A c(20 / 1, \mathrm{v} / \mathrm{v}$) afforded product $\mathbf{5 b}$ in 59% yield (64.9 mg) as white solid (m.p. $143-145{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 4 \mathrm{H})$, 7.17-7.13 (m, 4H), $2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.9,189.6(\mathrm{t}, J=32.1 \mathrm{~Hz}, 1 \mathrm{C})$, $138.1,137.8,136.1,133.6(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{C}), 133.4,132.8,131.6,131.4,131.2,130.2,129.9(\mathrm{t}, J=$ $3.4 \mathrm{~Hz}, 1 \mathrm{C}), 128.8,128.2,128.0,127.9,127.5,118.4(\mathrm{t}, J=266.4 \mathrm{~Hz}, 1 \mathrm{C}), 70.6$ (t, $J=18.8 \mathrm{~Hz}, 1 \mathrm{C})$, 21.0 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-94.40$ (s, 2F); IR (ATR): 2974, 2927, 2358,

1587, 1276, 1257, 1093, $758 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{Na}$ 463.1486; Found 463.1472.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(20 / 1, \mathrm{v} / \mathrm{v}$) afforded product 5c in 41% yield (45.5 mg) as white solid (m.p. 101-103 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 8 \mathrm{H})$, $7.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.6$, $189.4(\mathrm{t}, J$ $=31.9 \mathrm{~Hz}, 1 \mathrm{C}), 162.2(\mathrm{~d}, J=247.0 \mathrm{~Hz}, 1 \mathrm{C}), 138.1,135.8,133.7,133.4(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{C}), 131.9$, 131.6, 131.1, 130.1, 129.9 (t, $J=3.1 \mathrm{~Hz}, 1 \mathrm{C}), 128.3$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{C}), 128.2,127.6$, 118.4 (t, $J=$ $267.2 \mathrm{~Hz}, 1 \mathrm{C}), 114.9(\mathrm{~d}, J=21.2 \mathrm{~Hz}, 1 \mathrm{C}), 70.4(\mathrm{t}, J=18.8 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-93.42 (d, $J=294.8 \mathrm{~Hz}, 1 \mathrm{~F}),-94.41(\mathrm{~d}, ~ J=295.8 \mathrm{~Hz}, 1 \mathrm{~F}),-113.93$ (s, 1F); IR (ATR): 2885, 2360, 1724, 1510, 1271, 1089, 1051, $881 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{2} 467.1229$; Found 467.1228.

Column chromatography with PE/EtOAc (15/1, v/v) afforded product 5e in 54%
 yield $(55.4 \mathrm{mg})$ as white solid (m.p. $\left.90-92^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}$, 2 H), 7.30-7.28 (m, 3H), 7.24-7.22 (m, 2H), 6.83-6.79 (m, 2H), 3.78 (s, 3H), 3.77 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.6(\mathrm{t}, J=32.7 \mathrm{~Hz}, 1 \mathrm{C}), 170.5,158.8,137.7,134.2,132.4$ ($\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{C}$), 131.9, 130.4, 130.2 ($\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{C}$), 129.4, 128.5, 127.7, 127.6, 118.4 (t, $J=$ $265.7 \mathrm{~Hz}, 1 \mathrm{C}), 113.0,65.3(\mathrm{t}, J=20.4 \mathrm{~Hz}, 1 \mathrm{C}), 55.1(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{C}), 52.7(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{C})$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-92.40(\mathrm{~d}, J=309.3 \mathrm{~Hz}, 1 \mathrm{~F}$), -93.35 ($\mathrm{d}, J=308.1 \mathrm{~Hz}, 1 \mathrm{~F}$); IR (ATR): 2976, 1720, 1510, 1253, 1082, 941, 808, $675 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Na} 433.1227$; Found 433.1241.

Column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(15 / 1, \mathrm{v} / \mathrm{v}$) afforded product $\mathbf{5 f}$ in 47% yield (46.3 mg) as white solid (m.p. $94-96^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.21$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.6(\mathrm{t}, J=32.5 \mathrm{~Hz}, 1 \mathrm{C}), 170.5(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{C}), 137.6,137.4,134.5,134.2,132.4(\mathrm{t}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{C}), 130.6,130.5,130.3(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{C}), 128.5,128.5,127.7,127.6,118.5$ (t, $J=263.7 \mathrm{~Hz}$,

1C), 65.6 (t, $J=20.0 \mathrm{~Hz}, 1 \mathrm{C}$), $52.8,20.9$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-92.79$ (s, 2F); IR (ATR): 2974, 2358, 1707, 1514, 1288, 1257, 758, $727 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Na} 417.1278$; Found 417.1284.

$5 h$ Column chromatography with PE/EtOAc (30/1, v/v) afforded product 5h in 48\% yield $(43.0 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.38-7.35 (m, 3H), 7.24-7.16 (m, 7H), 6.74-6.72 (m, 2H), 5.79-5.70 (m, $1 \mathrm{H}), ~ 4.98-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 191.5(\mathrm{t}, J=30.1 \mathrm{~Hz}, 1 \mathrm{C}), 158.5,140.2,138.4,134.5,132.9$, 131.6, 131.4, 130.1, 129.5 ($\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{C}$), 127.8, 127.7, 127.1, 121.2 (t, $J=267.1 \mathrm{~Hz}, 1 \mathrm{C}), 114.5,113.1$, $57.5(\mathrm{t}, J=19.6 \mathrm{~Hz}, 1 \mathrm{C}), 55.2,34.7,28.9 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-97.42(\mathrm{~d}, J=256.4 \mathrm{~Hz}$, $1 \mathrm{~F}),-99.14$ (d, $J=256.8 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2922, 2358, 1691, 1598, 1512, 1253, $908,823 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{Na} 429.1637$; Found 429.1639.

