Construction of β-Quaternary α,α-Difluoroketones via Catalytic Nucleophilic Substitution of Tertiary Alcohols with Difluoroenoxysilanes

Yong-Jia Hao,^{†,#} Yi Gong,^{‡,#} Ying Zhou,^{*,†} Jian Zhou,^{‡,§} and Jin-Sheng Yu^{*,‡}

[†] College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 China.

[‡] Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

[§] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032 China.

[#] These authors contributed equally to this work.

E-mail for Y. Zhou: zhouying067@gzy.edu.cn; E-mail for J.-S. Yu: jsyu@chem.ecnu.edu.cn

Supporting information

Table of Contents	Page
1. General information	S2
2. General procedure for the substitution reaction	S3-S13
3. Transformation of products	S14-S17
4. Control experiment and a proposed reaction pathway	S18
5. X-ray crystallographic data of compound 6	S19-S23
6. ¹ H, ¹³ C and ¹⁹ F NMR spectra and HPLC spectra	S24-S114

1. General information

Reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the progress of reaction. Purification of reaction products was carried out by flash chromatography on 300–400 mesh silica gel. Chemical yields referred to pure isolated substances. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Bruker DPX-400 or DPX-500 spectrometer. The HRMS spectra were measured on Waters Synapt TOF G2-S mass spectrometer or Bruker maXis impact spectrometer using electron spray ionization (ESI) method. Chemical shifts (δ) are expressed in parts per million (ppm) units using (CH₃)₄Si as the internal standard. HPLC analysis was performed on a Shimadzu LC-20AD instrument using Daicel Chiral columns at 30 °C and a mixture of HPLC-grade hexanes and isopropanol as eluent. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets. Coupling constants (*J*) are reported in Hertz.

Unless mentioned, all reactions were carried out under an atmosphere of N₂. Anhydrous CH₂Cl₂, DCE, and CH₃CN were prepared by first distillation over P₂O₅ and then from CaH₂. Anhydrous toluene and THF were prepared by distillation over sodium-benzophenone ketyl prior to use. The 3-substituted 3-hydroxyoxindoles **2** were prepared from the corresponding isatins and Grignard reagents according to the reported procedure.¹ Difluoroenoxysilanes^{2a,b} and monofluorinated silyl enol ethers^{2c} were prepared by using the literature methods.

Entry	Chemical name	Abbreviation
1	Dichloromethane	CH_2Cl_2
2	1,2-Dichloroethane	DCE
3	Tetrahydrofuran	THF
4	Petroleum ether	PE
5	Ethyl acetate	EtOAc
6	Hexafluoroisopropyl alcohol	HFIP

List of abbreviation:

^{1 (}a) Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura, Y.; Sodeoka, M. J. Am. Chem. Soc. **2005**, 127, 10164; (b) Wu, H.-X.; Xue, F.; Xiao, X.; Qin, Y. J. Am. Chem. Soc. **2010**, 132, 14052.

^{2 (}a) Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K. *Chem. Commun.* **1999**, 1323; (b) Prakash, G. K. S.; Hu, J.; Olah, G. A. *J. Fluorine Chem.* **2001**, *112*, 357; (c) Bélanger, É.; Cantin, K.; Messe, O.; Tremblay, M.; Paquin, J. F. J. Am. Chem. Soc. **2007**, *129*, 1034.

2. General procedure for the substitution reaction

2.1 The reaction of 3-hydroxyoxindoles 2 with fluorinated enol silyl ethers 1

Under an atmosphere of N₂, to a 25 mL flame-dried Schleck tube were added 3hydroxyoxindoles **2** (0.25 mmol, 1.0 equiv) and Fe(OTf)₃ (0.0125 mmol, 6.3 mg, 5.0 mol%), followed by the addition of anhydrous CH₂Cl₂ (2.5 mL). After being stirred at room temperature for about 5 min, fluorinated enol silyl ethers **1** (0.375 mmol, 1.5 equivs) was then added. The resulting mixture was stirred at room temperature until full conversion of **2** by TLC analysis. The reaction mixture was then concentrated under reduced pressure to give the residue, which was purified by silica gel column chromatography to afford the products **3**, using PE/EtOAc as eluent.

Column chromatography with PE/EtOAc (10/1, v/v) afforded product **3a** in 91% yield (92.6 mg) as white solid, m.p. 148-150 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 7.4 Hz, 2H), 7.78 (dd, J = 8.9, 1.1 Hz, 2H), 7.59-7.53 (m, 2H), 7.42-7.35 (m, 3H), 7.07 (td, J = 7.6 Hz, 0.9 Hz, 1H), 6.91-6.88 (m, 3H), 3.80 (s, 3H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.6 (t, J = 31.7 Hz, 1C), 173.4 (d, J = 10.6 Hz, 1C), 159.7, 144.4, 134.4, 131.8 (t, J = 3.3 Hz, 1C), 130.8 (d, J = 1.9 Hz, 1C), 130.1 (t, J = 2.9 Hz, 1C), 129.3, 128.5, 126.5 (d, J = 5.7 Hz, 1C), 126.2 (d, J = 4.2 Hz, 1C), 123.2, 122.1, 117.5 (dd, J = 268.5, 261.9 Hz, 1C), 113.6, 108.8, 57.9 (t, J = 20.5 Hz, 1C), 55.2 (d, J = 2.7 Hz, 1C), 26.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -97.45 (d, J = 310.7 Hz, 1F), -99.35 (d, J = 310.6 Hz, 1F); IR (ATR): 2976, 2885, 1720, 1510, 1253, 1082, 941, 675 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₄H₁₉F₂NO₃Na

430.1231; Found 430.1201.

Column chromatography with PE/EtOAc (10/1, v/v) afforded product **3b** in 90% yield (88.0 mg) as white solid (m.p. 148-150 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 7.5 Hz, 2H), 7.76 (d, J = 7.4 Hz, 2H), 7.59-7.56 (m, 2H), 7.43-7.35 (m, 3H), 7.20 (d, J = 8.3 Hz, 2H), 7.08 (td, J = 7.5, 0.9 Hz, 1H), 6.91 (d, J = 7.8 Hz,

1H), 3.27 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.5 (t, *J* = 31.6 Hz, 1C), 173.2 (d, *J* = 10.5 Hz, 1C), 144.3, 138.4, 134.3, 131.7 (t, *J* = 3.3 Hz, 1C), 130.1 (t, *J* = 2.8 Hz, 1C), 129.4, 129.4, 129.3, 129.0, 128.5, 126.5 (d, *J* = 5.4 Hz, 1C), 126.2 (d, *J* = 3.9 Hz, 1C), 122.1, 117.5 (dd, *J* = 268.9, 262.3 Hz, 1C), 108.8, 58.2 (t, *J* = 21.0 Hz, 1C), 26.7, 20.9 (d, *J* = 2.8 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -97.26 (d, *J* = 310.8 Hz, 1F), -99.08 (d, *J* = 310.8 Hz, 1F); IR (ATR): 2976, 1710, 1263, 1072, 1049, 939, 881, 659 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₄H₁₉F₂NO₂Na 414.1282; Found 414.1281.

Column chromatography with PE/EtOAc (10/1, v/v) afforded product **3c** in 60% yield (61.5 mg) as white solid (m.p. 97-99 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 7.4 Hz, 2H), 7.59-7.53 (m, 2H), 7.47-7.46 (m, 1H), 7.42-7.35 (m,

4H), 7.28 (t, J = 8.0 Hz, 1H), 7.06 (td, J = 7.6 Hz, 0.9 Hz, 1H), 6.92-6.89 (m, 2H), 3.81 (s, 3H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.5 (t, J = 32.3 Hz, 1C), 173.0 (d, J = 10.6 Hz, 1C), 159.3, 144.4, 134.4, 133.1, 131.8 (t, J = 3.3 Hz, 1C), 130.1 (t, J = 2.9 Hz, 1C), 129.4, 129.1, 128.5, 126.3 (t, J = 4.1 Hz, 1C), 122.2, 121.9, 117.5 (dd, J = 267.7, 261.2 Hz, 1C), 115.8 (d, J = 1.8 Hz, 1C), 113.8, 108.8, 58.5 (dd, J = 22.6, 20.6 Hz, 1C), 55.2 (d, J = 4.9 Hz, 1C), 26.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -97.21 (d, J = 310.0 Hz, 1F), -98.98 (d, J = 310.4 Hz, 1F); IR (ATR): 2976, 1714, 1695, 1492, 1259, 1047, 779, 756 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₄H₁₉F₂NO₃Na 430.1225; Found 430.1226.

