Supporting information

Enhancement of lipid productivity of *Chlorella* sp. using light-converting red fluorescent films based on aggregation-induced emission

Tae Gyu Hwang^a, Ga-Yeong Kim^b, Jong-In Han^b, Suhyeon Kim^a, Jae Pil Kim^{a,*}

^a Lab. of Organic Photo-functional Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.

^b Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

*Corresponding author.

Table of contents

Figure S1. Relationship between optical density and dry cell weight in different culture conditions.	S3
Synthesis and characterization.	S3-5
Figure S2. ¹ H NMR spectrum of T2 in CDCl ₂ .	S5
Figure S3. ¹³ C NMR spectrum of T2 in CDCl ₂ .	S6
Figure S4. ¹ H NMR spectrum of D1 in CD ₂ Cl ₂ .	S6
Figure S5. ¹³ C NMR spectrum of D1 in CDCl ₃ .	S7
Figure S6. ¹ H NMR spectrum of M2 in CDCl ₃ .	S7
Figure S7. ¹³ C NMR spectrum of M2 in CDCl ₃ .	S8
Figure S8. MALDI-TOF mass spectrum of T2.	S 8
Figure S9. MALDI-TOF mass spectrum of D1.	S9
Figure S10. MALDI-TOF mass spectrum of M2.	S9
Figure S11. Elemental analysis of T2, D1, and M2.	S10
TDDFT calculation results of T2, D1, and M2.	S10-62

Figure S1. Relationship between optical density and dry cell weight in different culture conditions.

Synthesis and characterization.

A series of diketopyrrolopyrrole (DPP) compounds and triphenylamine (TPA) derivatives (MTPA-BO, BTPA-BO) were synthesized efficiently according to literature procedures. TPA-BO was purchased from Tokyo Chemical Industry (TCI) and was used as received. All other reagents were purchased from commercial suppliers and used as received without further purification. Synthesized DPP compounds were characterized using ¹H and ¹³C NMR, elemental analysis (EA), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass analysis. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III 500 spectrometer at 500 MHz in chloroform-*d* or dichloromethane-*d* with tetramethylsilane (TMS) as an internal standard. EA was performed with a Thermo Scientific Flash EA 1112 elemental analyzer. MALDI-TOF mass spectra were recorded on an Applied Biosystems Voyager-DE STR Biospectrometry Workstation using cyano-4-hydroxycinnamic acid (CHCA) as a matrix.

3,6-Bis(4'-(diphenylamino)-1,1'-biphenyl-4-yl)-2,5-dihexyl-2,5-dihydropyrrolo3,4-c pyrrole -1,4-dione (T2). A mixture of Pd(PPh₃)₄ (100 mg, 0.091 mmol), D6C (0.28 g, 0.46 mmol), and TPA-BO (0.40 g, 1.38 mmol) in dry THF (40 mL) was stirred for 30 min at room temperature under a nitrogen atmosphere. After increasing the temperature of the mixture to 60 °C, an aqueous solution of K₂CO₃ (3.65 M, 5 mL) was added dropwise and the resulting mixture was maintained at this temperature for 16 h. The reaction mixture was then poured into water and extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous MgSO₄ and then evaporated to dryness. The crude product was purified by column chromatography using CH₂Cl₂:hexane (3:1, v/v) as the eluent to obtain red crystals of T2 (0.35 g, 80% yield). ¹H NMR (500 MHz, CD₂Cl₂), δ (ppm): 7.88–7.89 (m, 4H), 7.73–7.75 (m, 4H), 7.55–7.57 (m, 4H), 7.26–7.30 (m, 8H), 7.11–7.14 (m, 12H), 7.04–7.07 (m, 4H), 3.78 (t, *J* = 7.5 Hz, 4H), 1.56–1.62 (m, 4H), 1.19–1.26 (m, 12H), 0.83 (d, *J* = 7 Hz, 6H). ¹³C NMR (125 MHz, CD₂Cl₂), δ (ppm): 163.13, 148.62, 148.23, 148.03, 143.56, 133.77, 129.91, 129.84, 128.30, 127.22, 127.14, 125.35, 123.90, 123.79, 110.40, 42.39, 31.82, 29.93, 26.91, 23.05, 14.31. MALDI-TOF MS: *m*/z calcd for C₆₆H₆₃N₄O₂: C, 84.04; H, 6.63; N, 5.94; O, 3.39. Found: C, 84.04; H, 6.62; N, 5.97; O, 3.38.

3-(4-bromophenyl)-6-(4'-(di([1,1'-biphenyl]-4-yl)amino)-[1,1'-biphenyl]-4-yl)-2,5-dihexyl-2,5-

dihydropyrrolo[*3*,*4-c*]*pyrrole-1*,*4-dione* (*D1*). D1 was prepared according to the procedure of T2, using BTPA-BO instead of TPA-BO to obtain orange crystals of D1 (126 mg, 29% yield). ¹H NMR (500 MHz, CD₂Cl₂), δ (ppm): 7.88–7.89 (d, *J* = 8.5 Hz , 2H), 7.76–7.77 (d, *J* = 8.5 Hz, 2H), 7.66–7.70 (m, 4H), 7.59–7.63 (m, 6H), 7.55–7.57 (d, *J* = 8.5 Hz, 4H), 7.41–7.44 (t, *J* = 7.75 Hz, 4H), 7.30-7.33(t, *J* = 7.5 Hz, 2H), 7.23-7.25(d, *J* = 8.5Hz, 6H), 3.77-3.78 (t, *J* = 7.75 Hz, 2H), 3.70-3.73 (t, *J* = 7.5 Hz, 2H), 1.52–1.57 (m, 8H), 1.19–1.24 (m, 10H), 0.80-0.83 (m, 4H). ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 163.00, 162.77, 149.06, 147.95, 146.77, 143.60, 140.72, 136.27, 133.89, 132.43, 130.31, 129.48, 128.99, 128.21, 128.13, 127.36, 127.20, 127.06, 126.94, 126.55, 125.76, 125.02, 124.04, 110.40, 109.80, 42.34, 42.14, 31.42, 29.65, 26.62, 26.60, 22.67, 14.17. MALDI-TOF MS: *m/z* calcd for C₆₀H₅₇BrN₃O₂ (100%, [(M+H)⁺]), 930.36 ; found 930.3344. Elemental analysis: Calcd for C₆₀H₅₆BrN₃O₂: C, 77.40; H, 6.06; Br, 8.58; N, 4.51; O, 3.44. Found: C, 77.23; H, 6.17; N, 4.53; O, 3.50.

3-(4'-(bis(4-methoxyphenyl)amino)-[1,1'-biphenyl]-4-yl)-6-(4-bromophenyl)-2,5-dihexyl-2,5-

dihydropyrrolo[*3*,*4-c*]*pyrrole-1*,*4-dione (M2)*. M2 was prepared according to the procedure of T2, using MTPA-BO (480 mg, 1.38 mmol) instead of TPA-BO and CH₂Cl₂:methanol (400:1, ν/ν) instead of CH₂Cl₂:hexane (3:1, ν/ν) as the eluent to produce deep red crystals to produce dark red crystals of M2 (340 mg, 70% yield). ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.88–7.90 (d, J = 8.5 Hz, 4H), 7.69–7.71 (d, J = 8.5 Hz, 4H), 7.48 (d, J = 2 Hz, 2H), 7.47 (d, J = 2 Hz, 2H), 7.09–7.13 (m, 8H), 6.99–7.00 (t, J = 1.5 Hz, 4H), 6.85–6.88 (m, 8H), 3.79–3.82 (m, 16H), 0.82–1.69 (m, 22H). ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 163.12, 156.35, 149.13, 148.22, 143.61, 140.72, 131.43, 129.42, 127.76, 127.14, 126.71, 126.30, 120.34, 114.99, 109.90, 55.71, 42.35, 31.45, 29.67, 26.65, 22.69, 14.17. MALDI-TOF MS: m/z calcd for C₇₀H₇₁N₄O₆₂ (100%, [(M+H)⁺]), 1063.53; found 1063.5001. Elemental analysis: Calcd. for C₇₀H₇₀N₄O₆: C, 79.07; H, 6.64; N, 5.27; O, 9.03. Found: C, 79.05; H, 6.74; N, 5.26; O, 8.98.