Column chromatography with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 / 1, \mathrm{v} / \mathrm{v})$ afforded product $\mathbf{5 i}$ in 74% yield

$5 i$ $(50.7 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.45-$ $7.41(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 5 \mathrm{H}), 1.63(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.1$ ($\mathrm{t}, J=30.5 \mathrm{~Hz}, 1 \mathrm{C}$), 140.9 (t, $J=2.4 \mathrm{~Hz}, 1 \mathrm{C}), 134.2(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{C}), 133.3,129.8(\mathrm{t}, J=4.0 \mathrm{~Hz}$, 1C), $128.0(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{C}), 127.3,120.6(\mathrm{t}, J=261.1 \mathrm{~Hz}, 1 \mathrm{C}), 44.5(\mathrm{t}, J=21.0 \mathrm{~Hz}, 1 \mathrm{C}), 22.9 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-105.39 (s, 2F); IR (ATR): 1693, 1597, 1448, 1278, 1055, 908, 698, 608 cm^{-1}; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{O}$ 275.1247; Found 275.1240.

Column chromatography with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 / 1, \mathrm{v} / \mathrm{v})$ afforded product $\mathbf{5 k}$ in 98% yield

5k $(78.9 \mathrm{mg})$ as white solid (m.p. $46-48{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 6 \mathrm{H}), 4.93(\mathrm{t}, J$ $=18.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.9(\mathrm{t}, J=30.1 \mathrm{~Hz}, 1 \mathrm{C}), 136.3(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{C})$, 133.9, 132.9 (t, $J=2.2 \mathrm{~Hz}, 1 \mathrm{C}), 129.8(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{C}), 129.6$ ($\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{C}), 128.5,127.5$, $118.9(\mathrm{t}, J=259.2 \mathrm{~Hz}, 1 \mathrm{C}), 54.9(\mathrm{t}, J=21.0 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-99.90(\mathrm{~s}, 2 \mathrm{~F})$; IR (ATR): 1701, 1598, 1496, 1450, 1170, 1118, 929, $698 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{O}$ 323.1247; Found 323.1265.

Column chromatography with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 / 1, \mathrm{v} / \mathrm{v})$ afforded product 5 I in 47% yield

51 $(32.2 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.51-7.46 (m, 1H), 7.35-7.32 (m, 2H), 7.22-7.14 (m, 5H), 3.42-3.30 (m, 1H), 2.02$1.93(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 1 \mathrm{H}), 0.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.4(\mathrm{t}$, $J=30.2 \mathrm{~Hz}, 1 \mathrm{C}), 135.2(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{C}), 133.9,133.0(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{C}), 129.82(\mathrm{t}, J=3.5 \mathrm{~Hz}$, 1C), 129.8, 128.5, 128.4, 127.7, 119.5 ($\mathrm{t}, J=257.5 \mathrm{~Hz}, 1 \mathrm{C}$), 51.7 ($\mathrm{t}, J=21.4 \mathrm{~Hz}, 1 \mathrm{C}$), 21.3 ($\mathrm{t}, J=$ 4.1 Hz, 1C), 11.71; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-103.42(\mathrm{~d}, J=272.8 \mathrm{~Hz}$), $-105.08(\mathrm{~d}, J=272.8$ Hz); IR (ATR): 1705, $14501184,912,700,688 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{O}$ 275.1247; Found 275.1240.

3. Transformation of products

To a stirred solution of $\mathbf{3 a}(61.1 \mathrm{mg}, 0.15 \mathrm{mmol})$ in the mixed solvent of THF and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL}$, $9: 1, \mathrm{v} / \mathrm{v}$) was added $\mathrm{NaBH}_{4}(28.4 \mathrm{mg}, 0.75 \mathrm{mmol})$. The resulting mixture was stirred at room temperature until full consumption of 3a by TLC analysis (about 1 h), and then quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.). The mixture was extracted with EtOAc ($6 \mathrm{~mL} \times 3$), the combined organic layer was washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuo. The obtained crude residue was purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=5 / 1, \mathrm{v} / \mathrm{v}$) to give the corresponding alcohol 6 in 78% yield (47.8 mg) as white solid (m.p. 149-151 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR analysis of the crude mixture revealed that the dr value was 5.6:1. The related configuration of the major isomer of product 6 was determined by its X-ray crystallographic structure. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~s}, 5 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.99$ (ddd, $J=19.9,3.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.8$ (dd, $J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{C}), 159.6,143.2,136.4,129.4(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{C}), 129.2,128.5,127.8,127.7$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{C}), 127.2(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{C}), 125.3(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{C}), 123.4,120.2$ (dd, $J=260.0$ Hz, 256.6 Hz, 1C), 114.2, 108.9, 73.9 (dd, $J=30.5,23.1 \mathrm{~Hz}, 1 \mathrm{C}), 62.9$ (dd, $J=27.8,23.9 \mathrm{~Hz}, 1 \mathrm{C})$, 55.3 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{C}$), 26.8; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-101.42(\mathrm{~d}, J=265.5 \mathrm{~Hz}, 1 \mathrm{~F}$), -114.51 (d, $J=265.5 \mathrm{~Hz}, 1 \mathrm{~F}$); HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{Na} 432.1387$; Found 432.1395.