Column chromatography with PE/EtOAc (10/1, v/v) afforded product **3d** in 76% yield (71.6 mg) as white solid (m.p. 150-152 °C). ¹H NMR (400 MHz, CDCl₃): δ ^{3d} 7.94 (d, J = 7.4 Hz, 2H), 7.88-7.86 (m, 2H), 7.59-7.56 (m, 2H), 7.43-7.36 (m, 6H), 7.08 (td, J = 7.6 Hz, 0.7 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 3.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.4 (t, J = 21.6 Hz, 1C), 173.1 (d, J = 10.6 Hz, 1C), 144.4, 134.4, 131.7 (t, J = 3.2 Hz, 1C), 131.6, 130.2 (t, J = 2.8 Hz, 1C), 129.5, 129.5, 129.4, 128.51, 128.48, 128.2, 126.4 (d, J = 4.3 Hz, 1C), 122.2, 117.5 (t, J = 269.3 Hz, 262.6 Hz, 1C), 108.8, 58.5 (t, J = 20.2 Hz, 1C), 26.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -97.18 (d, J = 310.7 Hz, 1F), -98.94 (d, J = 310.7 Hz, 1F); IR (ATR): 2976, 1708, 1319, 1261, 1087, 1051, 881 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₃H₁₇F₂NO₂Na 400.1125; Found 400.1110. Cl Column chromatography with PE/EtOAc (10/1, v/v) afforded product **3e** in 63% yield (64.7 mg) as white solid (m.p. 146-148 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 7.4 Hz, 2H), 7.80 (dd, J = 8.6, 1.1 Hz, 2H), 7.60-7.56 (m, 1H), 7.52 (dd, J = 7.2, 2.0 Hz, 1H), 7.43-7.33 (m, 5H), 7.09 (td, J = 7.6 Hz, 0.8 Hz, 1H), 6.92 (d, J

= 7.8 Hz, 1H), 3.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.2 (t, J = 31.5 Hz, 1C), 172.8 (d, J = 10.2 Hz, 1C), 144.4, 134.9, 134.5, 131.6 (t, J = 3.3 Hz, 1C), 130.9 (d, J = 2.0 Hz, 1C), 130.1 (t, J = 2.9 Hz, 1C), 129.7, 128.5, 128.4, 126.3 (d, J= 4.1 Hz, 1C), 125.9 (td, J= 5.6 Hz, 1C), 122.4, 117.4 (dd, J = 269.4, 263.2 Hz, 1C), 109.0, 58.1 (t, J = 22.4 Hz, 1C), 26.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -97.24 (d, J = 310.6 Hz, 1F), -98.97 (d, J = 310.6 Hz, 1F); IR (ATR): 2976, 1701, 1608, 1259, 1101, 1053, 881 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₃H₁₇³⁵ClF₂NO₂ 412.0916; Found 412.0917.

Br F F Ph yield (61.6 mg) as white solid (m.p. 141-143 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.93-7.90 (m, 2H), 7.73 (dd, J = 8.7 Hz, 1.2, 2H), 7.58-7.56 (m, 1H), 7.51-7.48 (m, 3f 3H), 7.43-7.38 (m, 3H), 7.08 (td, J = 7.6 Hz, 1.0 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 3.26 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 182.2 (t, J = 31.8 Hz, 1C), 172.7 (d, J = 10.4 Hz, 1C), 144.4, 134.5, 131.6 (t, J = 3.4 Hz, 1C), 131.4, 131.3 (d, J = 2.4 Hz, 1C), 130.7, 130.2 (t, J = 3.2 Hz, 1C), 129.7, 128.5, 126.3 (d, J = 4.2 Hz, 1C), 125.8 (d, J = 5.5 Hz, 1C), 123.2, 122.4, 117.3 (dd, J = 269.7, 262.9 Hz, 1C), 109.1, 58.1 (t, J = 20.4 Hz, 1C), 26.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -97.25 (d, J = 310.2 Hz, 1F), -98.96 (d, J = 310.6 Hz, 1F); IR (ATR): 2978, 2360, 1710, 1608, 1265, 1101, 1078, 742 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₃H₁₇⁷⁹BrF₂NO₂ 456.0411; Found 456.0427.

Column chromatography with PE/EtOAc (5/1, v/v) afforded product **3g** in 37% yield (38.5 mg) as white solid (m.p. 174-176°C). ¹H NMR (400 MHz, CDCl₃): δ 8.38 (s, br, 1H), 7.96 (d, *J* = 7.2 Hz, 2H), 7.89 (dd, *J* = 8.1, 2.8 Hz, 1H), 7.59-7.55

Me (m, 1H), 7.50 (dd, J = 7.3, 2.7 Hz, 1H), 7.42-7.38 (m, 3H), 7.32-7.30 (m, 1H), 7.18-7.16 (m, 2H), 7.10-7.03 (m, 2H), 6.92 (d, J = 7.8 Hz, 1H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.8 (t, J = 32.9 Hz, 1C), 173.2 (d, J = 9.7 Hz, 1C), 144.4, 136.8, 134.3, 132.1 (t, J = 3.5 Hz, 1C), 130.1 (t, J = 3.0 Hz, 1C), 129.4, 128.5, 127.1 (d, J = 6.3 Hz, 1C), 126.2, 126.1, 125.7 (d, J = 4.1 Hz, 1C), 122.4 (d, J = 6.2 Hz, 1C), 122.2 (d, J = 5.6 Hz, 1C), 120.1, 118.6 (dd, J = 267.4, 260.7 Hz, 1C), 111.3, 108.6, 107.7, 56.5 (t, J = 22.1 Hz, 1C), 26.6; ¹⁹F NMR (376 MHz, CDCl₃): -96.63 (d, J = 305.7 Hz, 1F), -99.40 (d, J = 306.6 Hz, 1F); IR (ATR): 2974, 2358, 1610, 1288, 1257, 1047 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₅H₁₈F₂N₂O₂Na 439.1229; Found 439.1225.

Column chromatography with PE/EtOAc (10/1, v/v) afforded product **3i** in 92% yield (97.8 mg) as yellow solid (m.p. 168-170 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.97 (dd, J = 7.4, 4.0 Hz, 2H), 7.76 (dd, J = 8.9, 1.1 Hz, 2H), 7.61-7.58 (m, 1H), 7.42 (t, J = 7.9 Hz, 2H), 7.32 (dt, J = 8.1 Hz, 2.3 Hz, 1H), 7.08 (td, J = 8.8, 2.6 Hz, 1H), 6.93-6.91 (m, 2H), 6.84 (dd, J = 8.6, 4.3 Hz, 1H), 3.80 (s, 3H), 3.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.3 (t, J = 32.2 Hz, 1C), 173.2 (d, J = 10.4 Hz, 1C), 159.8, 158.6 (d, J = 240.5Hz, 1C), 140.4, 134.6, 131.4 (t, J = 3.4 Hz, 1C), 130.6 (d, J = 1.5 Hz, 1C), 130.2 (t, J = 3.0 Hz, 1C), 128.6, 128.1 (dd, J = 8.4, 5.5 Hz, 1C), 122.6, 117.4 (dd, J = 267.7, 260.0 Hz, 1C), 115.5 (d, J = 23.1Hz, 1C), 114.4 (dd, J = 25.8, 2.9 Hz, 1C), 113.7, 109.2 (d, J = 8.2 Hz, 1C), 58.2 (t, J = 21.7 Hz, 1C), 55.2 (d, J = 5.2 Hz, 1C), 26.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -97.36 (d, J = 314.7 Hz, 1F), -99.32 (d, J = 314.8 Hz, 1F), -120.41 (s, 1F); IR (ATR): 2976, 1714, 1697, 1512, 1259, 1078, 1051, 812 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₄H₁₈F₃NO₃Na 448.1136; Found 448.1148. MeO CI N Me 3j

MeO

Column chromatography with PE/EtOAc (10/1, v/v) afforded product **3j** in 85% yield (93.7 mg) as white solid (m.p. 185-187 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 7.4 Hz, 2H), 7.74 (dd, J = 8.9, 1.1 Hz, 2H), 7.62-7.58 (m, 1H), 7.53 (t, J = 1.9 Hz, 1H), 7.43 (t, J = 7.9 Hz, 2H), 7.35 (dd, J = 8.3, 2.1 Hz, 1H), 6.94-

6.91 (m, 2H), 6.84 (d, J = 8.4 Hz, 1H), 3.81 (s, 3H), 3.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.3 (t, J = 32.7 Hz, 1C), 173.1 (d, J = 10.7 Hz, 1C), 159.9, 143.0, 134.7, 131.4 (t, J = 3.4 Hz, 1C), 130.7 (d, J = 1.7 Hz, 1C), 130.3 (t, J = 2.9 Hz, 1C), 129.2, 128.6, 128.4 (d, J = 5.4 Hz, 1C), 127.4, 126.4 (d, J = 4.6 Hz, 1C), 122.4, 117.4 (dd, J = 269.3, 261.9 Hz, 1C), 113.7, 109.7, 58.1 (t, J = 20.8Hz, 1C), 55.3 (d, J = 4.8 Hz, 1C), 26.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -97.19 (d, J = 315.2 Hz, 1F), -99.15 (d, J = 315.9 Hz, 1F); IR (ATR): 2976, 1701, 1608, 1257, 1099 1051, 881, 734 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₄H₁₈³⁵ClF₂NO₃Na 464.0835; Found 464.0840.

