Supporting information

Label-free electrochemical Immunosensor Based on One-Step Electrochemical Deposition of AuNP-RGO nanocomposites for Detection of Endometriosis marker CA 125

Arumugam Sangili,^{†,‡} Thangapandi Kalyani,[‡] Shen-Ming Chen,*,[†] Amalesh Nanda,[‡] Saikat Kumar Jana,*,[‡]

[†]Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC. [‡]Department of Biotechnology, National Institute of Technology, Papum Pare-791112, Arunachal Pradesh, India

Corresponding Authors

E-mail: <u>smchen78@ms15.hinet.net</u> (S,-M. Chen); Fax: +886-2-27025238 E-mail: <u>saikatmicro4@gmail.com (</u>S. K. Jana); Tel; +91 9485230608

Number of Tables: 1

Number of figures: 7

Table of content

Entry	Table of Contents	Page No
1	Experimental section	S 3
Figure S1	10, 30, and 50 cycles electrochemical deposition of Au NP/RGO.	S4
Figure S2	(a) SEM-EDX analysis (insert; weight percentages), (b-e) mapping analysis of Au, C, and O elements, respectively.	S5
Figure S3	CV response of different cycles 10, 30, and 50 cycles of 50-Au NP/RGO (insert: extended view). All experiments was examined by 0.1 M KCl/5 mM [Fe(CN) ₆] ^{3-/4-} (pH 7.4, 0.1 M PBS),	S6
Figure S4	(a) Effect of incubation time, (b) Effect of the immobilization Ab concentration, (c) effect of BSA incubation time in the presence of	S7
	10 U mL ⁻¹ , (d) Incubation temperature, (e) effect of pH, and (f) incubation time of Ag. Inset corresponding SWV curve. All immunosensor signals respond to 10 U mL ⁻¹ CA125 in 0.05 MPBS containing 5 mm $[Fe(CN)_6]^{3-/4-}/0.1$ M KCl. Error bar = RSD (n=3).	
Figure S5	Figure S5. (a) Effect of interference, (b) effect of repeatability, (c) effect of storage stability, signal response of the immunosensor to 10 U mL ⁻¹ CA125 in 0.1 PBS M (pH 7.4) solution containing in 5 mm $[Fe(CN)_6]^{3-/4-}/0.1$ M KCl. Error bar = RSD (n=3).	S8
Figure S6	Figure S6. (a) Effect of regeneration, signal response of the immunosensor to 10 U mL ⁻¹ CA125 in 0.1 M PBS (pH 7.4) solution containing in 5 mm $[Fe(CN)_6]^{3-/4-}/0.1$ M KCl. Error bar = RSD (n=3)	S9
Figure S7	Figure S7. Standard inhibition curve for the indirect ELISA. Serum sample was 2-fold dilution	S10
	Reference	S11

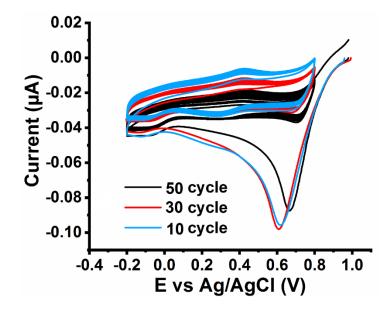
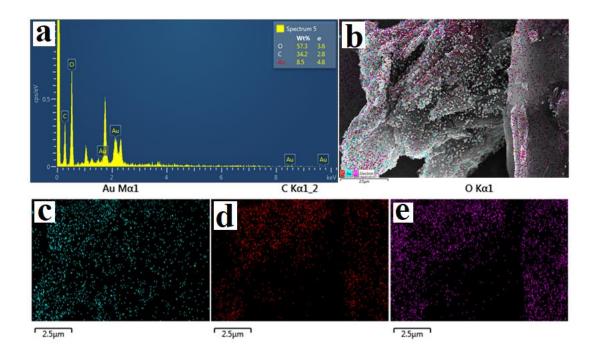
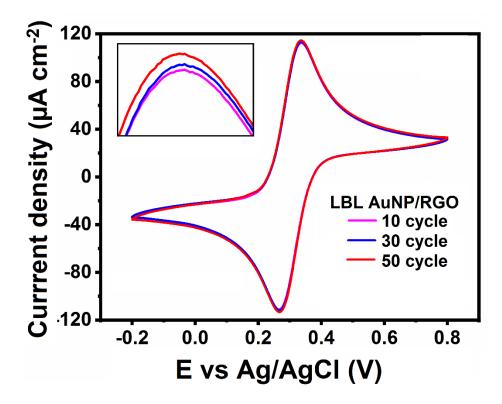
1. EXPERIMENTAL SECTION