To a stirred solution of $\mathbf{3 a}(41.1 \mathrm{mg}, 0.10 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(20.0 \mathrm{mg}$,
0.5 mmol) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at the same temperature until full consumption of 3a by TLC analysis (about 9 h), and then quenched by saturated NaCl (aq.). The mixture was extracted with EtOAc ($6 \mathrm{~mL} \times 3$), the combined organic layers were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuo. The obtained crude residue was purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=30 / 1, \mathrm{v} / \mathrm{v}$) to give tricyclic product 7 in 89% yield (35.2 mg) as colorless oil. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR analysis of the crude mixture revealed that the dr value was 16:1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{dd}, J=8.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H})$, 6.90-6.87 (m, 2H), $6.71(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J$ $=16.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,149.7,134.6$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{C}), 129.3,128.5,128.1,127.83,127.76(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{C}), 127.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, 1C), 127.5 ($\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{C}$), $127.0(\mathrm{dd}, J=210.2,200.8 \mathrm{~Hz}, 1 \mathrm{C}), 126.8,119.0,113.9,107.9,102.1$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{C}), 83.9$ (dd, $J=26.8,20.5 \mathrm{~Hz}, 1 \mathrm{C}), 62.9(\mathrm{dd}, J=19.1,17.4 \mathrm{~Hz}, 1 \mathrm{C}), 55.3,31.5$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-89.40(\mathrm{~d}, J=232.0 \mathrm{~Hz}, 1 \mathrm{~F}),-107.52(\mathrm{~d}, J=232.0 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2974, 2358, 1710, 1253, 1047, $823 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{Na} 416.1433$; Found 416.1422.

To a solution of compound $\mathbf{3 1}\left(66.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0\right.$ equiv) in the mixed solvent of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and HFIP ($3 \mathrm{~mL}, 2: 1, \mathrm{v} / \mathrm{v}$) was added m-chloroperoxybenzoic acid (m-CPBA, $154.5 \mathrm{mg}, 0.75 \mathrm{mmol}$, $85 \mathrm{wt} \%, 5.0$ equivs $)$ and phosphate buffer $(0.15 \mathrm{~mL}, \mathrm{pH}=7.6)$ subsequently. ${ }^{3}$ The resulting mixture was stirred at room temperature until full consumption of $\mathbf{3 1}$ by TLC analysis (about 6 h), then saturated NaHCO_{3} (aq.) was added to quench the reaction. After extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL} \times 3)$, the combined organic layer was washed with brine, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=4 / 1, \mathrm{v} / \mathrm{v})$ to give the desired ester $\mathbf{8}$ in 73% yield $(49.6 \mathrm{mg})$ as yellow solid (m.p. 134$136{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}$,

[^1]$J=7.8 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.7 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H})$, 6.58-6.54 (m, 2H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{C}), 161.0(\mathrm{t}, J=33.8 \mathrm{~Hz}, 1 \mathrm{C}), 159.9,157.8,144.5,142.8,130.3$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C})$, $127.4,124.4(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{C}), 123.1(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{C}), 122.7,121.3,114.5,114.1(\mathrm{t}, J=263.0$ $\mathrm{Hz}, 1 \mathrm{C}), 113.8,108.9,58.3(\mathrm{t}, J=23.1 \mathrm{~Hz}, 1 \mathrm{C}), 55.5(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{C}), 55.2(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{C})$, 26.7; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-106.13(\mathrm{~d}, J=265.3 \mathrm{~Hz}, 1 \mathrm{~F}),-106.95(\mathrm{~d}, J=265.4 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2360, 1722, 1608, 1500, 1257, 1087, 1051, 881, $678 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{NO}_{5}$ 454.1466; Found 454.1481.

To a stirred solution of $\mathbf{8}(46.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{EtOH}(1.0 \mathrm{~mL})$ was added $\mathrm{MeNH}_{2}(150.7 \mathrm{mg}$, $2.0 \mathrm{mmol}, 37 \%$ in EtOH$)$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature until full consumption of $\mathbf{8}$ by TLC analysis. The reaction mixture was concentrated under vacuo, and then purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=5 / 1, \mathrm{v} / \mathrm{v}$) to give the fluorinated amide 9 in 99% yield (35.7 mg) as white solid (m.p. 133-135 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.53$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 3 \mathrm{H})$, $6.71(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $172.8(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{C}), 162.7(\mathrm{t}, J=28.8 \mathrm{~Hz}, 1 \mathrm{C}), 159.7,144.2,130.0(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 129.7$, $126.8,125.8(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{C}), 124.0(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{C}), 122.5,115.4(\mathrm{dd}, J=339.0,209.8 \mathrm{~Hz}$, 1C), $113.8,108.9,58.8(\mathrm{t}, J=21.6 \mathrm{~Hz}), 55.2,26.7,26.0 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-104.14(\mathrm{~d}$, $J=264.0 \mathrm{~Hz}, 1 \mathrm{~F}),-105.98$ (d, $J=264.0 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR):2974, 2358, 1608, 1290, 1257, 1091, $756 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ 383.1178; Found 383.1187.