Column chromatography with PE/EtOAc (10/1, v/v) afforded product 3k in 59% MeO yield (70.1 mg) as white solid (m.p. 172-174 °C). ¹H NMR (400 MHz, CDCl₃): F₃C δ 7.95 (d, J = 7.4 Hz, 2H), 7.76 (s, 1H), 7.70 (dd, J = 8.9, 1.2 Hz, 2H), 7.66 (d, J Me = 8.2 Hz, 1H), 7.62-7.58 (m, 1H), 7.43 (t, J = 7.9 Hz, 2H), 6.99 (d, J = 8.2 Hz, 3k 1H), 6.94-6.90 (m, 2H), 3.80 (s, 3H), 3.31 (s, 3H); 13 C NMR (100 MHz, CDCl₃): δ 187.4 (t, J = 32.4 Hz, 1C), 173.4 (d, J = 10.8 Hz, 1C), 160.0, 147.3, 134.8, 131.3 (t, J = 3.5 Hz, 1C), 130.7 (d, J = 1.8 Hz, 1C), 130.3 (t, J = 3.1 Hz, 1C), 128.6, 127.4 (d, J = 5.5 Hz, 1C), 127.1 (q, J = 3.8 Hz, 1C), 125.6, 124.4 (q, J = 32.8 Hz, 1C), 122.9 (t, J = 3.9 Hz, 1C), 122.1, 117.4 (dd, J = 269.6, 262.0 Hz, 1C), 113.9, 108.6, 57.8 (t, J = 22.8 Hz, 1C), 55.3 (d, J = 3.4 Hz, 1C), 26.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -61.28 (s, 3F), -97.07 (d, J = 316.0 Hz, 1F), -99.29 (d, J = 315.3 Hz, 1F); IR (ATR): 2978, 1691, 1608, 1328, 1259, 1101, 740, 700 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₅H₁₉F₅NO₃ 476.1285; Found 476.1266.

 $\begin{array}{l} \text{MeO} \\ & \text{Column chromatography with PE/EtOAc (15/1, v/v) afforded product$ **3l** $in 73\%} \\ & \text{yield (79.8 mg) as yellow solid (m.p. 167-169 °C). ¹H NMR (400 MHz, CDCl_3):} \\ & \delta 7.94 (d, J = 7.4 \text{ Hz}, 2\text{H}), 7.78 (dd, J = 9.0, 1.2 \text{ Hz}, 2\text{H}), 7.60-7.55 (m, 1\text{H}), \\ & 7.43-7.39 (m, 2\text{H}), 7.15 (t, J = 2.4 \text{ Hz}, 1\text{H}), 6.92-6.87 (m, 3\text{H}), 6.81 (d, J = 8.5 \end{array}$

Hz, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 3.23 (s, 3H); 13 C NMR (100 MHz, CDCl₃): δ 187.4 (t, J = 32.4

Hz, 1C), 173.1 (t, J = 10.5 Hz, 1C), 159.7, 155.4, 137.9, 134.4, 131.8 (t, J = 3.3 Hz, 1C), 130.7 (d, J = 3.0 Hz, 1C), 130.2 (t, J = 32.4 Hz, 1C), 128.5, 127.8 (d, J = 5.4 Hz, 1C), 123.2, 117.5 (dd, J = 268.9, 261.9 Hz, 1C), 114.3 (d, J = 3.7 Hz, 1C), 113.6, 113.0, 109.0, 58.3 (t, J = 20.6 Hz, 1C), 55.8 (d, J = 3.5 Hz, 1C), 55.2 (d, J = 3.7 Hz, 1C), 26.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -97.44 (d, J = 311.8 Hz, 1F), -99.51 (d, J = 311.9 Hz, 1F); IR (ATR): 2978, 1701, 1608, 1510, 1099, 1049, 805, 700 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₅H₂₁F₂NO₄Na 460.1336; Found 460.1351.

Column chromatography with PE/EtOAc (4/1, v/v) afforded product **3m** in 88% yield (96.1 mg) as yellow solid (m.p. 131-133 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 8.9 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 7.1 Hz, 1H), 7.36 (td, J = 7.8 Hz, 0.9 Hz, 1H), 7.07 (td, J = 7.6 Hz, 0.6 Hz, 1H),

6.93-6.86 (m, 5H), 3.84 (s, 3H), 3.79 (s, 3H), 3.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 185.7 (t, J = 32.1 Hz, 1C), 173.5 (t, J = 10.7 Hz, 1C), 164.5, 159.6, 144.3, 132.8 (t, J = 3.3 Hz, 1C), 130.8 (d, J = 1.2 Hz, 1C), 129.2, 126.8 (d, J = 5.5 Hz, 1C), 126.1 (d, J = 4.1 Hz, 1C), 124.5 (t, J = 3.4 Hz, 1C), 123.3, 122.0, 117.8 (dd, J = 268.7, 262.1 Hz, 1C), 113.8, 113.5, 108.7, 57.9 (t, J = 20.6 Hz, 1C), 55.5 (d, J = 3.2 Hz, 1C), 55.2 (d, J = 3.2 Hz, 1C), 26.6; ¹⁹F NMR (376 MHz, CDCl₃): δ -96.60 (d, J = 310.3 Hz, 1F), -98.43 (d, J = 310.5 Hz, 1F); IR (ATR): 2976, 2360, 1512, 1444, 1257, 1087 cm⁻¹; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₂₅H₂₁F₂NO₄Na 460.1336; Found 460.1351.

Column chromatography with PE/EtOAc (15/1, v/v) afforded product **3n** in 79% yield (87.1 mg) as white solid (m.p. 119-121 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.6 Hz, 2H), 7.77 (d, *J* = 7.6, 2H), 7.57-7.50 (m, 1H), 7.42-7.33 (m, 3H), 7.08 (td, *J* = 7.6 Hz, 1.1 Hz, 1H), 6.93-6.86 (m, 3H), 3.79 (s, 3H), 3.26

(s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 186.5 (t, *J* = 32.3 Hz, 1C), 173.2 (d, *J* = 10.8 Hz, 1C), 159.8, 144.3, 141.1, 131.5 (t, *J* = 2.8 Hz, 1C), 130.8 (d, *J* = 2.3 Hz, 1C), 130.1 (t, *J* = 3.5 Hz, 1C), 129.4, 128.9, 126.4 (d, *J* = 5.8 Hz, 1C), 126.2 (d, *J* = 4.1 Hz, 1C), 123.0, 122.2, 117.4 (dd, *J* = 266.5, 260.0 Hz, 1C), 113.6, 108.9, 57.8 (t, *J* = 20.2 Hz, 1C), 55.2, 26.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -97.45 (d, *J* = 311.4 Hz, 1F), -99.46 (d, *J* = 310.7 Hz, 1F); IR (ATR): 1708, 1512, 1259, 1089, 1051, 881, 694 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₄H₁₈³⁵ClF₂NO₃Na 464.0835; Found 464.0831.

Column chromatography with PE/EtOAc (6/1, v/v) afforded product **30** in 57% yield (57.1 mg) as white solid (m.p. 181-183 °C). ¹H and ¹⁹F NMR analysis of the crude mixture revealed that the dr was >20:1. ¹H NMR (400 MHz, CDCl₃): δ 7.66-7.63 (m, 2H), 7.58-7.54 (m, 2H), 7.32-7.30 (m, 2H), 7.28-7.24 (m, 2H), 6.88-

6.82 (m, 4H), 3.78 (s, 3H), 3.59-3.50 (m, 1H), 3.36-3.30 (m, 1H), 3.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.2 (d, J = 19.0 Hz, 1C), 173.6 (d, J = 4.2 Hz, 1C), 159.3, 149.8 (d, J = 2.9 Hz, 1C), 144.4, 136.0, 134.9, 130.0, 129.9, 129.3, 128.1, 126.8, 126.2, 125.9, 124.7, 122.0, 113.7, 108.7, 98.9 (d, J = 201.6 Hz, 1C), 55.2 (d, J = 3.1 Hz, 1C), 38.3 (d, J = 24.7 Hz, 1C), 26.5; ¹⁹F NMR (376 MHz, CDCl₃): δ -157.71 (s, 1F); IR (ATR): 2976, 2358, 1444, 1259, 1089, 1052, 852, 605 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₀FNO₃Na 424.1319; Found 424.1325.