Figure S2. ¹H NMR spectrum of T2 in CD₂Cl₂. The solvent peak is marked with asterisk.

Figure S3. ¹³C NMR spectrum of T2 in CD₂Cl₂. The solvent peak is marked with asterisk.

Figure S4. ¹H NMR spectrum of D1 in CD₂Cl₂.

Figure S6. ¹H NMR spectrum of M2 in CDCl_{3.}

Figure S8. MALDI-TOF mass spectrum of T2.

Figure S9. MALDI-TOF mass spectrum of D1.

Figure S10. MALDI-TOF mass spectrum of M2.

(Unit: wt%)

Sample name	Nitrogen	Carbon	Hydrogen	Sulphur	Oxygen
D1	4.5265	77.2294	6.1709	n.d.	3.4985
Τ2	5.9707	84.0411	6.6186	n.d.	3.3798
M2	5.2562	79.0506	6.7356	n.d.	8.9788

Figure S11. Elemental analysis of T2, D1, and M2.

TDDFT Calculation results of T2, D1, and M2.

Excitation energies and oscillator strengths of T2 (B3LYP functional with 6-31G(d.p) basis set of Gaussian 16 software package).

Excited State 1: Triplet-A 1.1538 eV 1074.55 nm f=0.0000 <S**2>=2.000

249 -> 252 0.36999

251 -> 252 0.60269

251 <- 252 0.12374

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -2921.93564261

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 2.2577 eV 549.16 nm f=1.2254 <S**2>=0.000

249 -> 252 -0.10474

251 -> 252 0.69643

Excited State 3: Triplet-A 2.2791 eV 544.01 nm f=0.0000 <S**2>=2.000

246 -> 252 0.11880

- 250 -> 252 0.64150
- 250 -> 254 0.10013
- 251 -> 253 0.20383
- Excited State 4: Triplet-A 2.3116 eV 536.37 nm f=0.0000 <S**2>=2.000
- 247 -> 252 0.10595
- 249 -> 252 0.55260
- 250 -> 253 -0.15012
- 251 -> 252 -0.35058
- 251 -> 254 -0.12506
- Excited State 5: Singlet-A 2.4749 eV 500.96 nm f=0.0024 <S**2>=0.000
- 250 -> 252 0.70436
- Excited State 6: Singlet-A 2.6610 eV 465.93 nm f=0.0847 <S**2>=0.000
- 249 -> 252 0.69532
- 251 -> 252 0.10393
- Excited State 7: Triplet-A 2.7117 eV 457.22 nm f=0.0000 <S**2>=2.000
- 246 -> 252 0.15963
- 248 -> 252 0.24088
- 249 -> 253 0.18307
- 249 -> 261 -0.12854
- 250 -> 252 -0.22662
- 251 -> 253 0.49775
- 251 -> 261 -0.13282
- Excited State 8: Triplet-A 2.9786 eV 416.25 nm f=0.0000 <S**2>=2.000
- 247 -> 252 0.26221

- 248 -> 252 0.29292
- 249 -> 252 -0.12887
- 249 -> 253 0.14687
- 250 -> 252 0.11802
- 250 -> 253 -0.27153
- 250 -> 254 -0.18368
- 251 -> 253 -0.17502
- 251 -> 254 -0.23053
- 251 -> 261 -0.11017

Excited State 9: Triplet-A 2.9912 eV 414.50 nm f=0.0000 <S**2>=2.000

- 246 -> 253 0.11748
- 248 -> 252 0.37518
- 249 -> 252 0.17451
- 249 -> 253 0.12959
- 249 -> 254 -0.11404
- 250 -> 253 0.29119
- 250 -> 254 -0.12868
- 250 -> 261 0.10617
- 251 -> 253 -0.15437
- 251 -> 254 0.26247
- Excited State 10: Triplet-A 3.1275 eV 396.44 nm f=0.0000 <S**2>=2.000
- 245 -> 252 0.41579
- 246 -> 252 0.18359
- 247 -> 252 0.25238

- 248 -> 252 -0.29770
- 249 -> 253 0.17061
- 249 -> 254 -0.11255
- 250 -> 253 0.10613
- 250 -> 254 -0.11986
- Excited State 11: Triplet-A 3.1535 eV 393.17 nm f=0.0000 <S**2>=2.000
- 245 -> 252 0.18940
- 247 -> 252 0.35391
- 248 -> 252 0.21412
- 249 -> 253 -0.33448
- 250 -> 254 0.26092
- 251 -> 261 0.19385
- Excited State 12: Triplet-A 3.1861 eV 389.14 nm f=0.0000 <S**2>=2.000
- 238 -> 265 0.11216
- 242 -> 256 0.13465
- 247 -> 258 0.12396
- 249 -> 258 -0.27452
- 250 -> 256 -0.12580
- 250 -> 258 0.42876
- 251 -> 258 0.30160
- Excited State 13: Triplet-A 3.1890 eV 388.79 nm f=0.0000 <S**2>=2.000
- 241 -> 255 0.13660
- 246 -> 257 -0.13712
- 249 -> 257 0.33211

- 250 -> 257 0.39932
- 251 -> 257 -0.30221

Excited State 14: Singlet-A 3.2364 eV 383.09 nm f=0.0002 <S**2>=0.000

- 247 -> 252 0.24551
- 248 -> 252 0.59875
- 251 -> 253 -0.23652

Excited State 15: Triplet-A 3.2921 eV 376.61 nm f=0.0000 <S**2>=2.000

- 233 -> 252 -0.15361
- 241 -> 252 0.11063
- 242 -> 252 0.10987
- 245 -> 252 0.43181
- 246 -> 253 0.11555
- 247 -> 252 -0.22601
- 248 -> 252 0.11938
- 249 -> 254 0.20992
- 250 -> 253 -0.15081
- 250 -> 261 -0.12639
- 251 -> 266 0.13992

Excited State 16: Singlet-A 3.3672 eV 368.22 nm f=0.0031 <S**2>=0.000

- 245 -> 252 -0.25717
- 246 -> 252 -0.14433
- 248 -> 252 0.24779
- 251 -> 253 0.57394

Excited State 17: Singlet-A 3.3845 eV 366.33 nm f=0.0053 <S**2>=0.000

- 239 -> 252 -0.10324
- 245 -> 252 0.51841
- 247 -> 252 0.33449
- 251 -> 253 0.27806
- Excited State 18: Triplet-A 3.4209 eV 362.43 nm f=0.0000 <S**2>=2.000
- 232 -> 252 0.11140
- 246 -> 252 0.50811
- 247 -> 252 -0.13454
- 247 -> 253 -0.14771
- 248 -> 252 0.12589
- 249 -> 253 -0.15041
- 249 -> 261 0.10142
- 251 -> 253 -0.21323
- Excited State 19: Triplet-A 3.4628 eV 358.04 nm f=0.0000 <S**2>=2.000
- 249 -> 255 0.30744
- 250 -> 255 0.43104
- 251 -> 255 -0.40951

Excited State 20: Triplet-A 3.4658 eV 357.74 nm f=0.0000 <S**2>=2.000

- 249 -> 256 -0.24857
- 250 -> 256 0.45568
- 250 -> 258 0.12959
- 251 -> 256 0.40566
- 251 -> 258 0.10403

Excited State 21: Triplet-A 3.5293 eV 351.30 nm f=0.0000 <S**2>=2.000

- 234 -> 252 0.38721
- 240 -> 252 0.52160
- 245 -> 253 -0.12335
- Excited State 22: Singlet-A 3.5976 eV 344.63 nm f=0.9248 <S**2>=0.000
- 247 -> 252 -0.13582
- 249 -> 254 -0.13214
- 250 -> 253 0.64506
- 251 -> 254 0.13329
- Excited State 23: Triplet-A 3.6671 eV 338.10 nm f=0.0000 <S**2>=2.000
- 239 -> 252 -0.36162
- 245 -> 252 -0.13315
- 247 -> 252 0.10964
- 249 -> 254 0.14441
- 250 -> 253 -0.26247
- 251 -> 254 0.40823
- 251 -> 260 0.11513