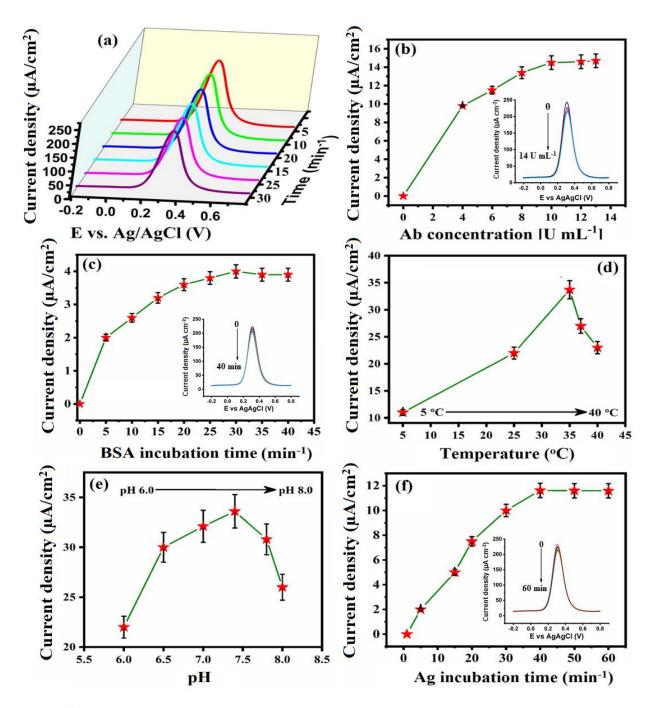
1.1. Characterization

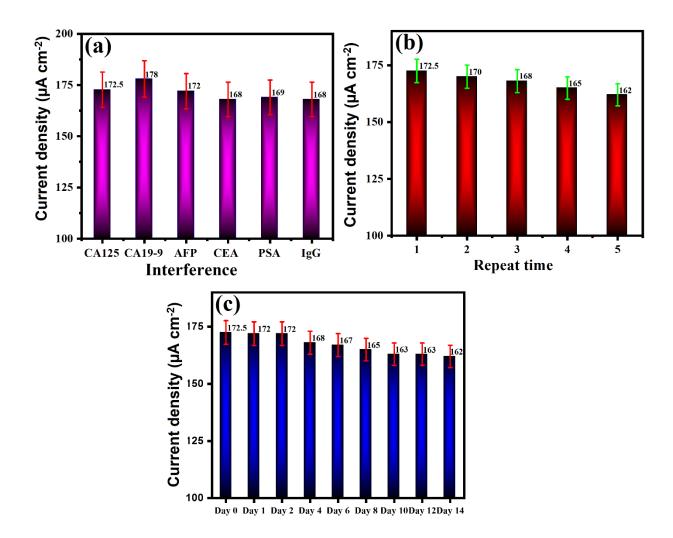
Morphology and elemental analysis of prepared composites were studied by Field Emission-Scanning Electron Microscopy (FE-SEM, JEOL JSM-7610F). All samples were deposited onto the indium tin oxide (ITO) glass with the optimal procedure. The crystalline structure of composite was studied by X-ray diffraction (XRD) using PANalytical X'Pert PRO diffractometer with the Cu K α 1 radiation ($\lambda = 1.540598$ nm). Raman spectra were monitored Dongwoo 500i model spectrometer analyzed by as-prepared composite (acquired at a resolution of 1.0 cm⁻¹, acquisition time of 30 s). X-ray Photoelectron Spectroscopy (XPS) study were analyzed with an ESCA chemical analysis electron spectrometer (JEOL Ltd., Japan, JPS-9030). SP150 Bio-Logic Science Instrument (electrochemical workstation, France) was used for electrochemical analysis. The electrochemical cell involved in a three-electrode system. The platinum (Pt) wire as a counter electrode, glassy carbon electrode (GCE) was a working electrode, and saturated Ag/AgCl electrode, and Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and square wave voltammetry (SWV) techniques were performed in the presence of 0.1 M KCl/5 mM [Fe(CN)₆]^{3-/4-} (pH 7.4, 0.1 PBS) mixture as a redox probe.