Column chromatography with PE/EtOAc (5/1, v/v) afforded product **3p** in 47% yield (48.8 mg) as white solid (m.p. 174-176 °C). ¹H and ¹⁹F NMR analysis of the crude mixture revealed that the dr was >20:1. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.46-7.42 (m, 2H), 7.33 (t, *J* = 7.2

Hz, 1H), 7.26-7.17 (m, 2H), 7.00 (t, J = 7.9 Hz, 1H), 6.91-6.85 (m, 3H), 3.78 (s, 3H), 3.27 (s, 3H), 3.22-3.14 (m, 1H), 2.75 (dt, J = 4.0, 16.8 Hz, 1H), 2.58-2.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 189.8 (d, J = 21.2 Hz, 1C), 175.4 (d, J = 2.2 Hz, 1C), 159.3, 145.0, 143.2, 133.8, 131.6, 130.7 (d, J = 3.5 Hz, 1C), 129.0, 128.5, 128.2, 127.2 (d, J = 6.0 Hz, 1C), 126.9, 126.4, 126.3, 121.4, 113.5, 108.8, 97.1 (d, J = 192.3 Hz, 1C), 58.3 (d, J = 19.8 Hz, 1C), 55.2, 31.3 (d, J = 6.9 Hz, 1C), 26.6, 24.7 (d, J = 7.0 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -166.54 (s, 1F); IR (ATR): 2974, 2358, 1597, 1276, 1257, 1093, 758, 659 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₆H₂₂FNO₃Na 438.1476; Found 438.1467.

2.2 The reaction of acyclic tertiary alcohols 4 with difluoroenoxysilane 1a

Under an atmosphere of N₂, to a 25 mL flame-dried Schleck tube were added acyclic tertiary alcohols 4 (0.25 mmol, 1.0 equiv) and Fe(OTf)₃ (0.0125 mmol, 6.3 mg, 5.0 mol%), followed by the addition of anhydrous CH₂Cl₂ (2.5 mL). After being stirred at room temperature for about 5 min, difluoroenoxysilane **1a** (0.375 mmol, 1.5 equivs) was then added. The resulting mixture was stirred at room temperature until full conversion of **4** by TLC analysis. The reaction mixture was then concentrated under reduced pressure to give the residue, which was purified by silica gel column chromatography to afford the products **5**, using the indicated eluent.

Column chromatography with PE/EtOAc (16/1, v/v) afforded product **5a** in 62% yield (70.7 mg) as white solid (m.p. 52-54 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.92-7.89 (m, 2H), 7.56-7.48 (m, 3H), 7.48-7.44 (m, 4H), 7.42-7.38 (m, 2H), 7.36-7.31 (m, 4H), 7.20-7.16 (m, 2H), 6.89-6.87 (m, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.9 (t, J = 2.5 Hz, 1C), 189.7 (t, J = 32.1 Hz, 1C), 159.1, 138.2, 136.2, 133.7 (t, J = 2.4 Hz, 1C), 133.4, 132.6 (t, J = 2.2 Hz, 1C), 131.4, 131.3 (t, J = 2.2 Hz, 1C), 130.2, 129.9 (t, J = 3.4 Hz, 1C), 128.2, 128.0, 127.9, 127.7 (t, J = 1.8 Hz, 1C), 127.5, 118.5 (t, J = 266.2 Hz, 1C), 113.4, 70.4 (t, J = 18.9 Hz, 1C), 55.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -94.29 (s, 2F); IR (ATR): 2927, 2360, 1598, 1512, 1448, 1255, 1018, 812 cm⁻¹; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₂₉H₂₂F₂O₃Na 479.1435; Found 479.1423.

Column chromatography with PE/EtOAc (20/1, v/v) afforded product **5b** in 59% yield (64.9 mg) as white solid (m.p. 143-145 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 7.7 Hz, 2H), 7.55-7.52 (m, 3H), 7.44-7.37 (m, 6H), 7.33-7.31 (m, 4H), 7.17-7.13 (m, 4H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.9, 189.6(t, J = 32.1 Hz, 1C), 138.1, 137.8, 136.1, 133.6 (t, J = 2.7 Hz, 1C), 133.4, 132.8, 131.6, 131.4, 131.2, 130.2, 129.9 (t, J = 3.4 Hz, 1C), 128.8, 128.2, 128.0, 127.9, 127.5, 118.4 (t, J = 266.4 Hz, 1C), 70.6 (t, J = 18.8 Hz, 1C), 21.0 (d, J = 1.9 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -94.40 (s, 2F); IR (ATR): 2974, 2927, 2358,

1587, 1276, 1257, 1093, 758 cm⁻¹; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₂₉H₂₂F₂O₂Na 463.1486; Found 463.1472.

Column chromatography with PE/EtOAc (20/1, v/v) afforded product **5c** in 41% yield (45.5 mg) as white solid (m.p. 101-103 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 7.6 Hz, 2H), 7.57-7.52 (m, 3H), 7.48-7.44 (m, 2H), 7.42-7.31 (m, 8H), 7.18 (t, J = 7.8 Hz, 2H), 7.01 (t, J = 8.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 189.4 (t, J = 31.9 Hz, 1C), 162.2 (d, J = 247.0 Hz, 1C), 138.1, 135.8, 133.7, 133.4 (d, J = 7.5 Hz, 1C), 131.9, 131.6, 131.1, 130.1, 129.9 (t, J = 3.1 Hz, 1C), 128.3 (d, J = 7.1 Hz, 1C), 128.2, 127.6, 118.4 (t, J = 267.2 Hz, 1C), 114.9 (d, J = 21.2 Hz, 1C), 70.4 (t, J = 18.8 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -93.42 (d, J = 294.8 Hz, 1F), -94.41 (d, J = 295.8 Hz, 1F), -113.93 (s, 1F); IR (ATR): 2885, 2360, 1724, 1510, 1271, 1089, 1051, 881 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₈H₂₀F₃O₂467.1229; Found 467.1228.

Column chromatography with PE/EtOAc (15/1, v/v) afforded product **5e** in 54% MeO MeO

(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 188.6 (t, *J* = 32.7 Hz, 1C), 170.5, 158.8, 137.7, 134.2, 132.4 (t, *J* = 3.2 Hz, 1C), 131.9, 130.4, 130.2 (t, *J* = 3.3 Hz, 1C), 129.4, 128.5, 127.7, 127.6, 118.4 (t, *J* = 265.7 Hz, 1C), 113.0, 65.3 (t, *J* = 20.4 Hz, 1C), 55.1 (d, *J* = 3.1 Hz, 1C), 52.7 (d, *J* = 3.3 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -92.40 (d, *J* = 309.3 Hz, 1F), -93.35 (d, *J* = 308.1 Hz, 1F); IR (ATR): 2976, 1720, 1510, 1253, 1082, 941, 808, 675 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₄H₂₀F₂O₄Na 433.1227; Found 433.1241.

Column chromatography with PE/EtOAc (15/1, v/v) afforded product **5f** in 47% yield (46.3 mg) as white solid (m.p. 94-96 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 7.7 Hz, 2H), 7.61-7.44 (m, 1H), 7.48-7.44 (m, 2H), 7.35-7.29 (m, 5H), 7.21 (d, *J* = 8.2 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 3.80 (s, 3H), 2.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 188.6 (t, *J* = 32.5 Hz, 1C), 170.5 (t, *J* = 4.0 Hz, 1C), 137.6, 137.4, 134.5, 134.2, 132.4 (t, *J* = 3.3 Hz, 1C), 130.6, 130.5, 130.3 (t, *J* = 3.3 Hz, 1C), 128.5, 128.5, 127.7, 127.6, 118.5 (t, *J* = 263.7 Hz, 128.5, 128.5, 127.7, 127.6, 118.5 (t, *J* = 263.7 Hz, 128.5, 128.5, 127.7, 127.6, 118.5 (t, *J* = 263.7 Hz, 128.5

1C), 65.6 (t, J = 20.0 Hz, 1C), 52.8, 20.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -92.79 (s, 2F); IR (ATR): 2974, 2358, 1707, 1514, 1288, 1257, 758, 727 cm⁻¹; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₂₄H₂₀F₂O₃Na 417.1278; Found 417.1284.

Column chromatography with PE/EtOAc (30/1, v/v) afforded product **5h** in 48% yield (43.0 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 7.8 Hz, 2H), 7.38-7.35 (m, 3H), 7.24-7.16 (m, 7H), 6.74-6.72 (m, 2H), 5.79-5.70 (m, 1H), 4.98-4.90 (m, 2H), 3.74 (s, 3H), 2.57-2.53 (m, 2H), 1.87-1.81 (m, 2H); ¹³C

NMR (100 MHz, CDCl₃): δ 191.5 (t, J = 30.1 Hz, 1C), 158.5, 140.2, 138.4, 134.5, 132.9, 131.6, 131.4, 130.1, 129.5 (t, J = 4.1 Hz, 1C), 127.8, 127.7, 127.1, 121.2 (t, J = 267.1 Hz, 1C), 114.5, 113.1, 57.5 (t, J = 19.6 Hz, 1C), 55.2, 34.7, 28.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -97.42 (d, J = 256.4 Hz, 1F), -99.14 (d, J = 256.8 Hz, 1F); IR (ATR): 2922, 2358, 1691, 1598, 1512, 1253, 908, 823 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₂₄F₂O₂Na 429.1637; Found 429.1639.