To a stirred solution of $\mathbf{8}(46.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{EtOH}(1.0 \mathrm{~mL})$ was added $\mathrm{MeNH}_{2}(151.2 \mathrm{mg}$, $2.0 \mathrm{mmol}, 37 \%$ in EtOH$)$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature until full consumption of $\mathbf{8}$ by TLC analysis. The reaction solution was concentrated under vacuo, and used directly for the next step without purification. To a stirred solution of above crude residue in THF (2.5 mL) was added $\mathrm{LiAlH}_{4}(50.0 \mathrm{mg}, 1.3 \mathrm{mmol})$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ until full consumption of intermediate by TLC analysis (about 2 h), and then quenched by saturated NaCl (aq.). The mixture was extracted with EtOAc ($6 \mathrm{~mL} \times 3$), the combined organic layer was washed with brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuo. The crude residue was then purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=5 / 1, \mathrm{v} / \mathrm{v}$) to give the tricyclic pyrroloindoline 10 in 77% yield (26.4 mg) as white solid (m.p. $148-150{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR analysis of the crude mixture revealed that the dr value was above 20:1. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.47$ (dd, $J=7.6$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.53(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $162.6(\mathrm{t}, J=28.6 \mathrm{~Hz}, 1 \mathrm{C}), 159.4,147.7,130.2,128.2(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{C}), 128.0(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{C})$, $126.8,126.5(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{C}), 119.4,116.7(\mathrm{dd}, J=246.3,257.2 \mathrm{~Hz}, 1 \mathrm{C}), 114.1,108.4,85.5(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{C}), 59.9$ (dd, $J=18.1,5.2 \mathrm{~Hz}, 1 \mathrm{C}), 55.2,34.7,28.6 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-$ $97.30(\mathrm{~d}, J=266.6 \mathrm{~Hz}, 1 \mathrm{~F}),-116.71$ (d, $J=266.2 \mathrm{~Hz}, 1 \mathrm{~F})$; IR (ATR): 2974, 2358, 1714, 1604, 1514, 1259, $839 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na} 367.1229$; Found 367.1219.

4. Control experiment and a proposed reaction pathway

To gain some insight into the reaction mechanism, the enantioenriched 3-hydroxyoxindole (R) $\mathbf{2 g}$ was chosen to react with $\mathbf{1 a}$ under the standard conditions, which afforded the desired product $\mathbf{3 g}$ in racemic form. Based on this result, and control experiments shown in Table 1 of main text, together with previous reports, ${ }^{4}$ we temporarily proposed that the reaction was initiated by the dehydration of tertiary alcohols, under the action of in-situ generated HOTf from the hydrolysis of $\mathrm{Fe}(\mathrm{OTf})_{3}$, to produce a reactive carbocation intermediate which subsequently reacted with difluoroenoxysilanes 1 to give the targets.

General procedure: The 3-hydroxyoxindole $(R)-\mathbf{2 g}$ ($72 \% \mathrm{ee}$) was synthesized according to the reported method. ${ }^{5}$ Under an atmosphere of N_{2}, to a 25 mL flame-dried Schleck tube were added $(R)-\mathbf{2 g}(69.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 72 \% \mathrm{ee})$ and $\mathrm{Fe}(\mathrm{OTf})_{3}(0.0125 \mathrm{mmol}, 6.3 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$, followed by the addition of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. After being stirred at room temperature for about 5 min , difluoroenoxysilane 1a ($0.375 \mathrm{mmol}, 1.5$ equivs) was added. The resulting mixture was stirred at room temperature until full conversion of $(R) \mathbf{- 2 g}$ by TLC analysis. The reaction mixture was then concentrated under reduced pressure to give the residue, which was purified by silica gel column chromatography to afford the products $\mathbf{3 g}$ with 42% yield (44.0 mg) as white solid, using PE/EtOAc (5/1, v/v) as eluent. HPLC analysis [Chiralpak AS-H, iPrOH/hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$; $\left.\mathrm{t}_{\mathrm{r}}=11.68 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}=14.73 \mathrm{~min}\right]$ indicated the enantioselectivity of product $\mathbf{3 g}$ was 0%.

[^2]
5. X-ray crystallographic data of 6 (CCDC 1939141)

Data intensity of $\mathbf{6}$ was collected using a Bruker SMART APEX-II (Mo radiation) at 293 K in a nitrogen stream. The X-ray condition of was $50 \mathrm{kV} \times 30 \mathrm{~mA}$. Data collection and reduction were done by using the Bruker ApexII software package. The structures were solved by direct methods and refined by fullmatrix least-squares on F^{2} with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for major isomer of 6: $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{3}, \mathrm{~T}=100(10) \mathrm{K}$, monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{c}, \mathrm{a}=18.4223(2) \AA, \mathrm{b}=6.41470(10) \AA, \mathrm{c}=16.93010(10) \AA, \alpha=90 \mathrm{deg}, \beta=$ 102.9240(10) deg, $\gamma=90 \mathrm{deg}, \mathrm{V}=1950.01(4) \AA^{3} . \mathrm{Z}=4$, dcalc $=1.395 \mathrm{mg} / \mathrm{m}^{3}$. Total number of reflections $42980\left(\mathrm{R}_{\mathrm{int}}=0.0441\right), \mathrm{R}_{1}=0.0355, \mathrm{wR}_{2}=0.0824$ (all data), $\mathrm{GOF}=1.043$, and 274 parameters.

Table S1. Crystal data and structure refinement for 6.