Excited State 24: Triplet-A 3.6829 eV 336.65 nm f=0.0000 <S**2>=2.000

- 234 -> 252 -0.13920
- 239 -> 252 0.46006
- 240 -> 253 -0.10021
- 247 -> 252 0.11060
- 249 -> 254 0.12473
- 250 -> 253 -0.19399
- 251 -> 254 0.32047

- 251 -> 259 -0.12057
- 251 -> 260 -0.13468
- Excited State 25: Singlet-A 3.6960 eV 335.45 nm f=0.0135 <S**2>=0.000
- 246 -> 252 -0.29735
- 247 -> 252 0.14486
- 249 -> 253 0.57238
- 250 -> 254 -0.15632
- 251 -> 253 -0.11146

Excited State 26: Triplet-A 3.7079 eV 334.38 nm f=0.0000 <S**2>=2.000

- 234 -> 252 0.36114
- 236 -> 258 -0.13983
- 239 -> 252 0.12504
- 239 -> 253 0.11668
- 240 -> 252 -0.27826
- 242 -> 265 0.12274
- 250 -> 253 -0.12398
- 250 -> 261 0.10744
- 251 -> 259 0.14904
- 251 -> 260 -0.12696

Excited State 27: Triplet-A 3.7123 eV 333.99 nm f=0.0000 <S**2>=2.000

- 234 -> 252 0.28897
- 236 -> 258 0.18479
- 238 -> 256 -0.12398
- 240 -> 252 -0.17402

- 242 -> 265 -0.16250
- 247 -> 252 0.13923
- 249 -> 253 -0.10351
- 249 -> 261 0.14280
- 250 -> 266 0.16534
- 251 -> 253 0.12124
- 251 -> 259 0.10312
- 251 -> 267 -0.12438

Excited State 28: Triplet-A 3.7209 eV 333.21 nm f=0.0000 <S**2>=2.000

- 233 -> 252 -0.11172
- 234 -> 252 -0.11737
- 235 -> 257 -0.23573
- 237 -> 255 0.16501
- 241 -> 262 -0.11502
- 241 -> 263 -0.16662
- 243 -> 255 -0.10894
- 243 -> 257 -0.10793
- 246 -> 252 -0.13684
- 249 -> 261 0.12419
- 249 -> 266 0.12904
- 250 -> 253 -0.11385
- 250 -> 261 0.12411
- 250 -> 266 0.12221
- 250 -> 267 0.14332

- 251 -> 266 -0.11939
- 251 -> 267 -0.11116

Excited State 29: Singlet-A 3.7485 eV 330.75 nm f=0.0209 <S**2>=0.000

- 234 -> 252 -0.16553
- 240 -> 252 -0.15942
- 245 -> 252 -0.27273
- 246 -> 252 0.10701
- 247 -> 252 0.39368
- 248 -> 252 -0.20845
- 249 -> 253 -0.10106
- 251 -> 254 0.33338
- Excited State 30: Singlet-A 3.7806 eV 327.95 nm f=0.0011 <S**2>=0.000
- 234 -> 252 0.43387
- 240 -> 252 0.42549
- 245 -> 252 -0.10183
- 246 -> 252 0.10167
- 247 -> 252 0.11763
- 249 -> 253 0.10178
- 251 -> 254 0.17123

Excited State 31: Singlet-A 3.8169 eV 324.83 nm f=0.0090 <S**2>=0.000

- 249 -> 255 -0.24434
- 250 -> 255 -0.39652
- 251 -> 255 0.49448

Excited State 32: Singlet-A 3.8221 eV 324.39 nm f=0.0107 <S**2>=0.000

- 249 -> 256 -0.19849
- 250 -> 256 0.42191
- 251 -> 256 0.49172
- Excited State 33: Singlet-A 3.8751 eV 319.95 nm f=0.2950 <S**2>=0.000
- 240 -> 252 -0.10062
- 246 -> 252 0.29311
- 247 -> 252 -0.30478
- 248 -> 252 0.11725
- 249 -> 253 0.20821
- 250 -> 253 -0.17186
- 251 -> 254 0.43613
- Excited State 34: Singlet-A 3.8885 eV 318.85 nm f=0.2427 <S**2>=0.000
- 245 -> 252 -0.12810
- 246 -> 252 0.48821
- 249 -> 253 0.26348
- 250 -> 253 0.14326
- 251 -> 254 -0.35145

Excited State 35: Singlet-A 3.9849 eV 311.13 nm f=0.0196 <S**2>=0.000

- 239 -> 252 0.49030
- 251 -> 257 0.11404
- 251 -> 259 0.18044
- 251 -> 260 0.35995
- Excited State 36: Singlet-A 3.9970 eV 310.19 nm f=0.0130 <S**2>=0.000

234 -> 252 0.37316

- 240 -> 252 -0.31410
- 251 -> 257 -0.12303
- 251 -> 258 -0.10074
- 251 -> 259 -0.34730
- 251 -> 260 0.16948
- Excited State 37: Singlet-A 4.0193 eV 308.47 nm f=0.1362 <S**2>=0.000
- 249 -> 257 -0.23183
- 250 -> 257 -0.37565
- 251 -> 257 0.50431
- 251 -> 259 -0.11043
- Excited State 38: Singlet-A 4.0256 eV 307.99 nm f=0.1742 <S**2>=0.000
- 249 -> 258 -0.18758
- 250 -> 258 0.40259
- 251 -> 258 0.50828
- Excited State 39: Singlet-A 4.0846 eV 303.54 nm f=0.0002 <S**2>=0.000
- 249 -> 253 0.13834
- 250 -> 254 0.65273
- 251 -> 253 -0.11894
- 251 -> 261 0.10845

Excited State 40: Singlet-A 4.1470 eV 298.97 nm f=0.0010 <S**2>=0.000

- 238 -> 252 0.13516
- 244 -> 252 0.65075
- 251 -> 256 -0.15511

Excitation energies and oscillator strengths of D1 (B3LYP functional with 6-31G(d.p) basis set of Gaussian 16 software package).

Excited State 1: Triplet-A 1.1683 eV 1061.24 nm f=0.0000 <S**2>=2.000

243 -> 245 0.51070

244 -> 245 -0.49298

243 <- 245 0.12078

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -5206.64169115

Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State 2: Triplet-A 2.1988 eV 563.88 nm f=0.0000 <S**2>=2.000

243 -> 245 0.45768

- 244 -> 245 0.48291
- 244 -> 246 0.16658
- Excited State 3: Singlet-A 2.2621 eV 548.09 nm f=0.6871 <S**2>=0.000
- 243 -> 245 0.10971
- 244 -> 245 0.69668

Excited State 4: Singlet-A 2.5869 eV 479.28 nm f=0.2800 <S**2>=0.000

- 243 -> 245 0.69614
- 244 -> 245 -0.11029

Excited State 5: Triplet-A 2.7373 eV 452.94 nm f=0.0000 <S**2>=2.000

- 238 -> 245 0.11269
- 239 -> 245 0.13191
- 240 -> 245 0.27034
- 243 -> 245 -0.12343
- 243 -> 246 -0.23677

- 243 -> 248 0.13552
- 243 -> 249 -0.11930
- 244 -> 245 -0.11050
- 244 -> 246 0.44426
- Excited State 6: Triplet-A 2.8685 eV 432.22 nm f=0.0000 <S**2>=2.000
- 240 -> 245 -0.13534
- 241 -> 247 0.10740
- 241 -> 248 0.14958
- 243 -> 246 0.24272
- 243 -> 247 0.20727
- 243 -> 248 0.15351
- 244 -> 246 0.21108
- 244 -> 247 0.31739
- 244 -> 248 0.29777
- Excited State 7: Triplet-A 2.9715 eV 417.25 nm f=0.0000 <S**2>=2.000
- 240 -> 245 0.34343
- 241 -> 245 0.10678
- 241 -> 246 0.12164
- 242 -> 247 -0.13264
- 243 -> 246 -0.16898
- 243 -> 247 0.16098
- 244 -> 246 -0.23626
- 244 -> 247 0.22921
- 244 -> 249 0.19662