Column chromatography with PE/CH₂Cl₂ (20/1, v/v) afforded product **5i** in 74% yield (50.7 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.58 (m, 2H), 7.45-7.41 (m, 3H), 7.26-7.17 (m, 5H), 1.63 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 191.1 (t, *J* = 30.5 Hz, 1C), 140.9 (t, *J* = 2.4 Hz, 1C), 134.2 (t, *J* = 2.0 Hz, 1C), 133.3, 129.8 (t, *J* = 4.0 Hz, 1C), 128.0 (t, *J* = 2.0 Hz, 1C), 127.3, 120.6 (t, *J* = 261.1 Hz, 1C), 44.5 (t, *J* = 21.0 Hz, 1C), 22.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -105.39 (s, 2F); IR (ATR): 1693, 1597, 1448, 1278, 1055, 908, 698, 608 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₇F₂O 275.1247; Found 275.1240.

Column chromatography with PE/CH₂Cl₂ (20/1, v/v) afforded product **5**I in 47% yield (32.2 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 7.2 Hz, 2H), **5**I 7.51-7.46 (m, 1H), 7.35-7.32 (m, 2H), 7.22-7.14 (m, 5H), 3.42-3.30 (m, 1H), 2.02-1.93 (m, 1H), 1.88-1.76 (m, 1H), 0.73 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 190.4 (t, *J* = 30.2 Hz, 1C), 135.2 (d, *J* = 4.5 Hz, 1C), 133.9, 133.0 (t, *J* = 2.5 Hz, 1C), 129.82 (t, *J* = 3.5 Hz, 1C), 129.8, 128.5, 128.4, 127.7, 119.5 (t, *J* = 257.5 Hz, 1C), 51.7 (t, *J* = 21.4 Hz, 1C), 21.3 (t, *J* = 4.1 Hz, 1C), 11.71; ¹⁹F NMR (376 MHz, CDCl₃): δ -103.42 (d, *J* = 272.8 Hz), -105.08 (d, *J* = 272.8 Hz); IR (ATR): 1705, 1450 1184, 912, 700, 688 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₇F₂O 275.1247; Found 275.1240.

3. Transformation of products

To a stirred solution of 3a (61.1 mg, 0.15 mmol) in the mixed solvent of THF and H₂O (1.5 mL, 9:1, v/v) was added NaBH₄ (28.4 mg, 0.75 mmol). The resulting mixture was stirred at room temperature until full consumption of 3a by TLC analysis (about 1 h), and then quenched by saturated NH₄Cl (aq.). The mixture was extracted with EtOAc (6 mL \times 3), the combined organic layer was washed with brine, and dried over Na₂SO₄, filtered, and concentrated under vacuo. The obtained crude residue was purified by column chromatography (PE/EtOAc = 5/1, v/v) to give the corresponding alcohol 6 in 78% yield (47.8 mg) as white solid (m.p. 149-151 °C). ¹H and ¹⁹F NMR analysis of the crude mixture revealed that the dr value was 5.6:1. The related configuration of the major isomer of product 6 was determined by its X-ray crystallographic structure. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.7 Hz, 2H), 7.67 (d, J = 7.2 Hz, 1H), 7.35 (td, J = 7.8, 1.2 Hz, 1H), 7.29 (s, 5H), 7.13 (t, J = 7.6 Hz, 1H), 6.95-6.91 (m, 2H), 6.86 (d, J = 7.8 Hz, 1H), 5.57 (s, 1H), 4.99 (ddd, J = 19.9, 3.6, 2.0 Hz, 1H), 3.81 (s, 3H), 3.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.8 (dd, J = 8.4, 2.5 Hz, 1C), 159.6, 143.2, 136.4, 129.4 (d, J = 1.7 Hz, 1C), 129.2, 128.5, 127.8, 127.7 (d, J = 3.0 Hz, 1C), 127.2 (d, J = 4.8 Hz, 1C), 125.3 (d, J = 6.2 Hz, 1C), 123.4, 120.2 (dd, J = 260.0 Hz)Hz, 256.6 Hz, 1C), 114.2, 108.9, 73.9 (dd, *J* = 30.5, 23.1 Hz, 1C), 62.9 (dd, *J* = 27.8, 23.9 Hz, 1C), 55.3 (d, J = 3.1 Hz, 1C), 26.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -101.42 (d, J = 265.5 Hz, 1F), -114.51 (d, J = 265.5 Hz, 1F); HRMS (ESI-TOF) m/z: $[M+Na]^+$ Calcd for C₂₄H₂₁F₂NO₃Na 432.1387; Found 432.1395.

To a stirred solution of 3a (41.1 mg, 0.10 mmol) in THF (2.5 mL) was added LiAlH₄ (20.0 mg,

0.5 mmol) at 0 °C. The resulting mixture was stirred at the same temperature until full consumption of **3a** by TLC analysis (about 9 h), and then quenched by saturated NaCl (aq.). The mixture was extracted with EtOAc (6 mL × 3), the combined organic layers were washed with brine, and dried over Na₂SO₄, filtered, and concentrated under vacuo. The obtained crude residue was purified by column chromatography (PE/EtOAc = 30/1, v/v) to give tricyclic product **7** in 89% yield (35.2 mg) as colorless oil. ¹H and ¹⁹F NMR analysis of the crude mixture revealed that the dr value was 16:1. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, *J* = 8.9, 1.4 Hz, 1H), 7.26-7.15 (m, 5H), 7.03-7.01 (m, 2H), 6.90-6.87 (m, 2H), 6.71 (td, *J* = 7.5, 1.0 Hz, 1H), 6.62 (d, *J* = 7.8 Hz, 1H), 5.83 (s, 1H), 5.27 (dd, *J* = 16.8, 6.8 Hz, 1H), 3.78 (s, 3H), 3.16 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 159.1, 149.7, 134.6 (d, *J* = 4.2 Hz, 1C), 129.3, 128.5, 128.1, 127.83, 127.76 (d, *J* = 1.9 Hz, 1C), 127.6 (d, *J* = 3.4 Hz, 1C), 127.5 (t, *J* = 2.3 Hz, 1C), 127.0 (dd, *J* = 210.2, 200.8 Hz, 1C), 126.8, 119.0, 113.9, 107.9, 102.1 (d, *J* = 6.9 Hz, 1C), 83.9 (dd, *J* = 26.8, 20.5 Hz, 1C), 62.9 (dd, *J* = 19.1, 17.4 Hz, 1C), 55.3, 31.5; ¹⁹F NMR (376 MHz, CDCl₃): δ -89.40 (d, *J* = 232.0 Hz, 1F), -107.52 (d, *J* = 232.0 Hz, 1F); IR (ATR): 2974, 2358, 1710, 1253, 1047, 823 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₄H₂₁F₂NO₂Na 416.1433; Found 416.1422.

To a solution of compound **31** (66.3 mg, 0.15 mmol, 1.0 equiv) in the mixed solvent of CH₂Cl₂ and HFIP (3 mL, 2:1, v/v) was added *m*-chloroperoxybenzoic acid (*m*-CPBA, 154.5 mg, 0.75 mmol, 85 wt%, 5.0 equivs) and phosphate buffer (0.15 mL, pH = 7.6) subsequently.³ The resulting mixture was stirred at room temperature until full consumption of **31** by TLC analysis (about 6 h), then saturated NaHCO₃ (aq.) was added to quench the reaction. After extracting with CH₂Cl₂ (6 mL × 3), the combined organic layer was washed with brine, then dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude residue was purified by column chromatography (PE/EtOAc = 4/1, v/v) to give the desired ester **8** in 73% yield (49.6 mg) as yellow solid (m.p. 134-136 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.9 Hz, 2H), 7.68 (d, *J* = 7.5 Hz, 1H), 7.47 (td,

³ Kobayashi, S.; Tanaka, H.; Amii, H.; Uneyama, K. Tetrahedron. 2003, 59, 1547

J = 7.8 Hz, 1.1 Hz, 1H), 7.23 (td, J = 7.7 Hz, 0.8 Hz, 1H), 6.92-6.89 (m, 3H), 6.79-6.75 (m, 2H), 6.58-6.54 (m, 2H), 3.79 (s, 3H), 3.74 (s, 3H), 3.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.7 (d, J = 6.4 Hz, 1C), 161.0 (t, J = 33.8 Hz, 1C), 159.9, 157.8, 144.5, 142.8, 130.3 (d, J = 2.8 Hz, 1C), 127.4, 124.4 (d, J = 4.2 Hz, 1C), 123.1 (d, J = 1.7 Hz, 1C), 122.7, 121.3, 114.5, 114.1 (t, J = 263.0 Hz, 1C), 113.8, 108.9, 58.3 (t, J = 23.1 Hz, 1C), 55.5 (d, J = 3.2 Hz, 1C), 55.2 (d, J = 3.4 Hz, 1C), 26.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -106.13 (d, J = 265.3 Hz, 1F), -106.95 (d, J = 265.4 Hz, 1F); IR (ATR): 2360, 1722, 1608, 1500, 1257, 1087, 1051, 881, 678 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₅H₂₂F₂NO₅ 454.1466; Found 454.1481.