Identification code	$\mathbf{6}$
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{3}$
Formula weight	409.42
Temperature $/ \mathrm{K}$	$100.01(10)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2{ }_{1} / \mathrm{c}$
a / \AA	$18.4223(2)$
b / \AA	$6.41470(10)$
c / \AA	$16.93010(10)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$102.9240(10)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1950.01(4)$
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.395

μ / mm^{-1}	0.872
$\mathrm{~F}(000)$	856.0
Crystal size $/ \mathrm{mm}^{3}$	$0.36 \times 0.28 \times 0.12$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection ${ }^{\circ}$	10.722 to 149.014
Index ranges	$-23 \leq \mathrm{h} \leq 22,-7 \leq \mathrm{k} \leq 7,-20 \leq 1 \leq 21$
Reflections collected	42980
Independent reflections	$3948\left[\mathrm{R}_{\mathrm{int}}=0.0441, \mathrm{R}_{\text {sigma }}=0.0208\right]$
Data/restraints/parameters	$3948 / 0 / 274$
Goodness-of-fit on F^{2}	1.043
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0334, \mathrm{wR}_{2}=0.0810$
Final R indexes [all data $]$	$\mathrm{R}_{1}=0.0355, \mathrm{wR}_{2}=0.0824$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.29 /-0.23$

Table S2. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 6 . U_{eq} is defined as $1 / 3$ of of the trace of the orthogonalised $U_{\text {IItensor }}$.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
F1	$2188.3(4)$	$2934.1(11)$	$2664.6(4)$	$19.12(16)$
F2	$2591.1(3)$	$5954.0(11)$	$3166.1(4)$	$17.83(15)$
O1	$1336.3(4)$	$5985.2(13)$	$3986.8(5)$	$17.25(18)$
O2	$5352.6(5)$	$-767.9(16)$	$3681.7(6)$	$31.3(2)$
O3	$1901.4(4)$	$-14.4(13)$	$3963.5(5)$	$18.64(18)$
N1	$2133.0(5)$	$1903.1(15)$	$5139.5(6)$	$16.4(2)$
C1	$4098.9(7)$	$2874(2)$	$4330.0(8)$	$22.7(3)$
C2	$4737.7(7)$	$1881(2)$	$4224.8(9)$	$28.1(3)$
C3	$4690.8(6)$	$117(2)$	$3738.9(7)$	$21.0(3)$
C4	$3995.8(6)$	$-629.9(19)$	$3353.6(7)$	$18.1(2)$
C5	$3358.1(6)$	$389.7(18)$	$3460.9(7)$	$17.0(2)$
C6	$3392.8(6)$	$2147.0(18)$	$3950.5(6)$	$14.8(2)$
C7	$2674.8(6)$	$3170.5(17)$	$4096.0(6)$	$14.2(2)$
C8	$2811.8(6)$	$4644.7(18)$	$4817.3(6)$	$14.8(2)$
C9	$3172.0(6)$	$6541.6(19)$	$4954.1(7)$	$16.9(2)$
C10	$3214.6(6)$	$7549.6(19)$	$5696.5(7)$	$19.5(2)$
C11	$2893.3(7)$	$6659(2)$	$6282.9(7)$	$21.3(3)$
C12	$2523.0(7)$	$4756(2)$	$6151.4(7)$	$19.7(2)$
C13	$2490.6(6)$	$3786.0(18)$	$5416.1(7)$	$15.8(2)$
C14	$2188.8(6)$	$1465.8(18)$	$4372.4(6)$	$14.7(2)$
C15	$5327.8(8)$	$-2645(2)$	$3228.1(10)$	$37.2(4)$
C16	$1681.4(7)$	$705(2)$	$5580.5(7)$	$22.1(3)$

C 17	$2209.5(6)$	$4216.2(17)$	$3318.4(6)$	$14.5(2)$
C 18	$1394.1(6)$	$4754.0(18)$	$3312.5(6)$	$15.0(2)$
C 19	$982.8(6)$	$5643.8(18)$	$2502.2(7)$	$16.0(2)$
C 20	$434.0(6)$	$4435(2)$	$2009.0(7)$	$19.0(2)$
C 21	$24.8(6)$	$5213(2)$	$1276.6(7)$	$22.9(3)$
C 22	$161.4(7)$	$7207(2)$	$1032.2(7)$	$24.1(3)$
C 23	$707.7(7)$	$8424(2)$	$1518.7(7)$	$22.5(3)$
C 24	$1117.5(6)$	$7652.7(19)$	$2250.9(7)$	$18.5(2)$