244 -> 250 0.11194

244 -> 251 0.12357

Excited State 8: Triplet-A 3.0855 eV 401.83 nm f=0.0000 <S**2>=2.000

- 238 -> 245 -0.19651
- 239 -> 245 -0.16580
- 240 -> 245 0.45732
- 242 -> 247 0.13274
- 243 -> 246 0.22918
- 244 -> 247 -0.12364
- 244 -> 248 0.11652
- 244 -> 249 -0.13046
- Excited State 9: Triplet-A 3.1609 eV 392.24 nm f=0.0000 <S**2>=2.000
- 238 -> 245 0.38573
- 239 -> 245 -0.14846
- 240 -> 245 -0.13963
- 241 -> 245 0.20869
- 242 -> 245 -0.18678
- 242 -> 247 0.13561
- 243 -> 248 0.12724
- 243 -> 249 -0.10626
- 244 -> 247 -0.11913
- 244 -> 255 0.11506
- Excited State 10: Triplet-A 3.2148 eV 385.67 nm f=0.0000 <S**2>=2.000

233 -> 245 -0.11068

- 234 -> 245 0.19625
- 236 -> 245 0.47970
- 238 -> 245 -0.25856
- 239 -> 245 -0.20667
- 240 -> 245 -0.15555
- 243 -> 246 -0.12375
- Excited State 11: Singlet-A 3.2573 eV 380.64 nm f=0.0084 <S**2>=0.000
- 240 -> 245 0.68227
- 244 -> 246 -0.13453
- Excited State 12: Triplet-A 3.2999 eV 375.72 nm f=0.0000 <S**2>=2.000
- 238 -> 245 -0.17399
- 239 -> 245 0.10366
- 243 -> 246 -0.14340
- 243 -> 247 -0.12050
- 243 -> 248 0.23680
- 243 -> 249 0.10846
- 244 -> 247 -0.26078
- 244 -> 248 0.36027
- 244 -> 249 0.21323
- 244 -> 250 0.12593
- Excited State 13: Triplet-A 3.3772 eV 367.12 nm f=0.0000 <S**2>=2.000
- 235 -> 253 0.13044
- 236 -> 245 -0.15588
- 238 -> 245 -0.20139

- 241 -> 247 0.12728
- 242 -> 247 0.24724
- 242 -> 248 -0.18593
- 243 -> 246 -0.20388
- 244 -> 247 0.18645
- 244 -> 248 -0.14525
- 244 -> 251 0.14013
- 244 -> 258 0.10408

Excited State 14: Singlet-A 3.4064 eV 363.97 nm f=0.0426 <S**2>=0.000

- 234 -> 245 0.15474
- 236 -> 245 0.36564
- 238 -> 245 -0.36032
- 239 -> 245 -0.20860
- 241 -> 245 0.11946
- 242 -> 245 -0.13754
- 244 -> 246 0.32217

Excited State 15: Triplet-A 3.4068 eV 363.94 nm f=0.0000 <S**2>=2.000

- 234 -> 245 0.15552
- 236 -> 245 0.26154
- 238 -> 245 0.17568
- 239 -> 245 0.14512
- 241 -> 245 -0.24031
- 242 -> 245 0.27228
- 242 -> 247 0.15728

- 242 -> 248 -0.12996
- 243 -> 246 0.13169
- 244 -> 246 -0.21420
- Excited State 16: Singlet-A 3.4402 eV 360.40 nm f=0.3559 <S**2>=0.000
- 234 -> 245 -0.11132
- 236 -> 245 -0.26129
- 238 -> 245 0.12472
- 240 -> 245 0.13742
- 244 -> 246 0.58435
- Excited State 17: Singlet-A 3.4833 eV 355.94 nm f=0.1190 <S**2>=0.000
- 236 -> 245 0.11787
- 238 -> 245 -0.13021
- 241 -> 245 -0.16496
- 242 -> 245 0.62725
- 243 -> 246 0.14333

Excited State 18: Triplet-A 3.5340 eV 350.83 nm f=0.0000 <S**2>=2.000

- 239 -> 245 -0.12391
- 241 -> 245 0.32091
- 242 -> 245 0.58466

Excited State 19: Triplet-A 3.5455 eV 349.70 nm f=0.0000 <S**2>=2.000

- 229 -> 245 -0.20204
- 231 -> 245 0.37783
- 232 -> 245 0.21199
- 233 -> 245 0.43997

236 -> 246 0.10008

Excited State 20: Singlet-A 3.5535 eV 348.91 nm f=0.0952 <S**2>=0.000

- 241 -> 245 -0.21554
- 243 -> 247 0.21684
- 244 -> 247 0.58058
- 244 -> 248 -0.17198
- Excited State 21: Singlet-A 3.5792 eV 346.40 nm f=0.0814 <S**2>=0.000
- 241 -> 245 0.51051
- 242 -> 245 0.27855
- 243 -> 246 -0.23134
- 244 -> 247 0.14984
- 244 -> 248 -0.22316
- Excited State 22: Triplet-A 3.5968 eV 344.71 nm f=0.0000 <S**2>=2.000
- 235 -> 253 0.20084
- 237 -> 254 -0.15230
- 239 -> 247 -0.12459
- 241 -> 246 -0.10837
- 241 -> 248 -0.18998
- 242 -> 247 0.22872
- 242 -> 248 -0.14555
- 242 -> 251 -0.10286
- 243 -> 249 0.11144
- 244 -> 247 0.16793
- 244 -> 249 0.17336

- 244 -> 250 0.10859
- 244 -> 251 -0.16844
- 244 -> 255 -0.10166
- Excited State 23: Triplet-A 3.6595 eV 338.80 nm f=0.0000 <S**2>=2.000
- 229 -> 245 -0.16312
- 231 -> 245 0.45102
- 232 -> 245 -0.13902
- 233 -> 245 -0.36879
- 233 -> 246 -0.13308
- 244 -> 251 0.11746
- 244 -> 252 -0.10843
- Excited State 24: Singlet-A 3.6799 eV 336.92 nm f=0.2813 <S**2>=0.000
- 238 -> 245 0.10589
- 241 -> 245 0.26141
- 243 -> 246 0.15214
- 243 -> 248 0.13807
- 244 -> 247 0.24821
- 244 -> 248 0.51808
- Excited State 25: Triplet-A 3.6995 eV 335.14 nm f=0.0000 <S**2>=2.000
- 231 -> 245 -0.10077
- 237 -> 254 -0.11882
- 239 -> 248 -0.11100
- 241 -> 248 -0.12273
- 243 -> 251 0.20909

- 243 -> 255 -0.13246
- 244 -> 248 0.14318
- 244 -> 249 -0.15269
- 244 -> 251 0.40546
- 244 -> 252 0.10753
- 244 -> 255 -0.21745
- Excited State 26: Singlet-A 3.7249 eV 332.85 nm f=0.0309 <S**2>=0.000
- 239 -> 245 0.13705
- 241 -> 245 0.24591
- 243 -> 246 0.54765
- 243 -> 248 -0.12814
- 244 -> 248 -0.19309
- 244 -> 249 -0.13123
- Excited State 27: Triplet-A 3.7335 eV 332.09 nm f=0.0000 <S**2>=2.000
- 239 -> 245 0.35191
- 239 -> 246 0.12005
- 241 -> 245 0.46562
- 242 -> 245 -0.10012
- 243 -> 249 0.10218

Excited State 28: Triplet-A 3.7450 eV 331.07 nm f=0.0000 <S**2>=2.000

- 229 -> 245 -0.33769
- 238 -> 250 -0.10032
- 243 -> 249 0.19825
- 243 -> 250 -0.31533

