Supporting Information

Solvent-Mediated Synthesis of Amorphous Li₃PS₄/PEO Composite Solid Electrolytes with High Li⁺ Conductivity

Ethan C. Self^{a‡*}, Zachary D. Hood^{b‡*}, Teerth Brahmbhatt^c, Frank M. Delnick^a, Harry M. Meyer III^d, Guang Yang^a, Jennifer L. M. Rupp^{b, e}, and Jagjit Nanda^{a*}

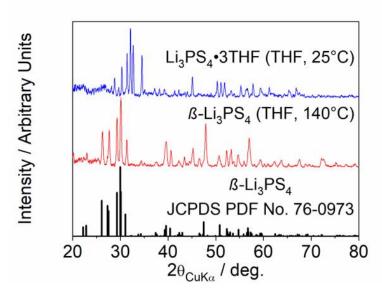
^a Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

 $^{\rm c}$ The Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, 37996, USA

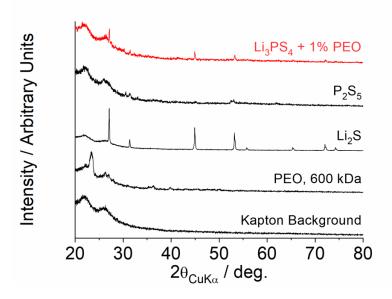
^d Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

^e Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

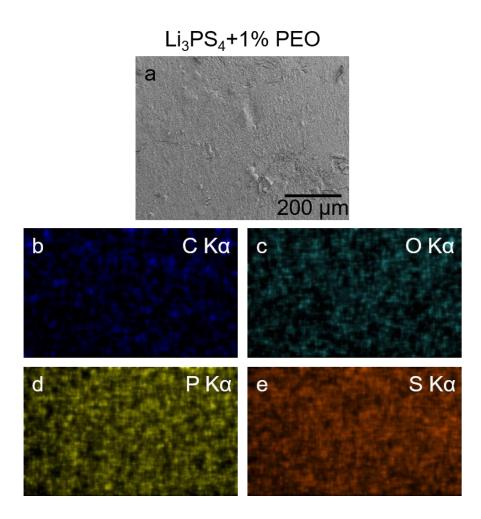
Corresponding Author* Emails:

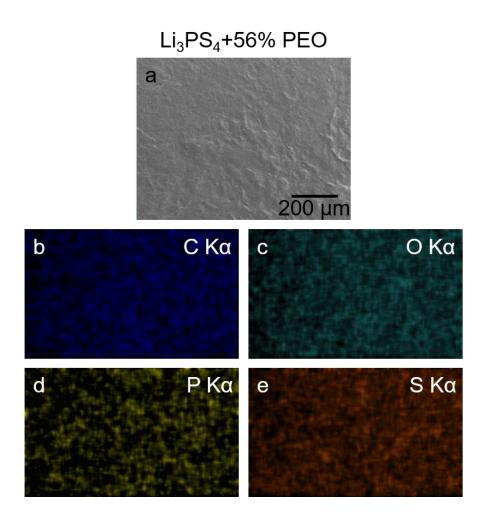

selfec@ornl.gov (E. C. Self)

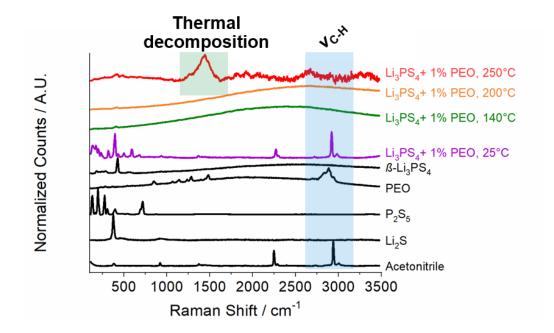
zhood@mit.edu (Z. D. Hood)


nandaj@ornl.gov (J. Nanda)

[‡] E. C. Self and Z. D. Hood contributed equally to this work.


^b Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA


Figure S1. Powder XRD patterns of Li₃PS₄ powders synthesized from THF dried under vacuum overnight at room temperature and 140 °C. Kapton background was manually subtracted.


Figure S2. Powder XRD patterns of $Li_3PS_4 + 1\%$ PEO, precursor materials (Li_2S , P_2S_5 , and PEO), and Kapton tape used to mitigate sample exposure during XRD measurements.

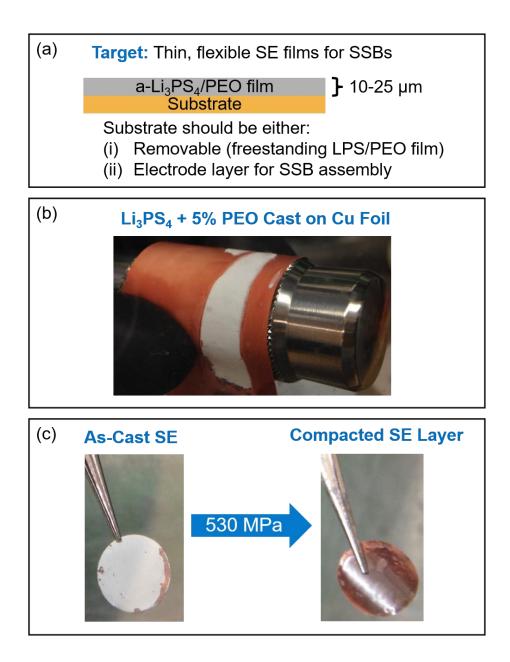

Figure S3. SEM image and corresponding EDX maps of an amorphous $Li_3PS_4 + 1$ wt.% PEO composite showing the elemental distribution of C/O (associated with PEO) and P/S (associated with Li_3PS_4).

Figure S4. SEM image and corresponding EDX maps of an amorphous Li₃PS₄ + 56 wt.% PEO composite showing the elemental distribution of C/O (associated with PEO) and P/S (associated with Li₃PS₄).

Figure S5. Raman spectra of $Li_3PS_4 + 1$ wt.% PEO dried overnight at 25 – 250 °C. Fluorescence background was subtracted for the sample heated to 250 °C. Reference data for *I*S-Li_3PS_4 and precursor materials (Li_2S, P_2S_5, PEO, and acetonitrile) are shown for comparison.

Figure S6. Preliminary investigations of slurry cast Li₃PS₄/PEO solid electrolytes showing (a) targeted structure containing a thin $(10 - 25 \ \mu\text{m})$ solid electrolyte layer deposited on a substrate, (b) Li₃PS₄ + 5% PEO cast onto Cu foil, and (c) solid electrolyte disks (1/2" diameter) on Cu foil before and after cold-pressing at 530 MPa. Further optimization of the electrolyte and slurry composition is required before testing these thin solid electrolytes in all-solid-state batteries.

Table S1. Properties of the $Li_3PS_4 + 5\%$ PEO SE layers cast onto Cu foil shown in Figure S6.

Sample	Thickness (μm)	Loading (mg/cm ²)	Density (g/cm ³)	Porosity* (%)
As-Cast	32	1.82	0.57	70
Cold-Pressed (530 MPa)	10	1.82	1.82	3

* Porosity estimated assuming a theoretical density of 1.87 g/cm³ for *B*-Li₃PS₄.