Table S3. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 6 The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}_{11}+2 h k \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}_{12}+\ldots\right]$.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
F 1	$22.2(3)$	$21.4(4)$	$12.8(3)$	$-3.9(3)$	$2.0(2)$	$4.2(3)$
F 2	$16.9(3)$	$17.8(4)$	$19.3(3)$	$4.0(3)$	$5.2(2)$	$-2.6(3)$
O 1	$19.4(4)$	$16.3(4)$	$17.2(4)$	$-2.3(3)$	$6.5(3)$	$-1.3(3)$
O 2	$16.7(4)$	$30.1(5)$	$47.6(6)$	$-17.6(4)$	$8.1(4)$	$1.1(4)$
O 3	$18.4(4)$	$16.0(4)$	$20.9(4)$	$-1.3(3)$	$3.2(3)$	$-3.2(3)$
N 1	$17.5(5)$	$16.6(5)$	$16.0(4)$	$1.8(4)$	$5.6(4)$	$-0.4(4)$
C 1	$18.7(6)$	$21.6(6)$	$27.5(6)$	$-10.0(5)$	$4.4(5)$	$-1.6(5)$
C 2	$14.8(6)$	$29.6(7)$	$38.7(7)$	$-14.3(6)$	$3.3(5)$	$-2.6(5)$
C 3	$17.1(6)$	$20.8(6)$	$26.2(6)$	$-2.7(5)$	$7.2(5)$	$1.5(5)$
C 4	$20.0(6)$	$15.6(6)$	$18.6(5)$	$-2.2(4)$	$4.3(4)$	$0.1(4)$
C 5	$16.3(5)$	$16.4(6)$	$17.5(5)$	$-1.0(4)$	$2.0(4)$	$-1.6(4)$
C 6	$15.9(5)$	$15.0(6)$	$14.0(5)$	$1.3(4)$	$4.2(4)$	$-0.1(4)$
C7	$14.4(5)$	$13.7(6)$	$14.3(5)$	$-0.4(4)$	$3.0(4)$	$-0.7(4)$
C8	$13.4(5)$	$17.3(6)$	$13.4(5)$	$-0.2(4)$	$2.1(4)$	$2.2(4)$
C9	$14.5(5)$	$18.5(6)$	$17.3(5)$	$-1.0(4)$	$2.6(4)$	$0.2(4)$
C10	$16.7(5)$	$17.6(6)$	$21.8(6)$	$-4.1(5)$	$-0.6(4)$	$0.9(4)$
C11	$22.5(6)$	$25.2(7)$	$14.5(5)$	$-4.4(5)$	$0.2(4)$	$6.0(5)$
C12	$22.3(6)$	$23.1(6)$	$14.1(5)$	$2.0(4)$	$4.8(4)$	$5.2(5)$
C13	$14.4(5)$	$16.7(6)$	$15.8(5)$	$1.9(4)$	$2.0(4)$	$2.4(4)$
C14	$12.6(5)$	$14.5(6)$	$16.5(5)$	$2.3(4)$	$2.4(4)$	$2.1(4)$
C15	$24.5(7)$	$31.4(8)$	$56.2(9)$	$-19.9(7)$	$10.0(6)$	$4.4(6)$
C16	$21.8(6)$	$23.9(7)$	$23.0(6)$	$5.5(5)$	$10.0(5)$	$-1.4(5)$
C17	$17.2(5)$	$13.1(5)$	$13.7(5)$	$-1.9(4)$	$4.5(4)$	$-2.4(4)$
C18	$15.2(5)$	$14.1(6)$	$15.8(5)$	$-1.0(4)$	$3.8(4)$	$-1.3(4)$
C19	$13.5(5)$	$18.4(6)$	$16.4(5)$	$-1.4(4)$	$4.2(4)$	$1.7(4)$
C20	$15.3(5)$	$20.4(6)$	$21.7(6)$	$-2.3(5)$	$5.1(4)$	$-0.8(4)$
C21	$14.7(5)$	$31.7(7)$	$20.9(6)$	$-4.9(5)$	$0.9(4)$	$-0.8(5)$
C22	$18.5(6)$	$34.6(7)$	$18.3(5)$	$2.3(5)$	$2.2(4)$	$6.3(5)$

C 23	$22.3(6)$	$22.6(7)$	$23.0(6)$	$4.3(5)$	$6.1(5)$	$3.3(5)$
C 24	$17.5(5)$	$18.7(6)$	$18.8(5)$	$-0.6(4)$	$3.1(4)$	$-0.8(4)$

Table S4. Bond Lengths for 6.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C17	1.3725(12)	C7	C14	1.5504(15)
F2	C17	1.3727(13)	C7	C17	$1.5535(15)$
O1	C18	1.4116 (13)	C8	C9	$1.3805(16)$
O2	C3	1.3677(14)	C8	C13	1.3963 (15)
O2	C15	$1.4233(16)$	C9	C10	1.4000 (16)
O3	C14	$1.2236(14)$	C10	C11	1.3877(17)
N1	C13	$1.4050(15)$	C11	C12	1.3916(18)
N1	C14	1.3549 (14)	C12	C13	1.3811(16)
N1	C16	1.4552(14)	C17	C18	1.5392(15)
C1	C2	1.3842(17)	C18	C19	1.5222(15)
C1	C6	1.3960 (16)	C19	C20	1.3940 (16)
C2	C3	1.3902(18)	C19	C24	1.3966(17)
C3	C4	$1.3859(17)$	C20	C21	1.3916(17)
C4	C5	1.3916 (16)	C21	C22	1.3843 (19)
C5	C6	$1.3922(16)$	C22	C23	$1.3895(18)$
C6	C7	1.5449 (15)	C23	C24	$1.3902(16)$
C7	C8	$1.5203(15)$			

Table S5. Bond Angles for 6.