- 244 -> 249 -0.22405
- 244 -> 250 0.36727

Excited State 29: Singlet-A 3.7926 eV 326.91 nm f=0.0123 <S**2>=0.000

- 229 -> 245 -0.26713
- 231 -> 245 0.46129
- 232 -> 245 0.15435
- 233 -> 245 0.29699
- 236 -> 245 0.17782
- 238 -> 245 0.15767
- 239 -> 245 -0.10183
- Excited State 30: Triplet-A 3.8237 eV 324.25 nm f=0.0000 <S**2>=2.000
- 243 -> 246 0.37085
- 243 -> 255 -0.13487
- 244 -> 247 -0.12320
- 244 -> 248 -0.27390
- 244 -> 249 0.26685
- 244 -> 250 0.17261
- 244 -> 251 0.20048
- Excited State 31: Triplet-A 3.8334 eV 323.43 nm f=0.0000 <S**2>=2.000
- 237 -> 254 -0.10199
- 243 -> 254 -0.11628
- 243 -> 256 0.21467
- 244 -> 252 0.30878
- 244 -> 254 -0.18878

244 -> 256 0.37137

Excited State 32: Singlet-A 3.9044 eV 317.55 nm f=0.1943 <S**2>=0.000

- 231 -> 245 -0.15404
- 233 -> 245 -0.16366
- 236 -> 245 0.16675
- 238 -> 245 0.44678
- 239 -> 245 -0.37504
- 241 -> 245 -0.11917

Excited State 33: Singlet-A 3.9414 eV 314.57 nm f=0.0175 <S**2>=0.000

- 231 -> 245 -0.19101
- 233 -> 245 0.16268
- 236 -> 245 0.23690
- 239 -> 245 0.28662
- 243 -> 246 -0.18710
- 244 -> 248 0.15369
- 244 -> 249 -0.27076
- 244 -> 250 -0.27930
- 244 -> 251 0.19950

Excited State 34: Singlet-A 3.9664 eV 312.58 nm f=0.0015 <S**2>=0.000

- 229 -> 245 0.22753
- 243 -> 249 0.18470
- 243 -> 250 -0.32751
- 244 -> 249 -0.35495
- 244 -> 250 0.40146

Excited State 35: Singlet-A 3.9826 eV 311.32 nm f=0.0176 <S**2>=0.000

- 231 -> 245 -0.26691
- 232 -> 245 0.17046
- 233 -> 245 0.38603
- 239 -> 245 -0.26924
- 243 -> 246 0.14929
- 243 -> 248 0.13650
- 244 -> 251 0.12004
- 244 -> 252 -0.24159
- Excited State 36: Singlet-A 4.0257 eV 307.98 nm f=0.0246 <S**2>=0.000
- 239 -> 245 -0.10123
- 243 -> 247 0.62035
- 244 -> 247 -0.23817
- Excited State 37: Singlet-A 4.0443 eV 306.56 nm f=0.0081 <S**2>=0.000
- 232 -> 245 -0.10282
- 233 -> 245 -0.11409
- 234 -> 245 -0.16011
- 236 -> 245 -0.17272
- 238 -> 245 -0.11507
- 239 -> 245 -0.26818
- 243 -> 246 0.11079
- 243 -> 247 -0.18728
- 243 -> 249 -0.12464
- 243 -> 251 0.13729

- 244 -> 249 -0.19309
- 244 -> 250 -0.16286
- 244 -> 251 0.31403
- 244 -> 252 0.17538
- Excited State 38: Singlet-A 4.0939 eV 302.85 nm f=0.1064 <S**2>=0.000
- 232 -> 245 -0.16659
- 234 -> 245 -0.23666
- 236 -> 245 0.23477
- 238 -> 245 0.12970
- 239 -> 245 0.12878
- 243 -> 248 0.44158
- 244 -> 248 -0.18904
- 244 -> 249 0.14910
- 244 -> 250 0.10607
- 244 -> 251 0.16096

Excited State 39: Singlet-A 4.1281 eV 300.34 nm f=0.0651 <S**2>=0.000

- 232 -> 245 0.10675
- 234 -> 245 0.33969
- 236 -> 245 -0.13576
- 243 -> 248 0.43413
- 244 -> 249 -0.27378
- 244 -> 250 -0.15511
- 244 -> 251 -0.11793

Excited State 40: Singlet-A 4.1635 eV 297.79 nm f=0.0389 <S**2>=0.000

- 232 -> 245 0.15333
- 234 -> 245 0.36749
- 237 -> 245 -0.11221
- 238 -> 245 0.12913
- 243 -> 251 0.10278
- 244 -> 249 0.18483
- 244 -> 250 0.11990
- 244 -> 251 0.42038 Excited State 1: Triplet-A 1.1683 eV 1061.24 nm f=0.0000 <S**2>=2.000
- 243 -> 245 0.51070
- 244 -> 245 -0.49298
- 243 <- 245 0.12078

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -5206.64169115

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Triplet-A 2.1988 eV 563.88 nm f=0.0000 <S**2>=2.000

- 243 -> 245 0.45768
- 244 -> 245 0.48291
- 244 -> 246 0.16658
- Excited State 3: Singlet-A 2.2621 eV 548.09 nm f=0.6871 <S**2>=0.000
- 243 -> 245 0.10971
- 244 -> 245 0.69668

Excited State 4: Singlet-A 2.5869 eV 479.28 nm f=0.2800 <S**2>=0.000

243 -> 245 0.69614

244 -> 245 -0.11029

Excited State 5: Triplet-A 2.7373 eV 452.94 nm f=0.0000 <S**2>=2.000

- 238 -> 245 0.11269
- 239 -> 245 0.13191
- 240 -> 245 0.27034
- 243 -> 245 -0.12343
- 243 -> 246 -0.23677
- 243 -> 248 0.13552
- 243 -> 249 -0.11930
- 244 -> 245 -0.11050
- 244 -> 246 0.44426
- Excited State 6: Triplet-A 2.8685 eV 432.22 nm f=0.0000 <S**2>=2.000
- 240 -> 245 -0.13534
- 241 -> 247 0.10740
- 241 -> 248 0.14958
- 243 -> 246 0.24272
- 243 -> 247 0.20727
- 243 -> 248 0.15351
- 244 -> 246 0.21108
- 244 -> 247 0.31739
- 244 -> 248 0.29777
- Excited State 7: Triplet-A 2.9715 eV 417.25 nm f=0.0000 <S**2>=2.000
- 240 -> 245 0.34343
- 241 -> 245 0.10678
- 241 -> 246 0.12164

- 242 -> 247 -0.13264
- 243 -> 246 -0.16898
- 243 -> 247 0.16098
- 244 -> 246 -0.23626
- 244 -> 247 0.22921
- 244 -> 249 0.19662
- 244 -> 250 0.11194
- 244 -> 251 0.12357

Excited State 8: Triplet-A 3.0855 eV 401.83 nm f=0.0000 <S**2>=2.000

- 238 -> 245 -0.19651
- 239 -> 245 -0.16580
- 240 -> 245 0.45732
- 242 -> 247 0.13274
- 243 -> 246 0.22918
- 244 -> 247 -0.12364
- 244 -> 248 0.11652
- 244 -> 249 -0.13046

Excited State 9: Triplet-A 3.1609 eV 392.24 nm f=0.0000 <S**2>=2.000

- 238 -> 245 0.38573
- 239 -> 245 -0.14846
- 240 -> 245 -0.13963
- 241 -> 245 0.20869
- 242 -> 245 -0.18678
- 242 -> 247 0.13561

- 243 -> 248 0.12724
- 243 -> 249 -0.10626
- 244 -> 247 -0.11913
- 244 -> 255 0.11506
- Excited State 10: Triplet-A 3.2148 eV 385.67 nm f=0.0000 <S**2>=2.000
- 233 -> 245 -0.11068
- 234 -> 245 0.19625
- 236 -> 245 0.47970
- 238 -> 245 -0.25856
- 239 -> 245 -0.20667
- 240 -> 245 -0.15555
- 243 -> 246 -0.12375
- Excited State 11: Singlet-A 3.2573 eV 380.64 nm f=0.0084 <S**2>=0.000
- 240 -> 245 0.68227
- 244 -> 246 -0.13453

