Supporting Information

Human 15-lipoxygnenase-2 role in the biosynthesis of the lipoxin intermediate, $5 \mathrm{~S}, 15 \mathrm{~S}-\mathrm{diHpETE}$, implicated with altered positional specificity of human 15-lipoxygenase-1

Steven C. Perry ${ }^{1}$, Thomas Horn ${ }^{1 \%}$, Benjamin E. Tourdot ${ }^{2}$, Adriana Yamaguchi ${ }^{2}$, Chakrapani Kalyanaraman ${ }^{3}$, William S. Conrad ${ }^{1}$, Oluwayomi Akinkugbe ${ }^{1}$, Michael Holinstat ${ }^{2}$, Matthew P. Jacobson ${ }^{3}$, Theodore R. Holman ${ }^{1 *}$

${ }^{1}$ Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
${ }^{2}$ Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
${ }^{3}$ Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94158, United States
${ }^{\text {\%Current address: Kampstreet 34, } 50354 \text { Hürth, North Rhine-Westphalia, Germany }}$
*To whom correspondence should be addressed: Theodore R. Holman, Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064; holman@ucsc.edu; Tel.: +1(831) 459-5884; fax: +1(831)459-2935

FUNDING: NIH R01 GM105671 (MH and TRH), NIH R01 HL11405 (MH and TRH), NIH R35 GM131835 (MH and TRH) and NIH K99HL136784 (BET).

Disclaimer: MPJ is a consultant to and shareholder of Schrodinger LLC, which licenses the software used in this work.

Figure S1. SDS-PAGE
Lane 1: Protein standards.
Lane 2: 380 ugs total protein ammonium sulfate h5-LOX fraction.
Lane 3: 190 ugs total protein ammonium sulfate h5-LOX fraction.
Lane 4: 95 ugs total protein ammonium sulfate h5-LOX fraction.
Lane 5: 48 ugs total protein ammonium sulfate h5-LOX fraction.
Lane 6: 24 ugs total protein ammonium sulfate h5-LOX fraction.
Lane 7: 5 ugs Hig-tag purified Stable h5-LOX.
Lane 8: 2.5 ugs Hig-tag purified Stable h5-LOX.
Lane 9: 1.3 ugs Hig-tag purified Stable h5-LOX.
Lane 10: 0.61 ugs Hig-tag purified Stable h5-LOX.
The h5-LOX protein band is indicated on the SDS-PAGE. Measuring band density with ImageJ software, h5-LOX was estimated to be approximately 1% of the total protein based on a Stable h5-LOX standard. From this estimation, the kinetic parameters were calculated. It should also be emphasized that we assumed that 100% of the h5-LOX was loaded with iron, therefore, the estimation of active h5-LOX concentration could be lower.

Figure S2. h15-LOX-1 primarily synthesizes 5S,12S-diHETE from 5S-HETE. (A) Selected ion chromatogram at m / z of 335 . Larger peak at 8.5 min is $5 \mathrm{~S}, 12 \mathrm{~S}$-diHETE. Smaller peak at 9.5 min is $5 \mathrm{~S}, 15 \mathrm{~S}-\mathrm{diHETE}$. (B) MS/MS spectra of $5 \mathrm{~S}, 15 \mathrm{~S}$-diHETE prepared from reaction of h15-LOX-1 with 5 S -HETE. (C) MS/MS spectra of $5 \mathrm{~S}, 15 \mathrm{~S}$ diHETE prepared from reaction of h15-LOX-1 with 5S-HETE. Samples were reduced to form the di-alcohol products

Figure S3. Chiral chromatograms and UV-maxima of 5,12-diHETE and 5,15-diHETE isomers. The products formed by h15-LOX-1 and h15-LOX-2 from 5S-HETE and 5RHETE were analyzed using Chiral LC-MS/MS and UV-vis spectroscopy and compared to LTB_{4} and 6-trans-7-epi-LTB ${ }_{4}$ standards. All 5,12-diHETE isomers contained a central peak at $\sim 270 \mathrm{~nm}$, flanked by shoulders at $\sim 260 \mathrm{~nm}$ and $\sim 280 \mathrm{~nm}$, consistent with the presence of a conjugated triene. Shoulders of equal intensity at 281 nm and 261 nm are indicative of an EEZ configuration, while a more intense shoulder at 260 nm compared to 280 nm indicates the EZE configuration. 5,15-diHETE isomers contain two conjugated dienes separated by a methylene, indicated by a UV-maxima of 247 nm .

compound	stereochemistry	source	RT
5S,15S-diHETE	5(S),15(S)-6E,8Z,11Z,13E	standard	27.5 min
	5(S),15(S)-6E, 8Z, 11Z,13E	h5-LOX +15S-HETE	27.2 min
	5(S),15(S)-6E, 8Z, 11Z,13E	h12-LOX + 5S-HETE	27.9 min
	5(S),15(S)-6E, 8Z, 11Z,13E	h15-LOX-1+ 5S-HETE	27.9 min
	5(S),15(S)-6E, 8Z, 11Z,13E	h15-LOX-2+ 5S-HETE	27.8 min
5R, 15S-diHETE	5(R),15(S)-6E, $8 \mathrm{Z}, 11 \mathrm{Z}, 13 \mathrm{E}$	h15-LOX-2+ 5R-HETE	17.5 min
6-trans-12-epi-LTB ${ }_{4}$	5(S),12(S)-6E,8E, 10E,14Z	standard	11.6 min
LTB_{4}	5(S),12(R)-6Z, 8E, 10E, 14Z	standard	6.6 min
5R,12S-diHETE	5(R),12(S)-6E, 8Z, 10E, 14Z	h15-LOX-1+ 5R-HETE	5.5 min
5S,12S-diHETE	5(S),12(S)-6E, 8Z, 10E, 14Z	standard	4.2 min
	5(S),12(S)-6E, 8Z, 10E, 14Z	h5-LOX +12S-HETE	4.2 min
	5(S),12(S)-6E, 8Z, 10E, 14Z	h12-LOX + 5S-HETE	4.3 min
	5(S),12(S)-6E, 8Z, 10E, 14Z	h15-LOX-1+ 5S-HETE	4.2 min

Figure S4. 5,15-diHETE and 5,12-diHETE isomers produced through different LOX pathways were compared to 5S,15S-diHETE, $5 \mathrm{~S}, 12 \mathrm{~S}$-diHETE, LTB_{4} and 6 -trans-12-epi-LTB 4 standards using LC-MS/MS with a reverse-phase chiral column.