Atom	Atom	Atom	${\text { Angle } /{ }^{\circ}}^{c}$	Atom	Atom	Atom	Angle $/{ }^{\circ}$
C3	O2	C15	$117.89(10)$	C10	C11	C12	$121.27(11)$
C13	N1	C16	$124.21(10)$	C13	C12	C11	$117.39(11)$
C14	N1	C13	$111.52(9)$	C8	C13	N1	$109.91(10)$
C14	N1	C16	$123.86(10)$	C12	C13	N1	$127.60(10)$
C2	C1	C6	$121.23(11)$	C12	C13	C8	$122.47(11)$
C1	C2	C3	$120.58(11)$	O3	C14	N1	$125.94(10)$
O2	C3	C2	$116.19(11)$	O3	C14	C7	$125.64(10)$
O2	C3	C4	$124.58(11)$	N1	C14	C7	$108.42(9)$
C4	C3	C2	$119.24(11)$	F1	C17	F2	$104.99(8)$
C3	C4	C5	$119.61(11)$	F1	C17	C7	$109.61(9)$
C4	C5	C6	$122.05(10)$	F1	C17	C18	$106.11(8)$
C1	C6	C7	$121.84(10)$	F2	C17	C7	$107.53(8)$
C5	C6	C1	$117.29(10)$	F2	C17	C18	$110.90(9)$

C5	C6	C7	$120.81(10)$	C18	C17	C7	$117.06(9)$
C6	C7	C14	$108.73(9)$	O1	C18	C17	$111.73(9)$
C6	C7	C17	$112.22(9)$	O1	C18	C19	$114.00(9)$
C8	C7	C6	$113.47(9)$	C19	C18	C17	$112.22(9)$
C8	C7	C14	$101.52(8)$	C20	C19	C18	$118.65(10)$
C8	C7	C17	$111.91(9)$	C20	C19	C24	$119.03(10)$
C14	C7	C17	$108.29(8)$	C24	C19	C18	$122.28(10)$
C9	C8	C7	$132.08(10)$	C21	C20	C19	$120.66(12)$
C9	C8	C13	$119.46(10)$	C22	C21	C20	$119.95(11)$
C13	C8	C7	$108.46(10)$	C21	C22	C23	$119.87(11)$
C8	C9	C10	$119.08(11)$	C22	C23	C24	$120.35(12)$
C11	C10	C9	$120.32(11)$	C23	C24	C19	$120.14(11)$

Table S6. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 6 .

Atom	x	y	z	U(eq)
H1	1515.45	7139.97	3946.38	26
H1A	4141.02	4047.89	4659.57	27
H2	5202.23	2397.88	4481.44	34
H4	3955.88	-1805.69	3025.3	22
H5	2894.3	-118.47	3197.25	20
H9	3383.47	7141.56	4558.52	20
H10	3459.46	8822.57	5797.15	23
H11	2926.08	7346.14	6773.23	26
H12	2305.9	4160.87	6543.43	24
H15A	5078.01	-2391.34	2675.22	56
H15B	5062.66	-3691.69	3455.32	56
H15C	5825.96	-3117.33	3247.76	56
H16A	1959.85	460.14	6123.37	33
H16B	1549.46	-604.75	5312.73	33
H16C	1237.06	1470.49	5596.41	33
H18	1149.61	3427.63	3376.51	18
H20	340.38	3094.89	2170.9	23
H21	-340.14	4394.7	951.66	28
H22	-112	7729.96	543.35	29
H23	799.76	9762.63	1353.7	27
H24	1482.11	8476.03	2573.96	22

6. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra and HPLC spectra

${ }^{1} \mathrm{H}$ NMR of Compound $3 \mathrm{a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $3 \mathrm{a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound 3a($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of Compound 3b $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound 3b (100 MHz, CDCl_{3})

${ }^{19}$ F NMR of Compound 3b ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{3 c}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{3 c}\left(\mathbf{1 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound 3c ($\mathbf{3 7 6} \mathbf{M H z}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of Compound $3 \mathrm{~d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound 3d ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR of Compound 3d ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of Compound 3e (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR of Compound $3 \mathrm{e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound 3e ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of Compound $3 \mathrm{f}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $3 \mathrm{f}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $3 f\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HYJ-HB-45-ReRe.11.fid

HYJ-HB-45
$19 \mathrm{f}-400 \mathrm{~m}$

-ìiò

${ }^{1} \mathrm{H}$ NMR of Compound $3 \mathrm{~g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\qquad

8.5	8. 0	${ }^{1} .5$	7. 0	6. 5	6.0	5. 5	5. 0	4. 5	4. 0	3. 5	3.0	2.5	2.0	1.5	1. 0	${ }^{1} .5$	${ }^{1} .0$

${ }^{13} \mathrm{C}$ NMR of Compound $3 \mathrm{~g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $\mathbf{3 g}\left(\mathbf{3 7 6} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

GOY-GC-85-19F. 22. fid 19F-400M

${ }^{1} \mathrm{H}$ NMR of Compound $3 \mathrm{~h}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

3h

${ }^{13} \mathrm{C}$ NMR of Compound $\left.\mathbf{3 h} \mathbf{~ (1 0 0 ~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $3 \mathrm{~h}\left(\mathbf{3 7 6} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

HYJ-HB-55-19F-Re. 32. fid
19F-400м
N M N

3h
${ }^{1} \mathrm{H}$ NMR of Compound $3 \mathrm{i}\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 i$

1.0								
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0

${ }^{13} \mathrm{C}$ NMR of Compound $\left.\mathbf{3 i} \mathbf{(1 0 0 ~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $3 \mathrm{i}\left(\mathbf{3 7 6} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{3 j}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR of Compound 3 j ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR of Compound $3 \mathrm{j}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{3 k}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $3 \mathrm{k}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $3 \mathrm{k}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$
$\xrightarrow[\substack{\infty \\ \hline \\ i \\ i \\ i}]{ }$

${ }^{1} \mathrm{H}$ NMR of Compound $31\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $31\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $31\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{3 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $3 \mathrm{~m}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $3 \mathrm{~m}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

3m
${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{3 n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{3 n}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