Excited State 12: Triplet-A 3.2999 eV 375.72 nm f=0.0000 <S**2>=2.000

- 238 -> 245 -0.17399
- 239 -> 245 0.10366
- 243 -> 246 -0.14340
- 243 -> 247 -0.12050
- 243 -> 248 0.23680
- 243 -> 249 0.10846
- 244 -> 247 -0.26078
- 244 -> 248 0.36027

- 244 -> 249 0.21323
- 244 -> 250 0.12593

Excited State 13: Triplet-A 3.3772 eV 367.12 nm f=0.0000 <S**2>=2.000

- 235 -> 253 0.13044
- 236 -> 245 -0.15588
- 238 -> 245 -0.20139
- 241 -> 247 0.12728
- 242 -> 247 0.24724
- 242 -> 248 -0.18593
- 243 -> 246 -0.20388
- 244 -> 247 0.18645
- 244 -> 248 -0.14525
- 244 -> 251 0.14013
- 244 -> 258 0.10408
- Excited State 14: Singlet-A 3.4064 eV 363.97 nm f=0.0426 <S**2>=0.000
- 234 -> 245 0.15474
- 236 -> 245 0.36564
- 238 -> 245 -0.36032
- 239 -> 245 -0.20860
- 241 -> 245 0.11946
- 242 -> 245 -0.13754
- 244 -> 246 0.32217
- Excited State 15: Triplet-A 3.4068 eV 363.94 nm f=0.0000 <S**2>=2.000

234 -> 245 0.15552

- 236 -> 245 0.26154
- 238 -> 245 0.17568
- 239 -> 245 0.14512
- 241 -> 245 -0.24031
- 242 -> 245 0.27228
- 242 -> 247 0.15728
- 242 -> 248 -0.12996
- 243 -> 246 0.13169
- 244 -> 246 -0.21420
- Excited State 16: Singlet-A 3.4402 eV 360.40 nm f=0.3559 <S**2>=0.000
- 234 -> 245 -0.11132
- 236 -> 245 -0.26129
- 238 -> 245 0.12472
- 240 -> 245 0.13742
- 244 -> 246 0.58435
- Excited State 17: Singlet-A 3.4833 eV 355.94 nm f=0.1190 <S**2>=0.000
- 236 -> 245 0.11787
- 238 -> 245 -0.13021
- 241 -> 245 -0.16496
- 242 -> 245 0.62725
- 243 -> 246 0.14333
- Excited State 18: Triplet-A 3.5340 eV 350.83 nm f=0.0000 <S**2>=2.000
- 239 -> 245 -0.12391
- 241 -> 245 0.32091

242 -> 245 0.58466

Excited State 19: Triplet-A 3.5455 eV 349.70 nm f=0.0000 <S**2>=2.000

- 229 -> 245 -0.20204
- 231 -> 245 0.37783
- 232 -> 245 0.21199
- 233 -> 245 0.43997
- 236 -> 246 0.10008
- Excited State 20: Singlet-A 3.5535 eV 348.91 nm f=0.0952 <S**2>=0.000
- 241 -> 245 -0.21554
- 243 -> 247 0.21684
- 244 -> 247 0.58058
- 244 -> 248 -0.17198
- Excited State 21: Singlet-A 3.5792 eV 346.40 nm f=0.0814 <S**2>=0.000
- 241 -> 245 0.51051
- 242 -> 245 0.27855
- 243 -> 246 -0.23134
- 244 -> 247 0.14984
- 244 -> 248 -0.22316
- Excited State 22: Triplet-A 3.5968 eV 344.71 nm f=0.0000 <S**2>=2.000
- 235 -> 253 0.20084
- 237 -> 254 -0.15230
- 239 -> 247 -0.12459
- 241 -> 246 -0.10837
- 241 -> 248 -0.18998

- 242 -> 247 0.22872
- 242 -> 248 -0.14555
- 242 -> 251 -0.10286
- 243 -> 249 0.11144
- 244 -> 247 0.16793
- 244 -> 249 0.17336
- 244 -> 250 0.10859
- 244 -> 251 -0.16844
- 244 -> 255 -0.10166

Excited State 23: Triplet-A 3.6595 eV 338.80 nm f=0.0000 <S**2>=2.000

- 229 -> 245 -0.16312
- 231 -> 245 0.45102
- 232 -> 245 -0.13902
- 233 -> 245 -0.36879
- 233 -> 246 -0.13308
- 244 -> 251 0.11746
- 244 -> 252 -0.10843

Excited State 24: Singlet-A 3.6799 eV 336.92 nm f=0.2813 <S**2>=0.000

- 238 -> 245 0.10589
- 241 -> 245 0.26141
- 243 -> 246 0.15214
- 243 -> 248 0.13807
- 244 -> 247 0.24821
- 244 -> 248 0.51808

Excited State 25: Triplet-A 3.6995 eV 335.14 nm f=0.0000 <S**2>=2.000

- 231 -> 245 -0.10077
- 237 -> 254 -0.11882
- 239 -> 248 -0.11100
- 241 -> 248 -0.12273
- 243 -> 251 0.20909
- 243 -> 255 -0.13246
- 244 -> 248 0.14318
- 244 -> 249 -0.15269
- 244 -> 251 0.40546
- 244 -> 252 0.10753
- 244 -> 255 -0.21745
- Excited State 26: Singlet-A 3.7249 eV 332.85 nm f=0.0309 <S**2>=0.000
- 239 -> 245 0.13705
- 241 -> 245 0.24591
- 243 -> 246 0.54765
- 243 -> 248 -0.12814
- 244 -> 248 -0.19309
- 244 -> 249 -0.13123

Excited State 27: Triplet-A 3.7335 eV 332.09 nm f=0.0000 <S**2>=2.000

- 239 -> 245 0.35191
- 239 -> 246 0.12005
- 241 -> 245 0.46562
- 242 -> 245 -0.10012

243 -> 249 0.10218

Excited State 28: Triplet-A 3.7450 eV 331.07 nm f=0.0000 <S**2>=2.000

- 229 -> 245 -0.33769
- 238 -> 250 -0.10032
- 243 -> 249 0.19825
- 243 -> 250 -0.31533
- 244 -> 249 -0.22405
- 244 -> 250 0.36727

Excited State 29: Singlet-A 3.7926 eV 326.91 nm f=0.0123 <S**2>=0.000

- 229 -> 245 -0.26713
- 231 -> 245 0.46129
- 232 -> 245 0.15435
- 233 -> 245 0.29699
- 236 -> 245 0.17782
- 238 -> 245 0.15767
- 239 -> 245 -0.10183

Excited State 30: Triplet-A 3.8237 eV 324.25 nm f=0.0000 <S**2>=2.000

- 243 -> 246 0.37085
- 243 -> 255 -0.13487
- 244 -> 247 -0.12320
- 244 -> 248 -0.27390
- 244 -> 249 0.26685
- 244 -> 250 0.17261
- 244 -> 251 0.20048

Excited State 31: Triplet-A 3.8334 eV 323.43 nm f=0.0000 <S**2>=2.000

- 237 -> 254 -0.10199
- 243 -> 254 -0.11628
- 243 -> 256 0.21467
- 244 -> 252 0.30878
- 244 -> 254 -0.18878
- 244 -> 256 0.37137
- Excited State 32: Singlet-A 3.9044 eV 317.55 nm f=0.1943 <S**2>=0.000
- 231 -> 245 -0.15404
- 233 -> 245 -0.16366
- 236 -> 245 0.16675
- 238 -> 245 0.44678
- 239 -> 245 -0.37504
- 241 -> 245 -0.11917
- Excited State 33: Singlet-A 3.9414 eV 314.57 nm f=0.0175 <S**2>=0.000
- 231 -> 245 -0.19101
- 233 -> 245 0.16268
- 236 -> 245 0.23690
- 239 -> 245 0.28662
- 243 -> 246 -0.18710
- 244 -> 248 0.15369
- 244 -> 249 -0.27076
- 244 -> 250 -0.27930
- 244 -> 251 0.19950