1.2. Graphene oxide synthesis. Graphene oxide (GO) prepared by modified Hummer's method.^{S1} Typically, 2.0 g GR, 2.0 g NaNO₃, and 50 mL concentrated H₂SO₄ were successively added into a beaker and stirred for 30 min in an ice bath. Then, 6.0 g KMnO₄ was added into the above mixture was stirred for 5h. The reaction mixture was stirred for 30 min at 35 °C after which is diluted with 60 mL of MP-H₂O is added and stirred below 100 °C and kept for 30 min. Then the reaction mixture terminated by 300 mL of MP-H₂O and 20 mL of H₂O₂. After vigorous stirring for 60 min, the final product was centrifuged by repeated washing with MP-H₂O until the pH 7.0.

Figure caption


Figure S1. 10, 30, and 50 cycles electrochemical deposition of AuNP/RGO.


Figure S2. (a) SEM-EDX analysis (insert; weight percentages), (b-e) mapping analysis of Au, C, and O elements, respectively.

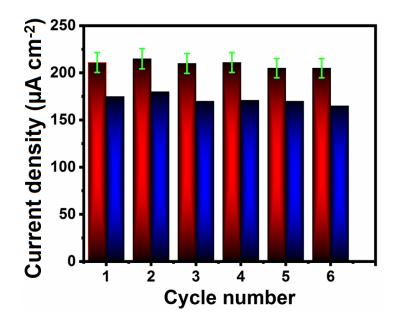

Figure S3. CV response of different cycles 10, 30, and 50 cycles of 50-AuNP/RGO (insert: extended view). All experiment was examined by 0.1 M KCl/5 mM $[Fe(CN)_6]^{3-/4-}$ (pH 7.4, 0.1 M PBS).

Figure S4. (a) Effect of incubation time, (b) Effect of the immobilization Ab concentration, (c) effect of BSA incubation time in the presence of 10 U mL⁻¹, (d) Incubation temperature, (e) effect of pH, and (f) incubation time of Ag. Inset corresponding SWV curve. All immunosensor signals respond to 10 U mL⁻¹ CA125 in 0.05 MPBS containing 5 mm $[Fe(CN)_6]^{3-/4-}/0.1$ M KCl. Error bar = RSD (n=3).

Figure S5. (a) Effect of interference, (b) effect of repeatability, (c) effect of storage stability, signal response of the immunosensor to 10 U mL⁻¹ CA125 in 0.1 PBS M (pH 7.4) solution containing in 5 mm [Fe(CN)₆]^{3-/4-}/0.1 M KCl. Error bar = RSD (n=3).

Figure S6. Effect of regeneration, signal response of the immunosensor to 10 U mL⁻¹ CA125 in 0.1 M PBS (pH 7.4) solution is containing in 5 mm [Fe(CN)₆]^{3-/4-/0.1} M KCl. Error bar = RSD (n=3).

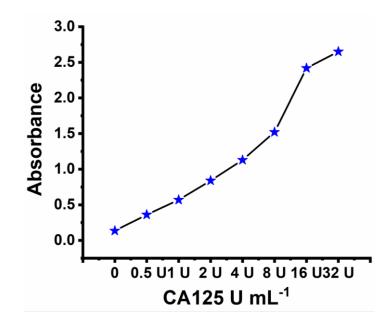


Figure S7. Standard inhibition curve for the indirect ELISA. Serum sample was 2-fold dilution

References

S1. Li, Y.; Cui, R.; Huang, H.; Dong, J.; Liu, B.; Zhao, D.; Wang, J.; Wang, D.; Yuan, H.; Guo, X. High Performance Determination of Pb^{2+} in Water by 2, 4-Dithiobiuret-Reduced Graphene Oxide Composite with Wide Linear Range and Low Detection Limit. *Anal. Chim. Acta* **2020**.