To a stirred solution of **8** (46.0 mg, 0.1 mmol) in EtOH (1.0 mL) was added MeNH₂ (150.7 mg, 2.0 mmol, 37% in EtOH) at 0 °C. The resulting mixture was stirred at room temperature until full consumption of **8** by TLC analysis. The reaction mixture was concentrated under vacuo, and then purified by column chromatography (PE/EtOAc = 5/1, v/v) to give the fluorinated amide **9** in 99% yield (35.7 mg) as white solid (m.p. 133-135 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 7.2 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.88-6.85 (m, 3H), 6.71 (s, 1H), 3.77 (s, 3H), 3.23 (s, 3H), 2.65 (d, *J* = 4.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.8 (d, *J* = 8.2 Hz, 1C), 162.7 (t, *J* = 28.8 Hz, 1C), 159.7, 144.2, 130.0 (d, *J* = 2.3 Hz), 129.7, 126.8, 125.8 (d, *J* = 5.1 Hz, 1C), 124.0 (d, *J* = 3.1 Hz, 1C), 122.5, 115.4 (dd, *J* = 339.0, 209.8 Hz, 1C), 113.8, 108.9, 58.8 (t, *J* = 21.6 Hz), 55.2, 26.7, 26.0; ¹⁹F NMR (376 MHz, CDCl₃): δ -104.14 (d, *J* = 264.0 Hz, 1F), -105.98 (d, *J* = 264.0 Hz, 1F); IR (ATR):2974, 2358, 1608, 1290, 1257, 1091, 756 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₉H₁₈F₂N₂O₃Na 383.1178; Found 383.1187.

To a stirred solution of 8 (46.0 mg, 0.1 mmol) in EtOH (1.0 mL) was added MeNH₂ (151.2 mg, 2.0 mmol, 37% in EtOH) at 0 °C. The resulting mixture was stirred at room temperature until full consumption of 8 by TLC analysis. The reaction solution was concentrated under vacuo, and used directly for the next step without purification. To a stirred solution of above crude residue in THF (2.5 mL) was added LiAlH₄ (50.0 mg, 1.3 mmol). The resulting mixture was stirred at 0 °C until full consumption of intermediate by TLC analysis (about 2 h), and then quenched by saturated NaCl (aq.). The mixture was extracted with EtOAc (6 mL \times 3), the combined organic layer was washed with brine, then dried over Na₂SO₄, filtered, and concentrated under vacuo. The crude residue was then purified by column chromatography (PE/EtOAc = 5/1, v/v) to give the tricyclic pyrroloindoline 10 in 77% yield (26.4 mg) as white solid (m.p. 148-150 °C). ¹H and ¹⁹F NMR analysis of the crude mixture revealed that the dr value was above 20:1. ¹H NMR (400 MHz, CDCl₃): δ 7.47 (dd, J = 7.6, 3.2 Hz, 1H), 7.32 (dd, J = 8.8, 1.2 Hz, 2H), 7.23 (t, J = 7.6 Hz, 1H), 6.88-6.81 (m, 3H), 6.53 (d, J =8.0 Hz, 1H), 5.30 (s, 1H), 3.77 (s, 3H), 3.19 (s, 3H), 3.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.6 (t, J = 28.6 Hz, 1C), 159.4, 147.7, 130.2, 128.2 (d, J = 1.5 Hz, 1C), 128.0 (d, J = 5.7 Hz, 1C), 126.8, 126.5 (d, J = 3.8 Hz, 1C), 119.4, 116.7 (dd, J = 246.3, 257.2 Hz, 1C), 114.1, 108.4, 85.5 (d, J = 7.8 Hz, 1C), 59.9 (dd, J = 18.1, 5.2 Hz, 1C), 55.2, 34.7, 28.6; ¹⁹F NMR (376 MHz, CDCl₃): δ -97.30 (d, J = 266.6 Hz, 1F), -116.71 (d, J = 266.2 Hz, 1F); IR (ATR): 2974, 2358, 1714, 1604, 1514, 1259, 839 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₉H₁₈F₂N₂O₂Na 367.1229; Found 367.1219.

4. Control experiment and a proposed reaction pathway

To gain some insight into the reaction mechanism, the enantioenriched 3-hydroxyoxindole (*R*)-2g was chosen to react with 1a under the standard conditions, which afforded the desired product 3g in racemic form. Based on this result, and control experiments shown in Table 1 of main text, together with previous reports,⁴ we temporarily proposed that the reaction was initiated by the dehydration of tertiary alcohols, under the action of *in-situ* generated HOTf from the hydrolysis of Fe(OTf)₃, to produce a reactive carbocation intermediate which subsequently reacted with difluoroenoxysilanes 1 to give the targets.

General procedure: The 3-hydroxyoxindole (*R*)-**2g** (72% ee) was synthesized according to the reported method.⁵ Under an atmosphere of N₂, to a 25 mL flame-dried Schleck tube were added (*R*)-**2g** (69.5 mg, 0.25 mmol, 72% ee) and Fe(OTf)₃ (0.0125 mmol, 6.3 mg, 5.0 mol%), followed by the addition of anhydrous CH₂Cl₂ (2.5 mL). After being stirred at room temperature for about 5 min, difluoroenoxysilane **1a** (0.375 mmol, 1.5 equivs) was added. The resulting mixture was stirred at room temperature until full conversion of (*R*)-**2g** by TLC analysis. The reaction mixture was then concentrated under reduced pressure to give the residue, which was purified by silica gel column chromatography to afford the products **3g** with 42% yield (44.0 mg) as white solid, using PE/EtOAc (5/1, v/v) as eluent. HPLC analysis [Chiralpak AS-H, iPrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r = 11.68 min, t_r = 14.73 min] indicated the enantioselectivity of product **3g** was 0%.

⁴ Zhu, F.; Zhou, F.; Cao, Z.-Y.; Wang, C.; Zhang, Y.-X.; Wang, C.-H.; J. Zhou, Synthesis, 2012, 44, 3129.

⁵ Chauhan, P.; Chimni, S. S. Chem. Eur. J. 2010, 16, 7709.

5. X-ray crystallographic data of 6 (CCDC 1939141)

Data intensity of **6** was collected using a Bruker SMART APEX-II (Mo radiation) at 293 K in a nitrogen stream. The X-ray condition of was 50 kV × 30 mA. Data collection and reduction were done by using the Bruker ApexII software package. The structures were solved by direct methods and refined by fullmatrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for major isomer of **6**: C₂₄H₂₁F₂NO₃, T = 100(10) K, monoclinic, space group P2₁/c, a = 18.4223(2) Å, b = 6.41470(10) Å, c = 16.93010(10) Å, α = 90 deg, β = 102.9240(10) deg, γ = 90 deg, V = 1950.01(4) Å³. Z = 4, dcalc = 1.395 mg/m³. Total number of reflections 42980 (R_{int} = 0.0441), R₁ = 0.0355, wR₂ = 0.0824 (all data), GOF = 1.043, and 274 parameters.

 Table S1. Crystal data and structure refinement for 6.

Identification code	6
Empirical formula	$C_{24}H_{21}F_2NO_3$
Formula weight	409.42
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	18.4223(2)
b/Å	6.41470(10)
c/Å	16.93010(10)
α/°	90
β/°	102.9240(10)
γ/°	90
Volume/Å ³	1950.01(4)
Z	4
$\rho_{calc}g/cm^3$	1.395

µ/mm ⁻¹	0.872
F(000)	856.0
Crystal size/mm ³	$0.36 \times 0.28 \times 0.12$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	10.722 to 149.014
Index ranges	$-23 \le h \le 22, -7 \le k \le 7, -20 \le l \le 21$
Reflections collected	42980
Independent reflections	$3948 [R_{int} = 0.0441, R_{sigma} = 0.0208]$
Data/restraints/parameters	3948/0/274
Goodness-of-fit on F ²	1.043
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0334, wR_2 = 0.0810$
Final R indexes [all data]	$R_1 = 0.0355, wR_2 = 0.0824$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.23

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for **6**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ}tensor.