Excited State 34: Singlet-A 3.9664 eV 312.58 nm f=0.0015 <S**2>=0.000

- 229 -> 245 0.22753
- 243 -> 249 0.18470
- 243 -> 250 -0.32751
- 244 -> 249 -0.35495
- 244 -> 250 0.40146

Excited State 35: Singlet-A 3.9826 eV 311.32 nm f=0.0176 <S**2>=0.000

- 231 -> 245 -0.26691
- 232 -> 245 0.17046
- 233 -> 245 0.38603
- 239 -> 245 -0.26924
- 243 -> 246 0.14929
- 243 -> 248 0.13650
- 244 -> 251 0.12004
- 244 -> 252 -0.24159

Excited State 36: Singlet-A 4.0257 eV 307.98 nm f=0.0246 <S**2>=0.000

- 239 -> 245 -0.10123
- 243 -> 247 0.62035
- 244 -> 247 -0.23817

Excited State 37: Singlet-A 4.0443 eV 306.56 nm f=0.0081 <S**2>=0.000

- 232 -> 245 -0.10282
- 233 -> 245 -0.11409
- 234 -> 245 -0.16011
- 236 -> 245 -0.17272

- 238 -> 245 -0.11507
- 239 -> 245 -0.26818
- 243 -> 246 0.11079
- 243 -> 247 -0.18728
- 243 -> 249 -0.12464
- 243 -> 251 0.13729
- 244 -> 249 -0.19309
- 244 -> 250 -0.16286
- 244 -> 251 0.31403
- 244 -> 252 0.17538
- Excited State 38: Singlet-A 4.0939 eV 302.85 nm f=0.1064 <S**2>=0.000
- 232 -> 245 -0.16659
- 234 -> 245 -0.23666
- 236 -> 245 0.23477
- 238 -> 245 0.12970
- 239 -> 245 0.12878
- 243 -> 248 0.44158
- 244 -> 248 -0.18904
- 244 -> 249 0.14910
- 244 -> 250 0.10607
- 244 -> 251 0.16096

Excited State 39: Singlet-A 4.1281 eV 300.34 nm f=0.0651 <S**2>=0.000

232 -> 245 0.10675

234 -> 245 0.33969

- 236 -> 245 -0.13576
- 243 -> 248 0.43413
- 244 -> 249 -0.27378
- 244 -> 250 -0.15511
- 244 -> 251 -0.11793

Excited State 40: Singlet-A 4.1635 eV 297.79 nm f=0.0389 <S**2>=0.000

- 232 -> 245 0.15333
- 234 -> 245 0.36749
- 237 -> 245 -0.11221
- 238 -> 245 0.12913
- 243 -> 251 0.10278
- 244 -> 249 0.18483
- 244 -> 250 0.11990
- 244 -> 251 0.42038
 - Excitation energies and oscillator strengths of M2 (B3LYP functional with 6-31G(d.p) basis set of Gaussian 16 software package).

Excited State 1:	Triplet-A	1.1659 eV 1063.44 nm	f=0.0000	<s**2>=2.000</s**2>
281 -> 284	0.43501			
283 -> 284	0.55763			
281 <- 284	0.10606			
283 <- 284	0.10803			
Excited State 2:	Triplet-A	2.1980 eV 564.07 ni	n f=0.0000	<s**2>=2.000</s**2>

282 -> 284 0.65891

283 -> 285 -0.17747

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -3380.00014858

Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State 3:	Singlet-A	2.1984 eV	563.97 nm	f=1.2604	<s**2>=0.000</s**2>
283 -> 284	0.69900				
Excited State 4:	Triplet-A	2.2381 eV	553.96 nm	f=0.0000	<s**2>=2.000</s**2>
281 -> 284	0.52168				
282 -> 285	0.13252				
283 -> 284	-0.41494				
283 -> 286	-0.10095				
Excited State 5:	Singlet-A	2.3838 eV	520.12 nm	f=0.0014	<s**2>=0.000</s**2>
282 -> 284	0.70495				
Excited State 6:	Singlet-A	2.6255 eV	472.24 nm	f=0.1578	<s**2>=0.000</s**2>
281 -> 284	0.69798				
Excited State 7:	Triplet-A	2.6981 eV	459.52 nm	f=0.0000	<s**2>=2.000</s**2>
275 -> 284	-0.10072				
276 -> 284	-0.21630				

278 -> 284	0.12503
281 -> 285	0.22450
281 -> 293	-0.13280
282 -> 284	0.20590
283 -> 285	0.49762

Excited State 8:	Triplet-A	2.9559 eV	419.45 nm	f=0.0000	<s**2>=2.000</s**2>
277 -> 284	-0.15245				
278 -> 285	-0.11488				
281 -> 284	-0.17775				
282 -> 285	0.40221				
282 -> 293	0.13123				
283 -> 284	0.13552				
283 -> 286	-0.33427				
283 -> 288	0.11561				

Excited State	9:	Triplet-A	2.9917 eV	414.43 nm	f=0.0000	<s**2>=2.000</s**2>
276 -> 28	4	0.47987				
281 -> 28	5	-0.23403				
282 -> 284	4	0.12037				
282 -> 28	6	-0.23628				
283 -> 28	5	0.21314				
283 -> 29	3	0.16217				

Excited State 10:	: Triplet-A	3.1330 eV	395.74 nm	f=0.0000	<s**2>=2.000</s**2>
273 -> 284	-0.15066				
275 -> 284	-0.24244				
276 -> 284	0.38181				
278 -> 284	0.15418				
281 -> 285	0.27994				
282 -> 286	0.24220				
283 -> 293	-0.14705				

Excited State 11:	Triplet-A	3.2072 eV	386.58 nm	f=0.0000	<s**2>=2.000</s**2>
265 -> 284	-0.12141				
274 -> 284	0.26162				
277 -> 284	0.31175				
279 -> 284	-0.21196				
280 -> 284	-0.12462				
281 -> 286	0.20248				
282 -> 285	0.16881				
282 -> 287	0.14909				
282 -> 289	0.11784				
283 -> 298	0.10926				

Excited State 12:	Triplet-A	3.2274 eV	384.16 nm	f=0.0000	<s**2>=2.000</s**2>
273 -> 284	0.41921				
275 -> 284	0.29559				

276 -> 284	0.15410
278 -> 284	-0.10914
281 -> 285	0.13805
282 -> 286	0.11275
282 -> 289	0.10413
282 -> 290	0.13742
283 -> 287	-0.10902
283 -> 289	-0.13234

Excited State 13:	Triplet-A	3.2435 eV	382.25 nm	f=0.0000	<s**2>=2.000</s**2>
277 -> 284	0.11644				
278 -> 290	0.10023				
281 -> 290	-0.23007				
282 -> 289	-0.11614				
282 -> 290	0.32939				
282 -> 293	0.10606				
283 -> 290	0.28917				

Excited State 14:	Triplet-A	3.2482 eV	381.71 nm	f=0.0000	<s**2>=2.000</s**2>
273 -> 284	-0.15771				
275 -> 284	-0.12924				
281 -> 285	-0.12716				
281 -> 289	0.21723				
282 -> 289	0.31018				

- 282 -> 290 0.12205
- 283 -> 289 -0.24845
- 283 -> 293 0.11215

Excited State 15:	Singlet-A	3.2601 eV	380.30 nm	f=0.0003	<s**2>=0.000</s**2>
276 -> 284	0.62331				
283 -> 285	0.29726				

Excited State 16:	Triplet-A	3.3418 eV	371.01 nm	f=0.0000	<s**2>=2.000</s**2>
273 -> 284	0.23187				
276 -> 284	-0.12587				
278 -> 284	0.29029				
279 -> 284	-0.22251				
280 -> 284	0.34450				
281 -> 285	-0.14913				
282 -> 288	0.10840				
283 -> 285	-0.18040				