190	180	170	160	150	${ }_{140}$	${ }_{130}$	${ }_{120}$	110	${ }_{100}^{10}$	${ }_{90}$	80	${ }_{70}$	60	${ }_{50}$	40	30	20	10		1
									f1 (

${ }^{19}$ F NMR of Compound $3 \mathrm{n}\left(\mathbf{3 7 6} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of Compound $30\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $30\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $30\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{3 p}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{3 p}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $\mathbf{3 p}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of Compound $5 \mathrm{a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $5 \mathrm{a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound 5a ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

HYJ-HB-53-19F-Re. 22. fid 19F-400M

テ̀
i
i

\qquad

${ }^{1} \mathrm{H}$ NMR of Compound $5 \mathrm{~b}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $5 \mathrm{~b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound 5b ($\mathbf{3 7 6} \mathbf{M H z}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of Compound $5 \mathrm{c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $5 \mathrm{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $5 \mathrm{c}\left(\mathbf{3 7 6} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of Compound $5 \mathrm{e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $5 \mathrm{e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $5 \mathrm{e}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of Compound $5 f\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underbrace{\infty} \underbrace{\circ}$ 呙

${ }^{13} \mathrm{C}$ NMR of Compound $5 \mathrm{f}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

$\frac{1}{200}$	190	180	170	${ }_{160}$	$\stackrel{1}{150}$	${ }_{140}$	${ }_{1}^{130}$	120	${ }_{110}^{11}$	100	${ }_{90}$	80	${ }_{70}$	60	${ }_{50}$	40	30	10	10	0
										f1 (p										

${ }^{19}$ F NMR of Compound $5 \mathrm{f}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$
$\underset{i}{\text { ì }}$

${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{5 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $5 \mathrm{~h}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound 5h(376 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR of Compound $\left.\mathbf{5 i} \mathbf{(4 0 0 ~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $5 \mathrm{i}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $5 \mathrm{i}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

GOY-GG-52-1-P. 11.fid $19 \mathrm{~F}-400 \mathrm{M}$

$5 i$

${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{5 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{5 k}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $5 \mathrm{k}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

GOY-GG-52-2-P. 22. fid
19F-400M

Q
i
i

5k

${ }^{1} \mathrm{H}$ NMR of Compound $51\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

51

${ }^{13} \mathrm{C}$ NMR of Compound 51 ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR of Compound $51\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

GOY-GG-52-3-P-RRRRe. 11. fid
GOY-GG-52-
19F-400M

5I

${ }^{1} \mathrm{H}$ NMR of Compound $6\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $6\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $6\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of Compound $7\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR of Compound $7\left(\mathbf{1 2 5} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $7\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$
GOY-GC-136-X. 21. fid
$19 \mathrm{~F}-400 \mathrm{M}$

${ }^{1} \mathrm{H}$ NMR of Compound $8\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{of} \mathrm{Compound} 8\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $8\left(\mathbf{3 7 6} \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of Compound $9\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $9\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound 9 ($\mathbf{3 7 6} \mathbf{M H z}, \mathbf{C D C l}_{3}$)

${ }^{1} \mathrm{H}$ NMR of Compound $10\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of Compound $10\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of Compound $10\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC spectra of $\mathrm{rac}-\mathbf{3 g}$ (synthesized from rac-2g)

<Sample Information>

<Peak Table>

Detector A Channel 2230 nm			
Peak\#	Ret. Time	Area	Height
Conc.			
1	11.639	10074719	246846
2	14.785	10081332	127147
Total		20156051	373994

The HPLC spectra of $\mathbf{3 g}$ (synthesized from (R)-2g(72\% ee))

<Sample Information>

Sample Name	GOY-GC-90-workup-ASY-ASH-8020-1.0-230			
Sample ID	GO-GC-90-workup-ASY-ASH-8020-1.0-230.Icd			
Data Filename	GOY-GC			
Method Filename	GY-1.0.1cm			
Batch Filename	$\vdots 1-1$	Sample Type	: Unknown	
Vial \#	Injection Volume	20 uL	Acquired by	\vdots System Administrator
Date Acquired	$6 / 6 / 2019$	$9: 09: 42$ PM	Processed by	System Administrator

<Chromatogram>

mV

<Peak Table>

Detector A Channel 2230 nm			
Peak\# Ret. Time	Area	Height	Conc.
1	11.681	11291092	258311
2	14.730	11169028	137259
Total		22460119	395570

[^0]: 1 (a) Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura, Y.; Sodeoka, M. J. Am. Chem. Soc. 2005, 127, 10164; (b) Wu, H.-X.; Xue, F.; Xiao, X.; Qin, Y. J. Am. Chem. Soc. 2010, 132, 14052.

 2 (a) Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K. Chem. Commun. 1999, 1323; (b) Prakash, G. K. S.; Hu, J.; Olah, G. A. J. Fluorine Chem. 2001, 112, 357; (c) Bélanger, É.; Cantin, K.; Messe, O.; Tremblay, M.; Paquin, J. F. J. Am. Chem. Soc. 2007, 129, 1034.

[^1]: 3 Kobayashi, S.; Tanaka, H.; Amii, H.; Uneyama, K. Tetrahedron. 2003, 59, 1547

[^2]: 4 Zhu, F.; Zhou, F.; Cao, Z.-Y.; Wang, C.; Zhang, Y.-X.; Wang, C.-H.; J. Zhou, Synthesis, 2012, 44, 3129.
 5 Chauhan, P.; Chimni, S. S. Chem. Eur. J. 2010, 16, 7709.