1 arannete	$\frac{13}{13} \left(\frac{13}{10} \times 10^{\circ} \right) \frac{101}{101} 0. 0$	beq is defined as 1/3 of of th	e trace of the offilogolia	
Atom	X	у	Z.	U(eq)
F1	2188.3(4)	2934.1(11)	2664.6(4)	19.12(16)
F2	2591.1(3)	5954.0(11)	3166.1(4)	17.83(15)
01	1336.3(4)	5985.2(13)	3986.8(5)	17.25(18)
O2	5352.6(5)	-767.9(16)	3681.7(6)	31.3(2)
O3	1901.4(4)	-14.4(13)	3963.5(5)	18.64(18)
N1	2133.0(5)	1903.1(15)	5139.5(6)	16.4(2)
C1	4098.9(7)	2874(2)	4330.0(8)	22.7(3)
C2	4737.7(7)	1881(2)	4224.8(9)	28.1(3)
C3	4690.8(6)	117(2)	3738.9(7)	21.0(3)
C4	3995.8(6)	-629.9(19)	3353.6(7)	18.1(2)
C5	3358.1(6)	389.7(18)	3460.9(7)	17.0(2)
C6	3392.8(6)	2147.0(18)	3950.5(6)	14.8(2)
C7	2674.8(6)	3170.5(17)	4096.0(6)	14.2(2)
C8	2811.8(6)	4644.7(18)	4817.3(6)	14.8(2)
C9	3172.0(6)	6541.6(19)	4954.1(7)	16.9(2)
C10	3214.6(6)	7549.6(19)	5696.5(7)	19.5(2)
C11	2893.3(7)	6659(2)	6282.9(7)	21.3(3)
C12	2523.0(7)	4756(2)	6151.4(7)	19.7(2)
C13	2490.6(6)	3786.0(18)	5416.1(7)	15.8(2)
C14	2188.8(6)	1465.8(18)	4372.4(6)	14.7(2)
C15	5327.8(8)	-2645(2)	3228.1(10)	37.2(4)
C16	1681.4(7)	705(2)	5580.5(7)	22.1(3)

C17	2209.5(6)	4216.2(17)	3318.4(6)	14.5(2)
C18	1394.1(6)	4754.0(18)	3312.5(6)	15.0(2)
C19	982.8(6)	5643.8(18)	2502.2(7)	16.0(2)
C20	434.0(6)	4435(2)	2009.0(7)	19.0(2)
C21	24.8(6)	5213(2)	1276.6(7)	22.9(3)
C22	161.4(7)	7207(2)	1032.2(7)	24.1(3)
C23	707.7(7)	8424(2)	1518.7(7)	22.5(3)
C24	1117.5(6)	7652.7(19)	2250.9(7)	18.5(2)

Table S3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **6** The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Tactor C	лропоні тако	3 the form. -2π [II		U U12+].		
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U_{13}	U ₁₂
F1	22.2(3)	21.4(4)	12.8(3)	-3.9(3)	2.0(2)	4.2(3)
F2	16.9(3)	17.8(4)	19.3(3)	4.0(3)	5.2(2)	-2.6(3)
O1	19.4(4)	16.3(4)	17.2(4)	-2.3(3)	6.5(3)	-1.3(3)
O2	16.7(4)	30.1(5)	47.6(6)	-17.6(4)	8.1(4)	1.1(4)
O3	18.4(4)	16.0(4)	20.9(4)	-1.3(3)	3.2(3)	-3.2(3)
N1	17.5(5)	16.6(5)	16.0(4)	1.8(4)	5.6(4)	-0.4(4)
C1	18.7(6)	21.6(6)	27.5(6)	-10.0(5)	4.4(5)	-1.6(5)
C2	14.8(6)	29.6(7)	38.7(7)	-14.3(6)	3.3(5)	-2.6(5)
C3	17.1(6)	20.8(6)	26.2(6)	-2.7(5)	7.2(5)	1.5(5)
C4	20.0(6)	15.6(6)	18.6(5)	-2.2(4)	4.3(4)	0.1(4)
C5	16.3(5)	16.4(6)	17.5(5)	-1.0(4)	2.0(4)	-1.6(4)
C6	15.9(5)	15.0(6)	14.0(5)	1.3(4)	4.2(4)	-0.1(4)
C7	14.4(5)	13.7(6)	14.3(5)	-0.4(4)	3.0(4)	-0.7(4)
C8	13.4(5)	17.3(6)	13.4(5)	-0.2(4)	2.1(4)	2.2(4)
C9	14.5(5)	18.5(6)	17.3(5)	-1.0(4)	2.6(4)	0.2(4)
C10	16.7(5)	17.6(6)	21.8(6)	-4.1(5)	-0.6(4)	0.9(4)
C11	22.5(6)	25.2(7)	14.5(5)	-4.4(5)	0.2(4)	6.0(5)
C12	22.3(6)	23.1(6)	14.1(5)	2.0(4)	4.8(4)	5.2(5)
C13	14.4(5)	16.7(6)	15.8(5)	1.9(4)	2.0(4)	2.4(4)
C14	12.6(5)	14.5(6)	16.5(5)	2.3(4)	2.4(4)	2.1(4)
C15	24.5(7)	31.4(8)	56.2(9)	-19.9(7)	10.0(6)	4.4(6)
C16	21.8(6)	23.9(7)	23.0(6)	5.5(5)	10.0(5)	-1.4(5)
C17	17.2(5)	13.1(5)	13.7(5)	-1.9(4)	4.5(4)	-2.4(4)
C18	15.2(5)	14.1(6)	15.8(5)	-1.0(4)	3.8(4)	-1.3(4)
C19	13.5(5)	18.4(6)	16.4(5)	-1.4(4)	4.2(4)	1.7(4)
C20	15.3(5)	20.4(6)	21.7(6)	-2.3(5)	5.1(4)	-0.8(4)
C21	14.7(5)	31.7(7)	20.9(6)	-4.9(5)	0.9(4)	-0.8(5)
C22	18.5(6)	34.6(7)	18.3(5)	2.3(5)	2.2(4)	6.3(5)

C23	22.3(6)	22.6(7)	23.0(6)	4.3(5)	6.1(5)	3.3(5)
C24	17.5(5)	18.7(6)	18.8(5)	-0.6(4)	3.1(4)	-0.8(4)

Table S4. Bond Lengths for 6.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C17	1.3725(12)	C7	C14	1.5504(15)
F2	C17	1.3727(13)	C7	C17	1.5535(15)
01	C18	1.4116(13)	C8	C9	1.3805(16)
O2	C3	1.3677(14)	C8	C13	1.3963(15)
O2	C15	1.4233(16)	C9	C10	1.4000(16)
O3	C14	1.2236(14)	C10	C11	1.3877(17)
N1	C13	1.4050(15)	C11	C12	1.3916(18)
N1	C14	1.3549(14)	C12	C13	1.3811(16)
N1	C16	1.4552(14)	C17	C18	1.5392(15)
C1	C2	1.3842(17)	C18	C19	1.5222(15)
C1	C6	1.3960(16)	C19	C20	1.3940(16)
C2	C3	1.3902(18)	C19	C24	1.3966(17)
C3	C4	1.3859(17)	C20	C21	1.3916(17)
C4	C5	1.3916(16)	C21	C22	1.3843(19)
C5	C6	1.3922(16)	C22	C23	1.3895(18)
C6	C7	1.5449(15)	C23	C24	1.3902(16)
C7	C8	1.5203(15)			

Table S5. Bond Angles for 6.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C3	O2	C15	117.89(10)	C10	C11	C12	121.27(11)
C13	N1	C16	124.21(10)	C13	C12	C11	117.39(11)
C14	N1	C13	111.52(9)	C8	C13	N1	109.91(10)
C14	N1	C16	123.86(10)	C12	C13	N1	127.60(10)
C2	C1	C6	121.23(11)	C12	C13	C8	122.47(11)
C1	C2	C3	120.58(11)	03	C14	N1	125.94(10)
O2	C3	C2	116.19(11)	03	C14	C7	125.64(10)
O2	C3	C4	124.58(11)	N1	C14	C7	108.42(9)
C4	C3	C2	119.24(11)	F1	C17	F2	104.99(8)
C3	C4	C5	119.61(11)	F1	C17	C7	109.61(9)
C4	C5	C6	122.05(10)	F1	C17	C18	106.11(8)
C1	C6	C7	121.84(10)	F2	C17	C7	107.53(8)
C5	C6	C1	117.29(10)	F2	C17	C18	110.90(9)

 C5	C6	C7	120.81(10)	C18	C17	C7	117.06(9)
C6	C7	C14	108.73(9)	01	C18	C17	111.73(9)
C6	C7	C17	112.22(9)	01	C18	C19	114.00(9)
C8	C7	C6	113.47(9)	C19	C18	C17	112.22(9)
C8	C7	C14	101.52(8)	C20	C19	C18	118.65(10)
C8	C7	C17	111.91(9)	C20	C19	C24	119.03(10)
C14	C7	C17	108.29(8)	C24	C19	C18	122.28(10)
C9	C8	C7	132.08(10)	C21	C20	C19	120.66(12)
C9	C8	C13	119.46(10)	C22	C21	C20	119.95(11)
C13	C8	C7	108.46(10)	C21	C22	C23	119.87(11)
C8	C9	C10	119.08(11)	C22	C23	C24	120.35(12)
 C11	C10	C9	120.32(11)	C23	C24	C19	120.14(11)

Table S6. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **6**.