Excited State 17:	Singlet-A	3.3555 eV	369.50 nm	f=0.0019	<s**2>=0.000</s**2>
273 -> 284	0.11281				
275 -> 284	0.15187				
276 -> 284	-0.29394				
278 -> 284	-0.13677				
280 -> 284	-0.14120				

Excited State 18:	Triplet-A	3.3850 eV	366.28 nm	f=0.0000	<s**2>=2.000</s**2>
280 -> 284	0.11714				
281 -> 288	0.19410				
282 -> 287	0.34128				
282 -> 288	-0.22106				
282 -> 290	0.12719				
283 -> 286	-0.13056				
283 -> 287	0.17505				
283 -> 288	-0.33530				
283 -> 290	0.11871				

Excited State 19:	Triplet-A	3.3908 eV	365.65 nm	f=0.0000	<s**2>=2.000</s**2>
279 -> 284	-0.11461				
280 -> 284	0.10159				
281 -> 287	-0.19552				
281 -> 288	-0.10355				
282 -> 286	-0.10967				
282 -> 287	-0.23400				
282 -> 288	-0.32098				
282 -> 289	0.13168				
283 -> 287	0.33272				
283 -> 288	0.16387				

283 -> 289 -	0.	1	3	5	4	7
--------------	----	---	---	---	---	---

Excited State 20:	Singlet-A	3.4319 eV	361.27 nm	f=0.0012	<s**2>=0.000</s**2>
269 -> 284	-0.10741				
273 -> 284	0.46657				
274 -> 284	-0.14000				
275 -> 284	0.35461				
276 -> 284	0.11368				
278 -> 284	-0.11023				
279 -> 284	0.11256				
280 -> 284	-0.11341				
283 -> 285	-0.22508				
Excited State 21:	Singlet-A	3.4693 eV	357.37 nm	f=0.1762	<s**2>=0.000</s**2>
277 -> 284	-0.11156				
279 -> 284	0.39756				
280 -> 284	0.54112				
282 -> 285	0.14059				
Excited State 22:	Singlet-A	3.4890 eV	355.35 nm	f=0.0353	<s**2>=0.000</s**2>

273 -> 284	-0.16481	
275 -> 284	-0.12139	
279 -> 284	0.52607	

280 -> 284 -0.38646

Excited State 23:	Triplet-A	3.5043 eV	353.81 nm	f=0.0000	<\$**2>=2.000
274 -> 284	0.13835				
277 -> 284	0.16505				
278 -> 284	-0.11745				
279 -> 284	0.44118				
280 -> 284	0.42913				

Excited State 24:	Triplet-A	3.5418 eV	350.06 nm	f=0.0000	<s**2>=2.000</s**2>
266 -> 284	-0.14767				
270 -> 284	0.21199				
273 -> 284	-0.13953				
275 -> 284	0.10208				
278 -> 284	-0.32936				
279 -> 284	-0.31852				
280 -> 284	0.34279				

Excited State 25:	Singlet-A	3.5469 eV	349.56 nm	f=0.6860	<s**2>=0.000</s**2>
277 -> 284	-0.12543				
279 -> 284	-0.15747				
282 -> 285	0.62904				
283 -> 286	-0.14845				

Excited State 26:	Triplet-A	3.5535 eV	348.91 nm	f=0.0000	<s**2>=2.000</s**2>
266 -> 284	-0.30781				
270 -> 284	0.38447				
271 -> 284	-0.27956				
273 -> 285	0.10438				
277 -> 284	0.10792				
278 -> 284	0.12993				
279 -> 284	0.24596				

Excited State 27:	Singlet-A	3.6567 eV	339.06 nm	f=0.0019	<s**2>=0.000</s**2>
273 -> 284	-0.15552				
278 -> 284	-0.43349				
281 -> 285	0.46302				
282 -> 286	0.14713				
283 -> 285	-0.10635				

Excited State 28:	Triplet-A	3.6602 eV	338.74 nm	f=0.0000	<s**2>=2.000</s**2>
269 -> 284	0.57292				
270 -> 285	0.12027				
272 -> 284	-0.10636				
283 -> 291	-0.10890				
283 -> 292	-0.19079				

Excited State	29:	Triplet-A	3.6690 eV	337.93 nm	f=0.0000	<s**2>=2.000</s**2>

266 -> 284	-0.19515
277 -> 284	-0.12692
281 -> 286	0.12874
282 -> 285	0.36094
283 -> 286	0.37826
283 -> 288	-0.16490
283 -> 291	-0.11960

Excited State 30:	Triplet-A	3.6850 eV	336.45 nm	f=0.0000	<s**2>=2.000</s**2>
266 -> 284	0.16538				
270 -> 284	0.12249				
275 -> 290	-0.11171				
278 -> 290	-0.11017				
280 -> 297	-0.18470				
281 -> 293	0.11200				
282 -> 285	0.15703				
282 -> 293	-0.13617				
282 -> 298	-0.10808				
282 -> 299	-0.10527				
283 -> 285	0.10658				
283 -> 291	0.14338				

Excited S	State	31:	Sing
	-		

Excited State 31: Singlet-A 3.6912 eV 335.90 nm f=0.0429 <S**2>=0.000

274 -> 284 0.12608

277 -> 284	0.61925
279 -> 284	0.10477
282 -> 285	0.13811
283 -> 286	-0.18376

Excited State 32:	Singlet-A	3.7536 eV	330.31 nm	f=0.0382	<s**2>=0.000</s**2>
281 -> 288	0.14472				
282 -> 285	-0.13680				
282 -> 287	0.37520				
282 -> 288	-0.10752				
283 -> 286	-0.34818				
283 -> 288	-0.36826				

Excited State 33:	Singlet-A	3.7617 eV	329.60 nm	f=0.0074	<s**2>=0.000</s**2>
278 -> 284	-0.16368				
281 -> 287	-0.17420				
282 -> 286	-0.21403				
282 -> 287	-0.12806				
282 -> 288	-0.33029				
283 -> 287	0.47904				

Excited State 34:	Singlet-A	3.7869 eV	327.40 nm	f=0.0022	<s**2>=0.000</s**2>
278 -> 284	0.47837				
281 -> 285	0.47089				

Excited State 3	5: Singlet-A	3.8064 eV	325.73 nm	f=0.0139	<s**2>=0.000</s**2>
266 -> 284	0.45955				
270 -> 284	-0.36292				
271 -> 284	0.23165				
274 -> 284	0.11117				
277 -> 284	-0.13754				

Excited State 36:	Singlet-A	3.8896 eV	318.76 nm	f=0.3687	<s**2>=0.000</s**2>
266 -> 284	0.13229				
277 -> 284	0.12497				
282 -> 285	0.13627				
282 -> 287	0.14203				
283 -> 286	0.51526				
283 -> 288	-0.34869				

Excited State 37:	Singlet-A	3.9719 eV	312.15 nm	f=0.0058	<s**2>=0.000</s**2>
269 -> 284	0.48880				
272 -> 284	-0.11144				
283 -> 289	0.10541				
283 -> 291	0.21035				
283 -> 292	0.32594				

Excited State 38: Singlet-A 3.9864 eV 311.02 nm f=0.0118 <S**2>=0.000

266 -> 284	0.36210
270 -> 284	0.24891
271 -> 284	-0.21679
281 -> 291	-0.10337
283 -> 291	-0.35142
283 -> 292	0.19440

Excited State 39:	Singlet-A	4.0176 eV	308.60 nm	f=0.1202	<s**2>=0.000</s**2>
266 -> 284	-0.12207				
274 -> 284	0.57700				
275 -> 284	0.19273				
277 -> 284	-0.13131				
281 -> 286	-0.10386				
282 -> 289	-0.10718				
283 -> 290	0.12910				

Excited State 40:	Singlet-A	4.0294 eV	307.70 nm	f=0.0241	<s**2>=0.000</s**2>
273 -> 284	-0.21324				
275 -> 284	0.27585				
281 -> 285	-0.14770				
281 -> 289	0.10202				
282 -> 286	0.37083				
282 -> 288	-0.18496				
282 -> 289	0.14015				

283 -> 289 -0.26466