Atom	X	у	Z.	U(eq)
H1	1515.45	7139.97	3946.38	26
H1A	4141.02	4047.89	4659.57	27
H2	5202.23	2397.88	4481.44	34
H4	3955.88	-1805.69	3025.3	22
H5	2894.3	-118.47	3197.25	20
H9	3383.47	7141.56	4558.52	20
H10	3459.46	8822.57	5797.15	23
H11	2926.08	7346.14	6773.23	26
H12	2305.9	4160.87	6543.43	24
H15A	5078.01	-2391.34	2675.22	56
H15B	5062.66	-3691.69	3455.32	56
H15C	5825.96	-3117.33	3247.76	56
H16A	1959.85	460.14	6123.37	33
H16B	1549.46	-604.75	5312.73	33
H16C	1237.06	1470.49	5596.41	33
H18	1149.61	3427.63	3376.51	18
H20	340.38	3094.89	2170.9	23
H21	-340.14	4394.7	951.66	28
H22	-112	7729.96	543.35	29
H23	799.76	9762.63	1353.7	27
H24	1482.11	8476.03	2573.96	22

6. ¹H, ¹³C and ¹⁹F NMR spectra and HPLC spectra

¹⁹F NMR of Compound 3a (376 MHz, CDCl₃)

¹³C NMR of Compound 3b (100 MHz, CDCl₃)

¹⁹F NMR of Compound 3b (376 MHz, CDCl₃)

¹⁹F NMR of Compound 3c (376 MHz, CDCl₃)

¹⁹F NMR of Compound 3d (376 MHz, CDCl₃)

S36

¹⁹F NMR of Compound 3e (376 MHz, CDCl₃)

¹H NMR of Compound 3f (400 MHz, CDCl₃)

¹³C NMR of Compound 3f (500 MHz, CDCl₃)

¹H NMR of Compound 3g (400 MHz, CDCl₃)

¹³C NMR of Compound 3g (100 MHz, CDCl₃)

¹⁹F NMR of Compound 3g (376 MHz, CDCl₃) GOY-GC-85-19F.22.fid -96.23 -97.04 -98.99 -99.81 $19F{-}400M$ — -96.23 ----98.99 ΗN Ò Ô -96.0 Т -97.0 -98.0 -99.0 -100.0 3g fl (ppm) 10 -10 -20 -30 0 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR of Compound 3h (400 MHz, CDCl₃)

¹⁹F NMR of Compound 3h (376 MHz, CDCl₃)

¹H NMR of Compound 3i (400 MHz, CDCl₃)

¹³C NMR of Compound 3i (100 MHz, CDCl₃)

¹⁹F NMR of Compound 3i (376 MHz, CDCl₃)

¹⁹F NMR of Compound 3j (376 MHz, CDCl₃)

¹H NMR of Compound 3k (400 MHz, CDCl₃)

¹³C NMR of Compound 3k (100 MHz, CDCl₃)

fl (ppm)

¹H NMR of Compound 3l (400 MHz, CDCl₃)

¹⁹F NMR of Compound 3l (376 MHz, CDCl₃)

¹H NMR of Compound 3m (400 MHz, CDCl₃)

S61

¹⁹F NMR of Compound 3m (376 MHz, CDCl₃)

¹H NMR of Compound 3n (400 MHz, CDCl₃)

¹³C NMR of Compound 3n (125 MHz, CDCl₃)

¹⁹F NMR of Compound 3n (376 MHz, CDCl₃)

¹H NMR of Compound 30 (400 MHz, CDCl₃)

S67

¹⁹F NMR of Compound 30 (376 MHz, CDCl₃)

¹H NMR of Compound 3p (400 MHz, CDCl₃)

¹³C NMR of Compound 3p (100 MHz, CDCl₃)

¹⁹F NMR of Compound 3p (376 MHz, CDCl₃)

¹H NMR of Compound 5a (400 MHz, CDCl₃)

S73

¹⁹F NMR of Compound 5a (376 MHz, CDCl₃)

HYJ-HB-53-19F-Re.22.fid 19F-400M

¹³C NMR of Compound 5b (100 MHz, CDCl₃)

¹⁹F NMR of Compound 5b (376 MHz, CDCl₃)

S78

¹³C NMR of Compound 5c (100 MHz, CDCl₃)

¹⁹F NMR of Compound 5c (376 MHz, CDCl₃)

¹³C NMR of Compound 5e (100 MHz, CDCl₃)

¹⁹F NMR of Compound 5e (376 MHz, CDCl₃)

¹⁹F NMR of Compound 5f (376 MHz, CDCl₃)

¹H NMR of Compound 5h (400 MHz, CDCl₃)

¹⁹F NMR of Compound 5h (376 MHz, CDCl₃)

¹³C NMR of Compound 5i (100 MHz, CDCl₃)

¹⁹F NMR of Compound 5i (376 MHz, CDCl₃)

GOY-GG-52-1-P.11.fid 19F-400M

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR of Compound 5k (400 MHz, CDCl₃)

¹³C NMR of Compound 5k (100 MHz, CDCl₃)

¹⁹F NMR of Compound 5k (376 MHz, CDCl₃)

06.99----

¹H NMR of Compound 5l (400 MHz, CDCl₃)

¹³C NMR of Compound 5l (125 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR of Compound 6 (400 MHz, CDCl₃)

¹⁹F NMR of Compound 6 (376 MHz, CDCl₃)

¹H NMR of Compound 7 (400 MHz, CDCl₃)

¹³C NMR of Compound 7 (125 MHz, CDCl₃)

¹⁹F NMR of Compound 7 (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) ¹H NMR of Compound 8 (400 MHz, CDCl₃)

¹³C NMR of Compound 8 (100 MHz, CDCl₃)

¹⁹F NMR of Compound 8 (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR of Compound 9 (400 MHz, CDCl₃)

G0Y-GC9165-STH1-13C.+1.fid 13C-40042.5 13C-40045.5 13C-4005.5 13C-40045.5 13C-4005.5 10C-4005.5 10C-4005 144.16 $\left|\begin{array}{c} 130.03\\ 130.00\\ 129.70\\ 125.83\\ 125.83\\ 125.78\\ 125.78\\ 125.39\\ 123.96\\ 123.96\\ 123.96\\ 112.49\\ 118.16\\ 115.57\\ 115.57\\ 115.57\\ 115.57\\ 112.93\\ 112.93\\ 112.93\\ 108.91\\ 108.91\end{array}\right|$ $\overbrace{76.74}^{77.37}$ $\sim rac{26.69}{26.02}$ 59.03 58.82 58.58 58.58 $\begin{array}{c}
 130.03 \\
 \hline
 130.00 \\
 \hline
 129.70
 \end{array}$ $< \frac{115.57}{115.52}$ \sim 126.83 $\swarrow 125.83 \\
\swarrow 125.78$ $< \frac{123.99}{123.96} - 122.49$ - 118.16 - 113.84 MeQ F NHMe O റ 9 130 128 126 124 122 120 118 116 114 112 fl (ppm) 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹³C NMR of Compound 9 (100 MHz, CDCl₃)

¹⁹F NMR of Compound 9 (376 MHz, CDCl₃)

¹H NMR of Compound 10 (400 MHz, CDCl₃)

¹³C NMR of Compound 10 (100 MHz, CDCl₃)

¹⁹F NMR of Compound 10 (376 MHz, CDCl₃)

The HPLC spectra of *rac*-3g (synthesized from *rac*-2g)

<Sample Information>

Sample Name Sample ID	: GOY-GC-90-RAC-ASH-8020-1.0-230			
Data Filename Method Filename	GOY-GC-90-RAC-ASH-8020-1.0-231.lcd : GY-1.0.lcm			
Batch Filename Vial # Injection Volume Date Acquired Date Processed	: : 1-1 : 20 ul	Sample Type	: Unknown	
	: 6/6/2019 2:34:02 PM : 9/29/2020 9:21:33 AM	Acquired by Processed by	: System Administrator : System Administrator	

<Chromatogram>

<Peak Table>

Detector A Channel 2 230nm

Peak#	Ret. Time	Area	Height	Conc.
1	11.639	10074719	246846	49.984
2	14.785	10081332	127147	50.016
Total		20156051	373994	

The HPLC spectra of 3g (synthesized from (*R*)-2g (72% ee))

<Sample Information>

Sample Name Sample ID	: GOY-GC-90-workup-ASY-ASH-8020-1.0-230			
Data Filename Method Filename Batch Filename Vial #	GOY-GC-90-workup-ASY-ASH-8020-1.0-230.lcd : GY-1.0.lcm			
	: : 1-1 : 20 uL	Sample Type	: Unknown	
	: 6/6/2019 9:09:42 PM : 9/29/2020 9:24:51 AM	Acquired by Processed by	: System Administrator : System Administrator	

<Chromatogram>

<Peak Table>

Detector A Channel 2 230nm				
Peak#	Ret. Time	Area	Height	Conc.
1	11.681	11291092	258311	50.272
2	14.730	11169028	137259	49.728
Total		22460119	395570	